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1.1 INTRODUCTION

Most of the existing and foreseen complex networks, such as the Internet, are operated and
built by thousands of large and small entities (autonomous agents), which collaborate to
process and deliver end-to-end flows originating from and terminating at any of them. The
distributed nature of the Internet implies a lack of coordination among its users. Instead,
each user attempts to obtain maximum performance according to his own parameters and
objectives.

Methods from Game Theory and Mathematical Economics have been proven to be
a powerful modeling tool, which can be applied to understand, control and efficiently
design such dynamic, complex networks. Game Theory provides a good starting point for
Computer Scientists in their endeavor to understand selfish rational behavior in complex
networks with many agents (players). Such scenaria are readily modeled using techniques
from Game Theory,where players with potentially conflicting goals participate in a common
setting with well prescribed interactions.

Nash equilibrium [73, 74] distinguishes itself as the predominant concept of rationality
in non-cooperativesettings. So, Game Theory and its various concepts of equilibria provide
a rich framework for modeling the behavior of selfish agents in these kinds of distributed or
networked environments; they offer mechanisms to achieve efficient and desirable global
outcomes in spite of the selfish behavior.

Mechanism Design, a subfield of Game Theory, asks how one can design systems so
that agents’ selfish behavior results to desired system-wide goals. Algorithmic Mechanism
Design additionally considers computational tractability to the set of concerns of Mech-
anism Design. Work on Algorithmic Mechanism Design has focused on the complexity
of centralized implementations of game-theoretic mechanisms for distributed optimization
problems. Moreover, in such huge and heterogeneous networks, each agent does not have
access to (and may not process) complete information. The notion of bounded rationality
for agents, and the design of corresponding incomplete-information distributed algorithms,
have been successfully utilized to capture the aspect of lack of global knowledge in infor-
mation networks.

In this chapter, we review some of the most thrilling algorithmic problems and solutions,
and correspondingadvances, achieved on the account of Game Theory. The areas addressed
are the followings:

Congestion Games. A central problem arising in the management of large-scale com-
munication networks is that of routing traffic through the network. However, due to the
large size of these networks, it is often impossible to employ a centralized traffic manage-
ment. A natural assumption to make in the absence of central regulation is that network
users behave selfishly and aim at optimizing their own individual welfare. One way to
address this problem is to model this scenario as a non-cooperative multi-player game and
formalize it using congestion game. Congestion games (either unweighted or weighted)
offer a very natural framework for resource allocation in large networks like the Internet. In
a nutshell, the main feature of congestion games is that they model congestion on a resource
as a function of the number (or total weight) of all agents sharing the resource.

Price of Anarchy. We survey precise and approximate estimations for the Price of An-
archy; this is the cost of selfish behavior in dynamic, large-scale networks compared to
hypothetical centralized solutions. We consider the Price of Anarchy for some of the most
important network problems that are modeled by non-cooperative games; for example, we
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consider routing and security problems. A natural variant of the Price of Anarchy is the
Price of Stability [5], which is the best-case cost of selfish behavior in complex networks,
compared to a hypothetical centralized solution. The best-case assumption in the formula-
tion of the Price of Stability implies that this cost can be enforced to the agents since they
are interested in paying an as low cost as possible.

Selfish Routing with Incomplete Information. The impact of bounded rationality in
networks with incomplete information can be addressed in two successful ways: by either
Bayesian games, or by congestion games with player specific payoff functions. We will
survey methods and tools for approximating network equilibria and network flows for a
selfish system comprised of agents with bounded rationality.

Mechanism Design. Mechanism Design is a subfield of Game Theory and Microeco-
nomics which deals with the design of protocols for rational agents. Generally, a Mechanism
Design problem can be described as the task of selecting, out of a collection of feasible
games, one which will yield desirable results for the designer. So, Mechanism Design can
be thought of as the “inverse problem” in Game Theory, where the input is a game’s out-
come and the output is a game guaranteeing the desired outcome. The study of Mechanism
Design from the algorithmic point of view starts with the seminal paper of Nisan and Ronen
[76].

The routing problem in large-scale networks, where users are instinctively selfish, can be
modeled by a non-cooperative game. Such a game could impose strategies that might induce
an equilibrium close to the overall optimum. These strategies can be enforced through
pricing mechanisms [28], algorithmic mechanisms [76] and network design [57, 87].

Stackelberg Games. We will examine network routing games from the network de-
signer’s point of view. In particular, the network administrator or designer can define
prices and rules, or even construct the network, in a way that induces near-optimal per-
formance when the users act selfishly inside the system. Particularly interesting is the
approach where the network manager takes part in the non-cooperative game. The manager
has the ability to control centrally a part of the system resources, while the rest resources
are managed by the selfish users. This approach has been implemented through Stackelberg
or Leader-Follower games [16, 58].

The apparent advantage of this approach is that it might be easier to be deployed in large-
scale networks. This is so since there is no need to add extra components to the network,
or to exchange information between the users of the network.

In a typical Stackelberg game, one player acts as a leader (here, the centralized authority
interested in optimizing system performance) and the rest act as followers (here, the selfish
users). The problem is then to compute a strategy for the leader (a Stackelberg strategy)
that induces the followers to react in a way that (at least approximately) minimizes the total
latency in the system.

Selfish routing games can be modeled as a Stackelberg game. We will survey issues
related to how the manager should assign the flow under his control into the system so as
to induce optimal cost incurred by the selfish users. In particular, we will be interested in
the complexity of designing optimal Stackelberg strategies.

Pricing mechanisms. Pricing mechanisms for resource allocation problems aim at allo-
cating resources in such a way that those users who derive greater utility from the network
are not denied access due to other users placing a lower value on it. In other words, pricing
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mechanisms are designed to guarantee economic efficiency. We will survey cost-sharing
mechanisms for pricing the competitive usage of a collection of resources by a collection
of selfish agents, each coming with an individual demand.

Network Security Games. We will also consider security problems in dynamic, large-
scale, distributed networks. Such problems can be modeled as concise, non-cooperative
multi-player games played on a graph. We will investigate the associated Nash equilibria
for such network security games. In the literature, there have been studied at least two such
interesting network security games.

Complexity of Computing Equilibria. The investigation of the computational complex-
ity of finding a Nash equilibrium in a general strategic game is definitely a fundamental task
for the development of Algorithmic Game Theory. Answers to such questions are expected
to have great practical impact on both the analysis of the performance of antagonistic net-
works and on the development and implementation of policies for the network designers
themselves.

Finding a Nash equilibrium in a game with two players could potentially be easier (than
for many players) for several reasons.

• First, the zero-sum version of the game can be solved in polynomial time by linear
programming. This grooms hopes for the polynomial solvability of the general (non-
constant sum) version of the problem.

• Second, the two-players version of the game admits a polynomial size rational number
solution, while there are games with three or more players that mayonlyhave solutions
in irrational numbers.

This reasoning justified the identification of the problem of finding Nash equilibria for a
2-player game as one of the most important open questions in the field of Algorithmic Game
Theory. The complexity of this problem was very recently settled in a perhaps surprising
way in a series of breakthrough papers. In this chapter, we will later survey some of the
worldwide literature related to this problem and the recent progress to it.

