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Abstract

It is shown that a weak threshold network �in particular� threshold network� of
width w and depth d cannot be constructed from balancers of width p�� p�� � � � � pm���
if w does not divide P d� where P is the least common multiple of p�� p�� � � � � pm���
This holds regardless of the size of the network� as long as it is �nite� and it implies
a lower bound of logP w on its depth� More strongly� a lower bound of logpmax w
is shown on the length of every path from an input wire to any output wire that
exhibits the threshold property� where pmax is the maximum among p�� p�� � � � � pm���

Keywords� Distributed computing� parallel processing� impossibility results�

� Introduction

Consider a distributed application which involves solving a system of equations
by successive relaxation� where each process holds part of the data� Interleav�
ing of steps by di�erent processes is necessary in order to ensure that a correct
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value was computed� since it implies su�cient interaction among the interme�
diate values computed by the processes� A simple way to solve this problem
makes use of a synchronization barrier� a distributed data structure ensuring
that no process advances beyond a particular point in a computation until all
processes have arrived at that point �see� e�g�� �����	
��� Conventional multi�
processors mostly use centralized barriers� which often become the network
bottleneck or hot�spots� in the shared memory�

In a seminal paper� Aspnes et al� ��� suggest a completely di�erent approach
to such synchronization problems in the context of balancing networks� a new
class of distributed data structures suitable for solving more general balancing
problems� Their idea is to use a collection of primitive computing elements
called balancers� each having low expected contention� in a way that a process
needs to access only a few elements in order to advance to the next computa�
tion phase� Informally� a p�balancer can be thought of as a p�input� p�output
toggle� When an input appears on one of the input wires� it takes the output
wire to which the toggle is set� and toggles the gate� so that the next input
will leave on the next output wire� z We say that a p�balancer has width p�

One can connect� a collection of balancers to form a balancing network much
in the same way a comparator network is obtained by connecting a collection
of comparators �see� e�g�� �	���� This is done by connecting output wires from
some balancers to input wires of other balancers� The remaining unconnected
input and output wires are the input and output wires� respectively� of the
network� Each access to a balancing network by a process corresponds to a
token which traverses the network from an input wire to an output wire� Let
xi �resp�� yj� denote the number of tokens that have entered �resp�� left� the
network on the ith input wire �resp�� jth output wire�� where 
 � i� j � w� 	
for some integerw � � called width� A balancing network is a threshold network

if each time the network becomes free of tokens� yj� � b
Pw��

l�� xl�wc� where
j� is some �xed but arbitrary output wire� Say that j� exhibits the threshold

property� A weak threshold network relaxes the requirement that j� be �xed�

Aspnes et al� ��� Section ���� describe an implementation of a barrier for n
processes� where n � 
 mod w� using a threshold network of width w� their
implementation is an adaptation of the sense�reversing� technique of Hens�
gen et al� �	
�� Substituting a weak threshold network for a threshold net�
work in that implementation still guarantees correctness� although it may
not allow optimizations that were possible when using threshold networks
�e�g�� associating a local counter with only one output wire�� Thus� it would
be necessary to construct weak threshold networks of arbitrary width in or�
der to adapt to arbitrary dynamic changes in the number of processes ac�

zA balancer can be implemented both on a shared
memory multi
processor ma

chine and in message
passing ������
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cessing a barrier implemented that way� This paper addresses the problem
of constructing weak threshold networks of arbitrary width� More precisely�
what is the width of weak threshold networks that can be constructed us�
ing a �nite �but unbounded� number of balancers whose width is in the set
fp�� p�� � � � � pm��g� An additional motivation for our study is the existence of
general tradeo�s between depth� width and contention in balancing networks
�see� e�g�� �������		��� x An optimal weak threshold network for a �xed number
of processes may have to optimize both width and contention� the optimal
width may be arbitrary�

We show that if w does not divide P d� then there is no weak threshold �in
particular� threshold� network of width w and depth d� where P is the least
common multiple of p�� p�� � � � � pm��� Moreover� this impossibility result imme�
diately implies a lower bound of logP w on the maximal path length� viz� depth�
of any weak threshold network� However� our combinatorial proof techniques
yield a strictly stronger impossibility result� We show that every path from an
input wire to any output wire that exhibits the threshold property must have
length at least logpmax w� where pmax is the maximum among p�� p�� � � � � pm���

The problem of constructing networks of arbitrary width using balancers
whose width is in a �xed set has been studied before by Aharonson and
Attiya �	�� Busch and Mavronicolas ��� and Moran and Taubenfeld �	�� for
counting and smoothing networks� and generalizations of them� Busch and
Mavronicolas ��� show corresponding lower bounds on distances for count�
ing and smoothing networks� Our results generalize all of these results and
strictly strengthen them� since any smoothing network is also a weak thresh�
old network but not vice versa� moreover� our proof techniques are completely
di�erent from all other published techniques of similar results in being purely
combinatorial� Brit et al� ��� present impossibility results and lower bounds
for public counters� satisfying several kinds of correctness conditions for con�
current counting� these results are similar in �avor to ours�

The rest of this paper is organized as follows� In Section �� we outline a com�
binatorial framework for the study of balancing networks� Weak threshold�
threshold and smoothing networks are introduced and studied in Section ��
Section � derives impossibility results for weak threshold networks� We con�
clude� in Section �� with a discussion of our results�

xThe depth of a balancing network is the length of the longest path from an input
wire to an output wire�
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� Framework

In this Section� we present a combinatorial framework for the study of balanc�
ing networks� Our presentation closely follows the one in ���� where the reader
is referred for a more detailed treatment�

For any integer w � �� X�w� denotes the vector hx�� x�� � � � � xw��iT� while
dX�w�e and bX�w�c denote the integer vectors hdx�e� dx�e� � � � � dxw��eiT and
hbx�c� bx�c� � � � � bxw��ciT� respectively� We use ��w� to denote h
� 
� � � � � 
iT� a
vector with w zero entries� For any integer p � 	� denote �p� � f
� 	� � � � � p�	g�
In all of our discussion� we will refer to a set P � fp�� p�� � � � � pm��g of positive
integers no less than two� and we will let pmax and P denote the maximum
and the least common multiple� respectively� of integers in P�

Fix any integer p � �� and let
P

i�� xip
i denote the representation of the

integer x � 
 in the p�ary arithmetic system� where� for each i� xi � �p�� For
any integer k � 	� de�ne x �p k �

P
��i�k�� xip

i and x �p k �
P

i�k xip
i�

that is� x �p k is the integer represented by the k least signi�cant p�ary digits
in the representation of x in the p�ary arithmetic system� while x �p k is the
integer obtained from this representation by setting each of those digits to
zero� Clearly� x �p k�x �p k � x� Furthermore� de�ne x lp k � xk��p

k��� that
is� x lp k is the integer represented by the kth least signi�cant p�ary digit of
x� The de�nitions of x �p k� x �p k and x lp k involving the integer x can be
extended component�wise to any vector X�w� in the natural way�

Balancing networks are constructed from computing elements called balancers
and wires� For each integer p � �� a p�balancer bp � X�p� � Y�p�� or balancer

for short� is a computing element which receives non�negative� integer inputs
x�� x�� � � � � xp�� on input wires 
� 	� � � � � p� 	� respectively� and computes non�
negative integer outputs y�� y�� � � � � yp�� on output wires 
� 	� � � � � p�	� respec�
tively� such that for each j� 
 � j � p � 	� yj � d�

Pp��
l�� xl � j��pe� We say

that a p�balancer has width or type p� For each j� 
 � j � p � 	� the order

of output wire j� denoted ord�j�� is de�ned to be j�p� A balancer over P is a
p�balancer for some p � P�

A balancing network B � X�w� � Y�w� of width w over P is a collection of
balancers over P� where output wires are connected to input wires� having
w designated input wires 
� 	� � � � � w � 	 �which are not connected to output
wires of balancers�� w designated output wires 
� 	� � � � � w � 	 �similarly not
connected to input wires of balancers�� and containing no cycles� Non�negative�
integer inputs x�� x�� � � � � xw�� are received on input wires 
� 	� � � � � w � 	� re�
spectively� and non�negative� integer outputs y�� y�� � � � � yw�� are computed on
output wires 
� 	� � � � � w � 	� respectively� in the natural way� For a balancing
network B� the depth of B� denoted depth�B�� is de�ned to be the maximal
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depth of any of its wires� where the depth of a wire is de�ned to be zero for an
input wire of B� and maxl��p� depth�xl� � 	� for an output wire of a p�balancer
with input wires x�� x�� � � � � xp���

In case depth�B� � 	� B will be called a layer� For a layer B� we de�ne a
matrix DB with w rows and w columns� called the distance matrix� which
determines the distance between input and output wires� Formally� for any i
and j� 
 � i� j � w � 	� DB�ji� � 	 if input wire i and output wire j are
connected via a balancer� else DB�ji� � 
 if input wire i and output wire j
coincide� and � otherwise�

If depth�B� � d is greater than one� then B can be uniquely partitioned into
layers B��B�� � � � �Bd from left to right in the obvious way� We inductively
extend the de�nition of the distance matrix from layers to arbitrary balancing
networks as follows� Let B� be the balancing network resulting from B by
removing its rightmost layer Bd� Then� DB�ji� � minl��p��DB��jl� � DBd�li���
for any i and j� 
 � i� j � w � 	� That is� the distance of input wire i and
output wire j is the minimum over all l of the sum of the distance of input
wire i and output wire l in B� and the distance of input wire l and output wire
j in B��

The following result shows that for any balancing network� the output vector
takes a particular algebraic form as a function of the input vector� depending
on the types of balancers used� and the depth and topology of the network�

Proposition � �Busch and Mavronicolas ���� Let B � X�w� � Y�w� be a

balancing network of depth d over P� Then�

Y�w� � IB 	X
�w� �P d � FB�X

�w� �P d� �

for some matrix IB and a vector function FB � �P d�w �Nw�

Call IB and FB the transfer parameters of B� We next sample properties of
the transfer parameters that will be used later�

Proposition � �Busch and Mavronicolas ���� For any balancing network

B � X�w� � Y�w��

�	� the matrix IB is doubly stochastic�

��� FB���w�� � ��w��
��� for any i and j� 
 � i� j � w � 	� IB�ji� � 	�pDB �ji�

max �
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� Weak Threshold	 Threshold and Smoothing Networks

In this section� we introduce weak threshold� threshold� and smoothing net�
works� and present several preliminary properties of them�

Smoothing networks require that outputs come as close to each other as pos�
sible�

De
nition � �Aspnes et al� ���� A smoothing network over P is a balanc�

ing network B � X�w� � Y�w� over P such that for any j and k� 
 � j� k �
w � 	� jyj � ykj � 	�

A straightforward implication of De�nition � follows�

Proposition � Assume B � X�w� � Y�w� is a smoothing network over P�

Then� for each input vector X�w�� there exists at least one j � �w� such that

yj � b
Pw��

l�� xl�wc� and for each j � �w�� either yj � b
Pw��

l�� xl�wc or yj �
b
Pw��

l�� xl�wc � 	�

Our next de�nition extends the original one of threshold networks over f�g
given by Aspnes et al� ��� Section �����

De
nition � A threshold network over P is a balancing network B � X�w� �
Y�w� over P for which there exists some �xed index j� � �w�� such that for

each input vector X�w�� yj� � b
Pw��

l�� xl �wc�

Roughly speaking� a threshold network can detect input chunks� of size w
on some �xed output wire j�� called threshold wire� Relaxing the requirement
that a threshold wire be �xed leads to a weaker de�nition�

De
nition � A weak threshold network over P is a balancing network B �
X�w� � Y�w� over P for which for each input vector X�w�� there exists some

index j� � j��X
�w�� � �w� such that yj� � b

Pw��
l�� xl �wc�

Roughly speaking� a weak threshold network can still detect input chunks�
of size w on some thrshold wire which� however� need not be the same for
all inputs� Clearly� any threshold network is also a weak threshold network�
Moreover� Proposition � immediately implies that weak threshold networks
generalize smoothing networks too�

Proposition  Assume B is a smoothing network over P� Then� B is a weak

threshold network over P�

Consider a network B � X�w� � Y�w� which is the cascade� of the parallel
composition� of two counting networks� followed by a layer consisting of w��
balancers b�� b�� � � � � bw����� for each i � �w���� balancer bi receives as inputs
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the ith output of the top� counting network� and the �w���	�i�th output of
the bottom� counting network� and produces the corresponding outputs� A
straightforward case analysis reveals that B is a smoothing network� Assume�
however� that xw�� � 
 while xl � 	 for l 
� w � 	� by construction of B� it
follows that yw�� � 
 while yl � 	 for l 
� w� 	� Thus� output wire w� 	 is a
candidate� for a threshold wire� Assume now that xw���� � 
 while xl � 	 for
l 
� w�� � 	� by construction of B� it follows that yw���� � 
 while yl � 	 for
l 
� w���	� Thus� output wire w���	 is a second candidate� for a threshold
wire� Since there are two di�erent input vectors for which there correspond
di�erent threshold wires� it follows that B is not a threshold network� Thus�
we obtain�

Proposition � Assume B is a smoothing network over P� Then� B is not

necessarily a threshold network over P�

Since any threshold network is also a weak threshold network� Proposition �
immediately implies�

Proposition � Assume B is a weak threshold network over P� Then� B is

not necessarily a threshold network over P�

� Impossibility Results

We present our main impossibility result for weak threshold networks�

Theorem �� Assume B � X�w� � Y�w� is a weak threshold network of depth

d over P� Then� w divides P d�

Proof� Fix any index i � �w�� and set xi � P d and xl � 
 for l 
� i� so that
xi �P d � P d� xl �P d � 
 for l 
� i� X�w� �P d � ��w� and

Pw��
l�� xl �P d � P d�

By De�nition �� there exists some index j� � �w� such that yj� � bP d�wc�
while by Proposition 	�

yj� �
w��X

l��

IB�j�l�xl �P d � FB�X
�w� �P d��j�� � IB�j�i�P

d � FB��
�w���j�� �

By Proposition ����� FB���w�� � ��w�� It follows that bP d�wc � IB�j�i�P d�
or IB�j�i� � bP d�wc�P d� Thus� IB�j�i� is independent of i� since i was chosen
arbitrarily� this implies that

Pw��
l�� IB�j�l� � w IB�j�i�� However� by Proposi�

tion ��	��
Pw��

l�� IB�j�l� � 	� Hence� IB�j�i� � 	�w� It follows that bP d�wc �
P d�w� This implies that w divides P d� as needed�

�



Since any threshold network is a weak threshold network� Theorem 	
 imme�
diately implies�

Corollary �� Assume B � X�w� � Y�w� is a threshold network of depth d
over P� Then� w divides P d�

An immediate implication of Theorem 	
 and Corollary 		 is a lower bound
on depth for weak threshold and threshold networks�

Corollary �� Assume B � X�w� � Y�w� is a weak threshold or threshold

network of depth d over P� Then� d � logP w�

An inspection of the proof of Theorem 	
 reveals that for a threshold wire
j� � �w� of any weak threshold network B � X�w� � Y�w�� IB�j�i� � 	�w for all
i � �w�� Hence� Proposition ���� immediately implies a result strictly stronger
than Corollary 	��

Theorem �� Assume that j� is a threshold wire of any weak threshold or

threshold network B � X�w� � Y�w� over P� Then� for each i � �w�� DB�j�i� �
logp� w�

� Discussion

We have derived impossibility results for weak threshold �in particular� thresh�
old� networks� More speci�cally� we have shown that a weak threshold network
of width w and depth d over P does not exist if w does not divide P d� and
that the length of every path from any input wire to an output wire exhibiting
the threshold property is at least logpmax w�

The most intriguing question left open by our work is whether a weak threshold
�or threshold� network of width w and depth d over P can be constructed if w
divides P d� Recall that a threshold network is a weak threshold network but
not vice versa� on the other hand� a counting network is a threshold network
but not vice versa �cf� ����� Thus� this is a restricted version of a more general
question for counting networks originally posed by Aharonson and Attiya �	��
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