In this chapter we only assume a basic familiarity of the reader with some central concepts
of Game Theory such as strategic games and Nash equilibria; for more details, we refer the
interested reader to the leading textbooks [77, 78]. We also assume some acquaintance of
the reader with the basic facts of the theory of computational complexity, as laid out, for
example, in the leading textbook of Papadimitriou [80]. For readers interested in recalling
the fundamental of algorithms design and analysis, we refer the reader to the prominent
textbook of Kleinberg and Tardos [53]. For overwhelming motivation to dwelving into the
secrets of Algorithmic Game Theory, we cheerfully refer the reader to the inspirational and
prophetic survey of Papadimitriou in STOC 2001 [81].

1.2 CONGESTION GAMES

1.2.1 The General Framework

1.2.1.1 Congestion Games Rosenthal [84] introduced a special class of strategic
games, now widely known as congestion games and currently under intense investigation
by researchers in Algorithmic Game Theory. Here, the strategy set of each player is a subset
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of the power set of a set of resources; so, it is a set of sets of resources. Each player has
an objective function, defined as the sum (over their chosen resources) of functions in the
number of players sharing this resource. In his seminal work, Rosenthal showed with the
help of a potential function that congestion games (in sharp contrast to general strategic
games) always admit at least one pure Nash equilibrium.

An extension to congestion games are weighted congestion games, in which the players
have weights, and thus exert different influences on the congestion of the resources. In
(weighted) network congestion games, the strategy sets of the players correspond to paths
in a network.

1.2.1.2 Price of Anarchy In order to measure the degradation of social welfare due
to the selfish behavior of the players, Koutsoupias and Papadimitriou [60] introduced in
their seminal work a global objective function, usually coined as Social Cost. It is quite
remarkable that no notion similar in either spirit or structure to Social Cost had been studied
in the Game Theory literature before. They defined the Price of Anarchy, also called
Coordination Ratio and denoted as PoA, as the worst-case ratio between the value of Social
Cost at a Nash equilibrium and that of some Social Optimum. The Social Optimum is the
best-case Social Cost; so it is the least value of Social Cost achievable through cooperation.
Thus, the Coordination Ratio measures the extent to which non-cooperation approximates
cooperation.

As a starting point for analyzing the Price of Anarchy, Koutsoupias and Papadimitriou
considered a very simple weighted network congestion game, now known as the KP-model.
Here, the network consists of a single source and a single destination (in other words, it
is a single-commodity network) which are connected together by parallel links. The load
on a link is the total weight of players assigned to this link. Associated with each link is
a capacity (or speed) representing the rate at which the link processes load. Each of the
players selfishly routes from the source to the destination by using a probability distribution
over the links. The private objective function of a player is its expected latency. The Social
Cost is the expected maximum latency on a link, where the expectation is taken over all
random choices of the players.

Fotakis et al. [34] have proved that computing Social Cost (in the form of expected
maximum) is a #P -complete problem. The stem of this negative result is the nature of
exponential enumeration explicit in the definition of Social Cost (as an exponential-size
expectation sum). An essentially identical #P -hardness result has been proven recently
by Daskalakis et al. [19]. This is one of the very few hard enumeration problems known in
Algorithmic Game Theory as of today. Determining more remains a great challenge.

Mavronicolas and Spirakis [69] introduced fully mixed Nash equilibria for the particular
case of the KP-model, in which each player chooses every link with positive probability.
Gairing et al. [38, 39] explicitly conjectured that, in case the fully mixed Nash equilibrium
exists, it is the worst-case Nash equilibrium with respect to Social Cost. This so-called
Fully Mixed Nash Equilibrium Conjecture is simultaneously intuitive and significant.

• It is intuitive because the fully mixed Nash equilibrium favors an increased number of
collisions between different players, since each player assigns its load with positive
probability to every link. This increased probability of collisions should favor an
increase to Social Cost.

• The conjecture is also significant since it identifies the worst-case Nash equilibrium
over all instances. The Fully Mixed Nash Equilibrium Conjecture has been studied
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very intensively in the last few years over a variety of settings and models relative to
the KP-model.

The KP-model was recently extended to restricted strategy sets [9, 35], where the strategy
set of each player is a subset of the links. Furthermore, the KP-model was extended to
general latency functions and studied with respect to different definitions of Social Cost
[36, 37, 63].

Inspired by the arisen interest in the Price of Anarchy, the much older Wardrop model
was reinvestigated in [88] (see also references therein). In this weighted network congestion
game, weights can be split into arbitrary pieces. The social welfare of the system is defined
as the sum of the edge latencies (Sum or Total Social Cost). An equilibrium in the Wardrop
model can be interpreted as a Nash equilibrium in a game with infinitely many players,
each carrying an infinitesimal amount of weight. There has been a tremendous amount of
work following [88] on the reinvestigation of the Wardrop model. For an exposition, see
the book by Roughgarden [86], which gives an account of the earliest results.

In [60], Koutsoupias and Papadimitriou initiated a systematic investigation of the social
objective of (expected) maximum latency (also called Maximum Social Cost) for a weighted
congestion game on uniformly related parallel links. The Price of Anarchy for this game has

been shown to be Θ
( log m

log log m

)
if either the users or the links are identical [18, 59], and

Θ
( log m

log log log m

)
for weighted users and uniformly related links [18]. On the other hand,

[17] shows that the Price of Anarchy is far worse and can be even unbounded for arbitrary
latency functions. For uniformly related parallel links, identical users, and the objective of
total latency, the Price of Anarchy is 1 − o(1) for the general case of mixed equilibria and
4/3 for pure equilibria [63]. For identical users and polynomial latency functions of degree
d, the Price of Anarchy is dΘ(d) [8, 15].

Christodoulou and Koutsoupias [15] consider the Price of Anarchy of pure Nash equi-
libria in congestion games with linear latency functions. They showed that for general
(asymmetric) games, the Price of Anarchy for Maximum Social Cost is Θ(

√
n), where n

is the number of players. For all other cases of symmetric or asymmetric games, and for
both Maximum and Average Social Cost, the Price of Anarchy is shown to be 5

2 . Similar
results were simultaneously obtained by Awerbuch et al. [15]

1.2.2 Pearls

A comprehensive survey of some of the most important recent advances in the literature on
atomic congestion games is provided by [55]. That work is an overview of the extensive
expertise on (mainly, network) congestion games and the closely related potential games
[71], which has been developed in various disciplines (e.g., Economics, Computer Science
and Operations Research) under a common formalization and modeling. In particular, the
survey goes deep into the details of some of the most characteristic results in the area in
order to compile a useful toolbox that Game Theory provides in order to study antagonistic
behavior due to congestion phenomena in Computer Science settings.

1.2.2.1 Selfish Unsplittable Flows In [32], Fotakis et al. study congestion games
where selfish users with varying service demands on the system resources may request a
joint service from an arbitrary subset of resources. Each user’s demand has to be served
unsplittably from a specific subset of resources. In that work, it is proved that the weighted
congestion games are no longer isomorphic to the well known potential games, although this
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was true for the case of users with identical service demands. The authors also demonstrate
the power of the network structure in the case of users with varying demands. For very
simple networks, they show that there may not exist a pure Nash equilibria, which is not
true for the case of parallel links network or for the case of infinitely splittable service
demands. Furthermore, the authors propose a family of networks (called layered networks)
for which they show the existence of at least one pure Nash equilibrium when each resource
charges its users with a delay equal to its load. Finally, the same work considers the Price
of Anarchy for the family of layered networks in the same case. It is shown that the Price

of Anarchy for this case is Θ
( log m

log log m

)
. That is, within constant factors, the worst-case

network is the simplest one (the parallel links network). This implies that, for this family of
networks, the network structure does not affect the quality of the outcome of the congestion
games played on the network in an essential way.

Panagopoulou and Spirakis [79] consider selfish routing in single-commodity networks,
where selfish users select paths to route their loads (represented by arbitrary integerweights).
They consider identical delay functions for the links of the network. That work focuses
also on an algorithm suggested in [32]; this is a potential-based algorithm for finding pure
Nash equilibria in such networks. The analysis of this algorithm from [32] has given an
upper bound on its running time, which is polynomial in n (the number of users) and
the sum W of their weights. This bound can be exponential in n when some weights
are superpolynomial. Therefore, the algorithm is only known to be pseudo–polynomial.
The work of Panagopoulou and Spirakis [79] provides strong experimental evidence that
this algorithm actually converges to a pure Nash equilibria in polynomial time in n (and,
therefore, independent of the weights values).

In addition, Panagopoulou and Spirakis [79] propose an initial allocation of users to paths
that dramatically accelerates this algorithm, as opposed to an arbitrary initial allocation. A
by–product of that work is the discovery of a weighted potential function when link loads
are exponential to their loads. This guarantees the existence of pure Nash equilibria for
these delay functions, while it extends the results of Fotakis et al. from [32].

1.2.2.2 Worst-Case Equilibria In [30], Fischer and Vöcking reexamined the ques-
tion of worst-case Nash equilibria for the selfish routing game associated with the KP model
[60], where n weighted jobs are allocated to m identical machines. Recall that Gairing et al.
[38, 39] had conjectured that the fully mixed Nash equilibrium is the worst Nash equilibrium
for this game (with respect to the expected maximum load over all machines). The known
algorithms for approximating the Price of Anarchy relied on proven cases of that conjecture.
In [30], the authors interestingly present a counter-example to the conjecture showing that
fully mixed Nash equilibria cannot be generally used to approximate the Price of Anarchy
within reasonable factors. In addition, they present an algorithm that constructs the so-
called concentrated Nash equilibria, which approximate the worst-case Nash equilibrium
within constant factors.

Although the work of Fischer and Vöcking [30] has disproved the Fully Mixed Nash
Equilibrium Conjecture for the case of weighted users and identical links, the possibility
that the conjecture holds for the case of identical users and arbitrary links is still open.

1.2.2.3 Symmetric Congestion Games Fotakis et al. [33] continued the work of
[32] and studied computational and coordination issues of Nash equilibria in symmetric
network congestion games. A game is symmetric if all users have the same strategy set and
users costs are given by identical symmetric functions of other users’ strategies. (Symmetric
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games were already considered in the original work of Nash [73, 74].) In unweighted
congestions games, users are identical, so that a common strategy set implies symmetry.

This work proposed a simple and natural greedy method (which is called the Greedy
Best Response – GBR), to compute a pure Nash equilibria. In this algorithm, each user
plays only once and allocates his traffic to a path selected via a shortest path computation.
It is shown that this algorithm works for three special cases: (1) series-parallel networks,
(2) users are identical and (3) users are of varying demands but they have the same best
response strategy for any initial network traffic (this is called the Common Best Response
property).

The authors also give constructions where the algorithm fails if either the latter condition
is violated (even for a series-parallel network), or the network is not series-parallel (even
for the case of identical users). Thus, these results essentially indicate the limits of the
applicability of this greedy approach.

The same work [33] studies also the Price of Anarchy for the objective of (expected)
maximum latency. It is proved that for any network of m uniformly related links and for

identical users, the Price of Anarchy is Θ
( log m

log log m

)
. This result is complementary (and

somewhat orthogonal) to a similar result proved in [32] for the case of weighted users to be
routed in a layered network.

1.2.2.4 Exact Price of Anarchy Obtaining exact bounds on Price of Anarchy is, of
course, the ultimate wish providing a happy end to the story. Unfortunately, the cases where
such exact bounds are known are truly rare as of today. We describe here a particularly
interesting example of a success story for one of these rare cases.

Exact bounds on the Price of Anarchy for both unweighted and weighted congestion
games with polynomial latency functions are provided in [3]. The authors use the total
latency as the Social Cost measure. The result in [3] vastly improve on results by Awerbuch
et al. [8] and Christodoulou and Koutsoupias [15], where non-matching upper and lower
bounds were given. (We will later discuss the precise relation of the newer result to the
older results.)

For the case of unweighted congestion games, it is shown in [3] that the price of anarchy
is exactly

PoA =
(k + 1)2d+1 − kd+1(k + 2)d

(k + 1)d+1 − (k + 2)d + (k + 1)d − kd+1
,

where k = �Φd� and Φd is a natural generalization of the golden ratio to larger dimensions
such that Φd is the solution to the equation (Φd + 1)d = Φd+1

d . The best known upper and
lower bounds had before been shown to be of the form d d(1−o(1)) [15]. However, the term
o(1) was still hiding a significant gap between the upper and the lower bound.

For weighted congestion games, the authors show that the Price of Anarchy is exactly

PoA = Φd+1
d .

This result closes the gap between the so far best upper and lower bounds of O(2 ddd+1)
and Ω(dd/2) from [8].

The authors of [3] show that the above values on the Price of Anarchy also hold for the
subclasses of unweighted and weighted network congestion games. For the upper bounds,
the authors use a similar analysis as in [15]. The core of their analysis is to simultaneously
determine parameters c1 and c2 such that

y · f(x + 1) ≤ c1 · x · f(x) + c2 · y · f(y)
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for all polynomial latency functions of maximum degree d and for all reals x, y ≥ 0. For
the case of unweighted users, it suffices to show the inequality for all pairs of integers x and
y. (In order to prove their upper bound, Christodoulou and Koutsoupias [15] looked at the
inequality with c1 = 1

2 and gave an asymptotic estimate for c2.) In the analysis presented
in [3], both parameters c1 and c2 are optimized. This optimization process required new
mathematical ideas and is highly non-trivial. This optimization was successfully applied
by Dumrauf and Gairing [24] to the so called Polynomial Wardrop games, where it yielded
almost exact bounds on Price of Stability.

1.3 SELFISH ROUTING WITH INCOMPLETE INFORMATION

In his seminal work, Harsanyi [46] introduced an elegant approach to study non-cooperative
games with incomplete information, where the players are uncertain about some parameters
of the game. To model such games, he introduced the Harsanyi transformation, which
converts a game with incomplete information to a strategic game where players may have
different types. In the resulting Bayesian game, the players’ uncertainty about each other’s
types is described by a probability distribution over all possible type profiles. It was only
recently that Bayesian games were investigated from the point of view of Algorithmic Game
Theory. Naturally, researchers were interested in formulating Bayesian versions of already
studied routing games, as we described below.

In more detail, the problem of selfish routing with incomplete information has recently
been faced via the introduction of new suitable models and the development of new method-
ologies that help to analyze such network settings. In particular, there were introduced new
selfish routing games with incomplete information, called Bayesian routing games [40].

In a different piece of work, the same problem has been viewed as a congestion game
where latency functions are player-specific [41], or a congestion game under the restriction
that the link for each user must be chosen from a certain set of allowed links for the user
[9, 26].

1.3.1 Bayesian Routing Games

Gairing et al. introduced [40] a particular selfish routing game with incomplete information,
called Bayesian routing game. Here, n selfish users wish to assign their traffics to one of m
parallel links. Users do not know each other’s traffic. Following Harsanyi’s approach, the
authors introduce for each user a set of types. Each type represents a possible traffic; so,
the set of types capture the set of all possibilities for each user. Unfortunately, users know
the set of all possibilities for each other, but not the actual traffic itself.

Gairing et al. [40] proved, with the help of a potential function, that every Bayesian
routing game has a pure Bayesian Nash equilibrium. This result has also been generalized
to a larger class of games, called weighted Bayesian congestion games. For the case of
identical links and independent type distributions, it is shown that a pure Bayesian Nash
equilibrium can be computed in polynomial time. (A probability distribution over all
possible type profiles is independent if it can be expressed as the product of independent
probability distributions, one for each type.)

In the same work, Gairing et al. study structural properties of Bayesian fully mixed Nash
equilibria for the case of identical links, they show that those maximize Individual Cost.
This implies, in particular, that Bayesian fully mixed Nash equilibria maximize Social Cost
as sum of Individual Costs.
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In general, there may exist more than one fully mixed Bayesian Nash equilibrium.
Gairing et al. [40] provide a characterization of the class of fully mixed Bayesian Nash
equilibria for the case of independent type distribution; the characterization determines, in
turn, the dimension of Bayesian fully mixed Nash equilibria. (The dimension of Bayesian
fully mixed Nash equilibria is the dimension of the smallest Euclidean space into which all
Bayesian fully mixed Nash equilibria can be mapped.)

Finally, Gairing et al. consider [40] the Price of Anarchy for the case of identical links
and for three different Social Cost measures; that is, they consider Social Cost as Expected
Maximum Congestion, as Sum of Individual Costs and as Maximum Individual Cost. For
the latter two measures, (asymptotic) tight bounds were providedusing the proven structural
properties of fully mixed Bayesian Nash equilibria.

1.3.2 Player-Specific Latency Functions

Gairing et al. [41] address the impact of incomplete knowledge in (weighted) network
congestion games with either splittable or unsplittable flow. In this perspective, the proposed
models generalize the two famous models of selfish routing, namely weighted (network)
congestion games and Wardrop games, to accommodate player-specific latency functions.
Latency functions may be arbitrary, non-decreasing functions; however, many of the shown
results in [41] assume that the latency function for player i on resource j is a linear function
fij(x) = aijx + bij , where aij ≥ 0 and bij ≥ 0. Gairing et al. use the term player-specific
capacities to denote a game where bij = 0 in all (linear) latency functions.

Gairing et al. [41] derive several interesting results on the existence and computational
complexity of (pure) Nash equilibria and on the Price of Anarchy. For routing games on
parallel links with player-specific capacities, they introduce two new potential functions,
one for unsplittable and for splittable traffics. The first potential function is used to prove
that games with unweighted players possess the finite improvement property in the case of
unsplittable traffics. It is also shown in [41] that games with weighted players do not possess
the finite improvement property in general, even if there are only three users. The second
potential function is a convex function tailored to the case of splittable traffics. This convex
function is minimized if and only if the corresponding assignment is a Nash equilibrium.
Since such minimization of a convex latency function can be carried out in polynomial
time, the established equivalence between minimizes of the potential function and Nash
equilibria implies that a Nash equilibrium can be computed in polynomial time.

The same work [41] proves upper and lower bounds on the Price of Anarchy under
a certain restriction on the linear latency functions. For the case of unsplittable traffics,
the upper and lower bounds are asymptotically tight. All bounds on the Price of Anarchy
translate to corresponding bounds for general congestion games.

1.3.3 Network Uncertainty in Selfish Routing

The problem of selfish routing in the presence of incomplete network information has also
been studied by Georgiou et al. [43]. This work proposes an interesting new model for
selfish routing in the presence of incomplete network information. The model proposed by
Georgiou et al. captures situations where the users have incomplete information regarding
the link capacities. Such uncertainty may be caused if the network links actually represent
complex paths created by routers, which are constructed differently on separate occasions
and sometimes according to the presence of congestion or link failures.
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The new, extremely interesting model presented in [43] consists of a number of users
who wish to route their traffic on a network of m parallel links with the objective of
minimizing their latency. In order to capture the lack of precise knowledge about the
capacity of the network links, Georgiou et al. [43] assumed that links may present a
number of different capacities. Each user’s uncertainty about the capacity of each link is
modeled via a probability distribution over all possibilities. Furthermore, it is assumed that
users may have different sources of information regarding the network; therefore, Georgiou
et al. assume the probability distributions of the various users to be (possibly) distinct from
each other. This gives rise to a very interesting model with user-specific payoff functions,
where each user uses its distinct probability distribution to take decisions as to how to route
its traffic.

The authors propose simple polynomial time algorithms to compute pure Nash equilibria
in some special cases of the problem and demonstrate that a counter-example presented in
[70], showing that pure Nash equilibria may not exist in the general case, does not apply
to their model. Thus, Georgiou et al. identify an interesting open problem in this area,
that of the existence of pure Nash equilibria in the general case of their model. Also, two
different expressions for the Social Cost and the associated Price of Anarchy are identified
and employed in [43]. For the latter, Georgiou et al. obtain upper bounds for the general
case and some better upper bounds for several special cases of their model.

In the same work, Georgiou et al. show how to compute the fully mixed Nash equilibrium
in polynomial time; they also show that when it exists, it is unique. Also, Georgiou et al.
prove that for certain instances of the game, fully mixed Nash equilibria assign all links to
all users equiprobably. Finally, the work in [43] verifies the Fully Mixed Nash Equilibrium
conjecture, namely that the fully mixed Nash equilibrium maximizes Social Cost.

1.3.4 Restricted Selfish Scheduling

Elsässer et al. [26] further consider selfish routing problems in networks under the restriction
that the link for each user must be chosen from a certain set of allowed links for the user. It is
particularly assumed that each user has access (that is, finite cost) to only two machines; its
cost on other machines is infinitely large, giving it no incentive to switch there. Interaction
with just a few neighbors is a basic design principle to guarantee efficient use of resources
in a distributed system. Restricting the number of interacting neighbors to just two is
then a natural starting point for the theoretical study of the impact of selfish behavior in a
distributed system with local interactions. In the model of Els ässer et al., the (expected)
cost of a user is the (expected) load on the machine it chooses.

The particular way of modeling local interaction in [26] has given rise to a simple, graph-
theoretic model for selfish scheduling amongm non-cooperativeusers over a collection of n
machines with local interaction. In their graph-theoretic model, Els ässer et al. [26] address
these bounded interactions by using an interaction graph, whose vertices and edges are the
machines and the users, respectively. Elsässer et al. [26] have been interested in the impact
of their modeling on the properties of the induced Nash equilibria.

The main result of Elsässer et al. [26] is that the parallel links graph is the best-case
interaction graph – the one that minimizes expected makespan of the standard fully mixed
Nash equilibrium – among all 3-regular interaction graphs. (In the standard fully mixed
Nash equilibria each user chooses each of its two admissible machines with probability 1

2 ).
The proof employs a graph-theoretic lemma about orientations in 3-regular graphs, which
may be of independent interest. This is a particularly pleasing case where Algorithmic
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Game Theory rewards Graph Theory with a wealth of new interesting problems about
orientations in regular graphs.

A lower bound on Price of Anarchy is also provided in the work of Els ässer et al. [26].
In particular, it is proved that there is an interaction graph incurring Price of Anarchy

Ω
( log n

log log n

)
. This bound relies on a proof employing pure Nash equilibria. Finally, the

authors present counterexample interaction graphs to prove that a fully mixed Nash equi-
librium may sometimes not exist at all. (A characterization of interaction graphs admitting
fully mixed Nash equilibria is still missing.) Moreover, they proveexistence and uniqueness
properties of the fully mixed Nash equilibrium for complete bipartite graphs and hypercube
graphs.

The problems left open in [26] invite Graph Theory to a pleasing excursion into Algo-
rithmic Game Theory.

1.3.5 Adaptive Routing with Stale Information

Fischer and Vöcking [29] consider the problem of adaptive routing in networks by selfish
users that lack central control. The main focus of this work is on simple adaption policies,
or dynamics, that make possible use of stale information. The analysis provided in [29]
covers a wide class of dynamics encompassing the well-known replicator dynamics and
other dynamics from Evolutionary Game Theory; the basic milestone is the well known fact
that choosing the best option on the basis of out-of-date information can lead to undesirable
oscillation effects and poor overall performance.

Fischer and Vöcking [29] show that it is possible to cope with this problem, and guarantee
efficient convergence towards an equilibrium state, for all of this broad class of dynamics, if
the function describing the cost of an edge depending on its load is not too steep. As it turns
out, guaranteeing convergence depends solely on the size of a single parameter describing
the greediness of the agents!

While the best response dynamics,which corresponds to always choosing the best option,
performs well if information is always up-to-date, it is interestingly clear from the results
in [29] that this policy fails when information is stale. More interestingly, Fischer and
Vöcking [29] present a dynamics which approaches the global optimal solution in networks
of parallel links with linear latency functions as fast as the best response dynamics does,
but which does not suffer from poor performance when information is out-of-date.

1.4 ALGORITHMIC MECHANISM DESIGN

Mechanism Design is a subfield of Game Theory and Microeconomics which, generally
speaking, deals with the design of protocols for rational agents. In most simple words, a
Mechanism Design problem can be described as the task of selecting from a collection of
(feasible) games, a game which will yield desirable results for the designer. Specifically,
the theory of Mechanism Design has focused on problems where the goal is to satisfactorily
aggregateprivately known preferences of several agents towards a social choice. Intuitively,
a Mechanism Design problem has two components:

• The usual algorithmic output specification

• Descriptions of what the participating agents want, formally given as utility functions
over the set of possible outputs (outcomes).
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The origin of Algorithmic Mechanism Design is marked with the seminal paper of Nisan
and Romen [76].

A mechanism solves a given problem by assuring that the required outcome occurs,
under the assumption that agents choose their strategies as to maximize their own selfish
utilities. A mechanism needs thus to ensure that players’ utilities (which it can influence
by handing out payments) are compatible with the algorithm.

Recall that the routing problem in large-scale networks where users are instinctively
selfish can be modeled as a non-cooperative game. Such a game is expected to impose
strategies that would induce an equilibrium as close to the overall optimum as possible.
Two possible approach to formulate such strategies are through pricing mechanisms [28]
and network design [57, 87].

In the first approach, the network administrator defines prices (or rules) in a way that
induces near optimal performance when the users act selfishly. This approach has been
considered in [10, 16] (see also references therein). In the second approach, the network
manager takes part in the noncooperative game. The manager has the ability to control
centrally a part of the system resources, while the rest of the resources are to be shared by
the selfish users. This approach has been studied through Stackelberg or Leader-Follower
games [50, 85] (see also references therein). We here overview some issues related to how
should the manager assign the flow he controls into the system, with the objective to induce
optimal cost in spite of the behavior of the selfish users.

1.4.1 Stackelberg Games

In [85], Roughgarden studies the problem of optimizing the performance of a system shared
by selfish, noncooperative users assigned to shared machines with load-dependent latency
functions. Roughgarden measures system performance by the total latency of the system.
(This measure is different than that used in the KP-model.) Assigning jobs according to
the selfish interests of individual users typically results in suboptimal system performance.
However, in many systems of this type, there is a mixture of “selfishly controlled” and
“centrally controlled” jobs; as the assignment of centrally controlled jobs will influence the
subsequent actions by selfish users, the degradation in system performance due to selfish
behavior can be reduced by scheduling the centrally controlled jobs in the best possible
way. Stackelberg games provide a framework that fits this situation in an excellent way.

A Stackelberg game is a special game where there are two kinds of entities: a number
of selfish entities, called players, that are interested in optimizing their own utilities, and a
distinguished leader controlling a number of non-self-interested entities called followers;
the leader aims at improving the social welfare and decides on the strategies of the followers
so that the resulting situation will induce suitable decisions for the players that will optimize
social welfare (as much as possible).

Roughgarden [85] formulates this particular goal for such a selfish routing system as an
optimization problem via Stackelberg games. The problem is then to compute a strategy
for the leader (a Stackelberg strategy) that induces the followers to react in a way that (at
least approximately) minimizes the total latency in the system. Roughgarden [85] proves
that, perhaps not surprisingly, it is NP-hard to compute the optimal Stackelberg strategy;
he also presents simple strategies with provable performance guarantees.

More precisely, Roughgarden [85] gives a simple algorithm to compute a strategy in-
ducing a job assignment with total latency no more than a small constant times that of the
optimal assignment for all jobs; in the absence of centrally controlled jobs and a Stackelberg
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strategy, no result of this type is possible. Roughgarden also proves stronger performance
guarantees in the special case where every latency function is linear in the load.

1.4.1.1 The Price of Optimum Kaporis and Spirakis continued in [50] the study of
the Stackelberg games from [85]. They considered a system of parallel machines, each with
a strictly increasing and differentiable load dependent latency function. The users of such
a system are of infinite number and act selfishly, routing their infinitesimally small portion
of the total flow they control to machines of currently minimum delay. In that work, such
a system is modeled as a Stackelberg or Leader-Followers game motivated by [88].

In [85], Roughgarden had presented the LLF Stackelberg strategy for a Leader in a
Stackelberg game with an infinite number of Followers, each routing its infinitesimal flow
through machines of currently minimum delay (this is called the Flow Model in [85]).
An important question posed there was the computation of the least portion β M that a
Leader must control in order to enforce the overall Optimum Cost on the system. In [50],
an algorithm that computes βM was presented and its optimality was also shown. Most
importantly, it was proved that the algorithm presented is optimal for any class of latency
functions for which Nash and optimum assignments can be efficiently computed. This is
one of a very few known cases where the computation of optimal Stackelberg strategies is
reduced to the computation of (pure) Nash equilibria and optimal assignments.

1.4.2 Cost Sharing Mechanisms

In its most general form, a Cost Sharing Mechanism specifies how costs originating from
resource consumption in a selfish system should be shared among the users of the system.
Apparently, not all sharing ways are good. Intuitively, a cost sharing mechanism is good if
it can induce equilibria optimizing social welfare as much as possible. This point of view
was adopted in a recent work by Mavronicolas et al. [65].

In more detail, a simple and intuitive cost mechanism which assigns costs for the com-
petitive usage of m resources by n selfish agents was proposed by Mavronicolas et al. [65].
Each agent has an individual demand; demands are drawn according to some (unknown)
probability distribution coming from a (known) class of probability distributions. The cost
paid by an agent for a resource he chooses is the total demand put on the resource divided
by the number of agents who chose that same resource. So, resources charge costs in an
equitable, fair way, while each resource makes no profit out of the agents. 1This simple
model was called Fair Pricing in [65].

Mavronicolas et al. analyzed in [65] the Nash equilibria (both pure and mixed) for
the induced game; in particular, they consider the fully mixed Nash equilibrium, where
each agent selects each resource with non-zero probability. While offering (in addition)
an advantage with respect to convenience in handling, the fully mixed Nash equilibrium is
suitable for that economic framework under the very natural assumption that each resource
offers usage to all agents without imposing any access restrictions.

The most significant contribution of [65] was the introduction of the Diffuse Price of
Anarchy for the analysis of Nash equilibria in the induced game. Roughly speaking, the
Diffuse Price of Anarchy is an extension to the Price of Anarchy that takes into account the
probability distribution of the demands. Roughly speaking, the Diffuse Price of Anarchy is

1One could argue that this pricing scheme is unfair in the sense that players with smaller demands can be forced to
support those players with larger demands that share the same resource. However, the model can also coined as fair
on account of the fact that it treats all players sharing the same resource equally, and players are not overcharged
beyond the actual cost of the resource they choose
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the worst-case, over all allowed probability distributions, of the expectation (according to
each specific probability distribution) of the ratio of Social Cost over Optimum in the worst-
case Nash equilibrium. The Diffuse Price of Anarchy is meant to alleviate the sometimes
overly pessimistic Price of Anarchy due to Koutsoupias and Papadimitriou [60] (which is
a worst-case measure) by introducing and analyzing stochastic assumptions on the system
inputs.

Mavronicolas et al. [65] proved that pure Nash equilibria may not exist unless all chosen
demands are identical; in contrast, a fully mixed Nash equilibrium exists for all possible
choices of the demands. Further on, it was proved that the fully mixed Nash equilibrium
is the unique Nash equilibrium in case there are only two agents. It was also shown that,
in the worst-case choice of demands, the Price of Anarchy is Θ(n); for the special case of
two agents, the Price of Anarchy is less than 2 − 1

m .
A plausible assumption is that demands are drawn from a bounded, independent prob-

ability distribution, where all demands are identically distributed and each is at most a
(universal for the class) constant times its expectation. Under this very general assumption,
it is proved in [65] that the Diffuse Price of Anarchy is at most that same universal constant;
the constant is just 2 when each demand is distributed symmetrically around its expectation.

1.4.3 Tax Mechanisms

How much can taxes improve the performance of a selfish system? This is a very general
question since it leaves three important dimensions of it completely unspecified: the precise
way of modeling taxes, the selfish system itself, and the measure of performance. Making
specific choices for these three dimensions gives rise to specific interesting questions about
taxes. There is already a sizeable amount of literature addressing such questions and variants
of them (see, for example, [10, 16, 31] and references therein). In this section, we briefly
describe the work of Caragiannis et al. [10], and we refer the reader to [16, 31] for additional
related results.

Caragiannis et al. [10] consider the (by now familiar) class of congestion games due to
Rosenthal [84] as their selfish system; they consider several measures for social welfare,
including total latency and a new interesting measure they introduce, called total disuitility,
which is the sum of latencies plus taxes incurred to players. Caragiannis et al. [10] focus
on the well studied case of linear latency functions, and they provide many (both positive
and negative) interesting results.

Their most interesting positive result is (in our opinion) the fact that there is a way to
assign taxes that can improve the performance of congestion games by forcing players to
follow strategies by which the total latency is within a factor of 2 of the least possible;
Caragiannis et al. prove that, most interestingly, this is the best possible way of assigning
taxes. Furthermore, Caraginannis et al. [10] consider cases where the system performance
may be very poor in the absence of taxes; they prove that, fortunately, in such cases the
total disuitility cannot be much larger than the optimal total latency. Another interesting
result eminating from the work of Caragiannis et al. [10] is that there is a polynomial
time algorithm (based on solving convex quadratic programs) to compute good taxes; this
represents the first result on the efficiency of taxes for linear congestion games.
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1.5 NETWORK SECURITY GAMES

It is an undeniable fact that the huge growth of the Internet has significantly extended the
importance of Network Security [90]. Unfortunately, as it is well known, many widely used
Internet systems and components are prone to security risks (see,for example, [14]); some of
these risks have even led to successful and well-publicized attacks [89]. Typically, an attack
exploits the discovery of loopholes in the security mechanisms of the Internet. Attacks and
defenses are currently attracting a lot of interest in major forums of communication research.
A current challenge for Algorithmic Game Theory is to invent and analyze appropriate
theoretical models of security attacks and defenses for emerging networks like the Internet.

Two independent research teams, one consisting of Aspnes et al. [6] and another con-
sisting of Mavronicolas et al. [67, 68], initiated recently the introduction of strategic games
on graphs (and the study of their associated Nash equilibria) as a means of studying security
problems in networks with selfish entities. The non-trivial results achieved by these two
teams exhibit a novel interaction of ideas, arguments and techniques from two seemingly
diverse fields, namely Game Theory and Graph Theory. This research line invites a simul-
taneously game-theoretic and graph-theoretic analysis of network security problems, where
not only threats seek to maximize their caused damage to the network, but also the network
seeks to protect itself as much as possible.

The two graph-theoretic models of Internet security can be cast as particular cases of the
so called Interdependent Security games studied earlier by Kearns and Ortiz [52]. There,
a large number of players must make individual decisions related to security. The ultimate
safety of each player may depend in a complex way on the actions of the entire population.

1.5.1 A Virus Inoculation Game

Aspnes et al. [6] consider an interesting graph-theoretic game with an interesting security
flavor, modeling containment of the spread of viruses on a network with installable antivirus
software. In this game, the antivirus software may be installed at individual nodes; a virus
damages a node if it can reach the node starting at a random initial node and proceeding to
it without crossing a node with installed antivirus software. Aspnes et al. [6] prove several
algorithmic properties for their graph-theoretic game and establish connections to a certain
graph-theoretic problem called Sum-of-Squares Partition.

Moscibroda et al. [72] initiate the study of Byzantine Game Theory in the context of the
specific virus inoculation game introduced by Aspnes et al. [6]. In their extention, they
allow some players to be malicious or Byzantine rather than selfish. They ask the very
natural question of what the impact of Byzantine players on the performance of the system
compared to either the purely selfish setting (where all players are self-interested and there
are no Byzantine players) or to the social optimum is.

To address such questions, they introduce the very interesting notion of the Price of
Malice which captures the efficiency degradation due to the presence of Byzantine players
(on top of selfish players). Moscibroda et al. [72] use the Price of Malice to quantify how
much the presence of Byzantine players can deteriorate the social welfare of the distributed
system corresponding to the virus inoculation game of Aspnes et al. [6]. Most interestingly,
Moscibroda et al. [72] demonstrate that in case the selfish players are highly risk-averse,
the social welfare of the system can improve as a result of taking Byzantine players into
account!
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We expect that Byzantine Game Theory will further develop in the upcoming years and
be applied successfully to evaluate the impact of Byzantine players on the performance of
selfish computer systems.

1.5.2 A Network Security Game

The work of Mavronicolas et al. [67, 68] considers a security problem on a distributed
network modeled as a multi-player non-cooperative game with attackers (e.g., viruses) and
a defender (e.g., a security software) entities. More specifically, there are two classes of
confronting randomized players on a graph: ν attackers, each choosing vertices and wishing
to minimize the probability of being caught, and a single defender, who chooses edges and
gains the expected number of attackers it catches. The authors exploit both game-theoretic
and graph-theoretic tools for analyzing the associated Nash equilibria.

In a subsequent work, Mavronicolas et al. [64] introduced the Price of Defense in order
to evaluate the loss in the provided security guarantees due to the selfish nature of attacks
and defenses. The work address the question of whether there are Nash equilibria that both
are computationally tractable and offer good Price of Defense. An extensive collection of
trade-offs between Price of Defense and the computational complexity of Nash equilibria
is provided in the work of Mavronicolas et al. [64]. Most interestingly, the work of
Mavronicolas et al. [64, 66, 67, 68] introduce certain natural classes of Nash equilibria for
their network security game on graphs, including Matching Nash equilibria [67, 68] and
Perfect Matching Nash equilibria [64]; they prove that deciding the existence of equilibria
from such classes is precisely equivalent to the recognition problem for König-Egervary
graphs [25, 54]. So, this establishes a very interesting (and perhaps unexpected) link to
some classical pearls in Graph Theory.

1.6 COMPLEXITY OF COMPUTING EQUILIBRIA

By Nash’s celebrating result [73, 74] every strategic game has at least one Nash equilibrium
(and an odd number of them). What is the complexity of computing one? Note that this
question is meaningful exactly when the payoff table is given in some implicit way that
allows for a succinct representation. The celebrated algorithm of Lemke and Howson [61]
shows that for bimatrix games this complexity is no more than exponential.

1.6.1 Pure Nash Equilibria

A core question in the study of Nash equilibria is which games have pure Nash equilibria.
Also, under what circumstances can we find one (assuming that there is one) in polynomial
time?

Recall that congestion games make a class of games that are guaranteed to have pure
Nash equilibria. In a classical paper [84], Rosenthal proves that, in any such game, the
Nash dynamics converges; equivalently, the directed graph with action combinations as
nodes and payoff–improving deviations by individual players as edges is acyclic. Hence,
the game has pure Nash equilibria which are the sinks of this graph. The proof is based on a
simple potential function. This existence theorem, however, again left open the question of
whether there is a polynomial-time algorithm for finding pure Nash equilibria in congestion
games.
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Fabrikant et al. [27] prove that the answer to this general question is positive when all
players have the same origin and destination (the so-called symmetric case); a pure Nash
equilibrium is found by computing the optimum of Rosenthal’s potential function through a
reduction to min-cost flow. However, it is shown that computing a pure Nash equilibrium in
the general network case is PLS-complete [49]. Intuitively, this means that it is as hard to
compute as any object whose existence is guaranteed by a potential function. (The precise
definition of the complexity class PLS is beyond the scope of this chapter.) The proof
of [27] has the interesting consequence the existence of examples with exponentially long
shortest paths, as well as thePSPACE-completeness for the problem of computing a Nash
equilibrium reachable from a specified state.

The completeness proof requires reworking the reduction to the problem of finding local
optimal of weighted MAX2SAT instances. Ackermann et al. [1] present a significantly
simpler proof based on a PLS-reduction from MAX-CUT showing that finding Nash equi-
libria in network congestion games is PLS-complete even for the case of linear latency
functions. Additional results about the complexity of pure Nash equilibria in congestion
games appear in the works of Ackermann et al. [1, 2].

Gottlob et al. [45] provide a comprehensive study of complexity issues related to pure
Nash equilibria. They consider restrictions of strategic games intended to capture certain
aspects of bounded rationality. For example, they show that even in the settings where
each player’s payoff function depends on the strategies of at most three other players, and
where each player is allowed to choose one out of at most three strategies, the problem of
determining whether a game has a pure Nash equilibrium is NP-complete. On the positive
side, they also identified tractable classes of games.

1.6.2 Mixed Nash Equilibria

Daskalakis et al. [20] consider the complexity of Nash equilibria in a game with four or
more players. They show that this problem is complete for the complexity class PPAD.
Intuitively, this means that a polynomial-time algorithm would imply a similar algorithm,
e.g., for computing Brouwer fixpoints; note that this is a problem for which quite strong
lower bounds for large classes of algorithms are known [48]. (A precise definition of the
complexity class PPAD is beyond the scope of this chapter.)

Nash [73, 74] had shown his celebrated result on the existence of Nash equilibria by
reducing the existence of Nash equilibria to the existence of Brouwer fixpoints. Given
any strategic game, Nash constructs a Brouwer function whose fixpoints are precisely the
equilibria of the game. In Nash’s reduction, as well as in subsequent simplified ones [42],
the constructed Brouwer function is quite specialized; this has led to the speculation that the
fixpoints of such functions (thus,Nash equilibria) are easier to find than for general Brouwer
functions. In [20], this question is answered in the negative by presenting a very interesting
reduction in the opposite direction: Any (computationally presented) Brouwer function can
be simulated by a suitable game, so that Nash equilibria correspond to fixpoints.

In [23], it is proved that computing a Nash equilibrium in a 3-player game is also
PPAD-complete. The proof is based on a variant of an arithmetical gadget from [44],
Independently, Chen and Deng [11] have also come up with a quite different proof of the
same result.

In a very recent paper [12], Chen and Deng settle the complexity of Nash equilibria
for 2-player strategic games with a PPAD-completeness proof. Their proof derived a
direct reduction from a search problem called the 3-Dimensional Brouwer problem, which
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is known to be PPAD-complete [20] to the objective problem. The completeness proof of
[12] utilizes new gadgets for various arithmetic and logic operations.

1.6.3 Approximate Nash Equilibria

As it is always the case, an established intractability invites an understanding of the limits
of approximation. Since it was established thta computing a Nash equilibrium is PPAD-
complete [20], even for 2-players strategic games [12], the question of computing approx-
imate Nash equilibria has emerged as the central remaining open problem in the area of
computing Nash equilibria.

Assume from this point on that all utilities have been normalized to be between 0 and 1.
(Clearly, this assumption is without any loss of generality.) Say that a set of mixed strategies
is an ε-approximate Nash equilibrium, where ε > 0, if for each player all strategies have
expected payoff that is at most ε more that the expected payoff for its strategy in the given
set. (So, ε is an additive approximation term.)

Lipton et al. [62] proved that an ε-approximate Nash equilibrium can be computed in

time O(n
log n
ε2 ) (that is, in strictly subexponential time) by examining all supports of size

log n
ε2

. It had been earlier pointed out [4] that no algorithm examining supports smaller

than about log n can achieve an approximation better than 1
4 , even for zero-sum games.

In addition, it is easy to see that a 3
4 -approximation Nash equilibrium can be found (in

polynomial time) by examining all supports of size 2.
Two research teams, one consisting of Daskalakis et al. [21] and the other of Kontogian-

nis et al. [56] investigated very recently the approximability of Nash equilibria in 2-player
games, and established essentially identical, strong results. Most remarkably, there is a
simple, linear-time algorithm in [21], which builds heavily on a corresponding algorithm
from [56]; it examines just two strategies per player and results to a 1

2 -approximate Nash
equilibrium for any 2-player game. Daskalakis et al. [21] also looked at the more demand-
ing notion of well supported approximate Nash equilibria introduced in [20] and present
an interesting reduction (of the same problem) to win-lose games (that is, games with all
utilities equal to 0 and 1). For this more demanding notion, Daskalakis et al. showed that
an approximation of 5

6 is possible contingent upon a graph-theoretic conjecture.
Chen et al. [13] establish strong inapproximability results for approximate Nash equilib-

ria. Their results imply that it is unlikely to obtain a fully polynomial time approximation
scheme for Nash equilibria (unless PPAD ⊆ P).

1.6.4 Correlated Equilibria

Nash equilibrium [73, 74] is widely accepted as the standard notion of rationality in Game
Theory. However, there are several other competing formulations of rationality; chief
among them is the correlated equilibrium, proposed by Aumann [7]. Observe that the mixed
Nash equilibrium is a distribution on the strategy space that is uncorrelated or independent;
that is, it is the product of independent probability distributions, one for each player. In
sharp contrast, a correlated equilibrium is a general distribution over strategy profiles. It
must, however, possess an equilibrium property: If a strategy profile is drawn according to
this distribution, and each player is told separately his suggested strategy (that is, his own
component in the profile), then no player has an incentive to switch to a different strategy
(assuming that all other players also obey), because the suggested strategy is the best in
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expectation. Correlated equilibria enjoy a very nice combinatorial structure: the set of
correlated equilibria of a multi-player, non-cooperative game is a convex polytope, and all
Nash equlibria are not only included in this polytope but they all lie on the boundary of the
polytope. (See [75] for an elegant elementary proof of this latter result.)

As noted in the own words of Papadimitriou in his paper [82], the correlated equilibrium
has several important advantages: It is a perfectly reasonable, simple and plausible concept;
it is guaranteed to always exist (simply because the Nash equilibrium is a particular case of
a correlated equilibrium); and it can be found in polynomial time for any number of players
and strategies by linear programming, since the inequalities specifying the satisfaction of
all players are linear. In fact, it turns out that the correlated equilibrium that optimizes
any linear function of the players’ utilities (for example, their sum) can be computed in
polynomial time.

Succinct Games. Equilibria in games,of which the correlated equilibrium is a prominent
example, are objects worth of studying from the algorithmic point of view. Multiplayer
games are the most compelling specimens in this regard. But, to be of algorithmic interest,
they must be represented succinctly. Succinct representation is required since otherwise a
typical (multiplayer) game would need an exponential size of bits in order to be described.
Some well known games that admit a succinct representation include:

• Symmetric games, where all players are identical and indistinguishable,

• Graphical games [51], where the players are the vertices of a graph, and the payoff
for each player only depends on its own strategy and those of its neighbours;

• Congestion games, where the payoff of each player only depends on its strategy and
those choosing the same strategy as him.

Papadimitriou and Roughgarden [83] initiated the systematic study of algorithmic issues
involved in finding equilibria (both Nash and correlated) in games with a large number of
players, which are succinctly represented. The authors develop a general framework for
obtaining polynomial-time algorithms for optimizing over correlated equilibria in such
settings. They show how such algorithms can be applied successfully to symmetric games,
graphical games and congestion games,among others. They also present complexity results,
implying that such algorithms are not in sight for certain other similar games. Finally, a
polynomial-time algorithm, based on quantifier elimination, for finding a Nash equilibrium
in symmetric games (when the number of strategies is relatively small) was presented.

Daskalakis and Papadimitriou [22] studied from the complexity point of view the problem
of finding equilibria in games played on highly regular graphs with extremely succinct
representation, such as the d-dimensional grid. There, it is argued that such games are of
interest in modeling large systems of interacting agents. It has been shown by Daskalakis
and Papadimitriou [22] that the problem of determining whether such a game on the d-
dimensional grid has a pure Nashequilibriumdepends ond, and the dichotomy is remarkably
sharp: It is polynomial time solvable when d = 1, but NEXP-complete for d ≥ 2.
In contrast, it was also proved that mixed Nash equilibria can be found in deterministic
exponential time for any fixed d by quantifier elimination.

Recently, Papadimitriou [82] considered, and largely settled, the question of the ex-
istence of polynomial-time algorithms for computing correlated equilibria in succinctly
representable multiplayer games. Papadimitriou developed a polynomial-time algorithm
for finding correlated equilibria in a broad class of succinctly representable multiplayer
games, encompassing essentially all kinds of such games we mentioned before.
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The algorithm presented by Papadimitriou [82] was based on a careful mimicking of the
existence proof due to Hart and Schmeidler [47], combined with an argument based on linear
programming duality and the ellipsoid algorithm, Markov chain steady state computations,
as well as application-specific methods for computing multivariate expectations.

1.7 DISCUSSION

In this chapter, we attempted a glimpse at the fascinating field of Algorithmic Game Theory.
This is a field that is currently undergoing a very intense investigation by the community
of the Theory of Computing. Although some fundamental theoretical questions have been
resolved (for example, the complexity of computing Nash equilibria for 2-player games),
there are still a lot of challenges ahead of us. Among those, most important are, in our
opinion, the further complexity classification of algorithmic problems in Game Theory,
and the further application of systematic techniques from Game Theory to modeling and
evaluating modern computer systems with selfish entities.
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