Impossibility Results for Weak Threshold Networks*

Costas Busch ! and Marios Mavronicolas P2

2 Department of Computer Science, Brown University, Providence, RI 02912
b Department of Computer Science, University of Cyprus, Nicosia 1678, Cyprus

Abstract

It is shown that a weak threshold network (in particular, threshold network) of
width w and depth d cannot be constructed from balancers of width pg, p1,.... Pm_1,
if w does not divide P?, where P is the least common multiple of pg, p1,. .., Prm—1-
This holds regardless of the size of the network, as long as it is finite, and it implies
a lower bound of logp w on its depth. More strongly, a lower bound of log, —w
is shown on the length of every path from an input wire to any output wire that
exhibits the threshold property, where pyax is the maximum among po, p1, -+, Prm—1-

Keywords: Distributed computing, parallel processing, impossibility results.

1 Introduction

Consider a distributed application which involves solving a system of equations
by successive relaxation, where each process holds part of the data. Interleav-
ing of steps by different processes is necessary in order to ensure that a correct

*Some of the results in this paper were announced in preliminary form in the
conference version of [6].

L Supported by NSF research grants DMS 95-05949 and CCR 96-13785. Part of
the work of this author was done while at Department of Computer Science, Uni-
versity of Crete, and Institute of Computer Science, Foundation for Research and
Technology — Hellas.

2 Partially supported by ESPRIT III Basic Research Project # 8144 — LYDIA
(“Load Balancing on High Performance Parallel and Distributed Systems”), and
by funds for the promotion of research at University of Cyprus (research projects
“Load Balancing Problems on Shared-Memory Multiprocessor Architectures” and
“Distributed, Parallel, and Concurrent Computations”). Part of the work of this au-
thor was done while visiting Institute of Computer Science, Foundation for Research
and Technology — Hellas.

Preprint submitted to Elsevier Science 6 April 1997

value was computed, since it implies sufficient interaction among the interme-
diate values computed by the processes. A simple way to solve this problem
makes use of a synchronization barrier, a distributed data structure ensuring
that no process advances beyond a particular point in a computation until all
processes have arrived at that point (see, e.g., [3,8,10]). Conventional multi-
processors mostly use centralized barriers, which often become the network
bottleneck or “hot-spots” in the shared memory.

In a seminal paper, Aspnes et al. [2] suggest a completely different approach
to such synchronization problems in the context of balancing networks, a new
class of distributed data structures suitable for solving more general balancing
problems. Their idea is to use a collection of primitive computing elements
called balancers, each having low expected contention, in a way that a process
needs to access only a few elements in order to advance to the next computa-
tion phase. Informally, a p-balancer can be thought of as a p-input, p-output
toggle. When an input appears on one of the input wires, it takes the output
wire to which the toggle is set, and toggles the gate, so that the next input
will leave on the next output wire.¥ We say that a p-balancer has width p.

One can “connect” a collection of balancers to form a balancing network much
in the same way a comparator network is obtained by connecting a collection
of comparators (see, e.g., [12]). This is done by connecting output wires from
some balancers to input wires of other balancers. The remaining unconnected
input and output wires are the input and output wires, respectively, of the
network. Each access to a balancing network by a process corresponds to a
token which traverses the network from an input wire to an output wire. Let
z; (resp., y;) denote the number of tokens that have entered (resp., left) the
network on the ¢th input wire (resp., jth output wire), where 0 < 7,7 <w —1
for some integer w > 2 called width. A balancing network is a threshold network
if each time the network becomes free of tokens, y;, = |>215! z;/w], where
Jo is some fixed but arbitrary output wire. Say that jo ezhibits the threshold
property. A weak threshold network relaxes the requirement that jg be fixed.

Aspnes et al. [2, Section 5.3] describe an implementation of a barrier for n
processes, where n = 0 mod w, using a threshold network of width w; their
implementation is an adaptation of the “sense-reversing” technique of Hens-
gen et al. [10]. Substituting a weak threshold network for a threshold net-
work in that implementation still guarantees correctness, although it may
not allow optimizations that were possible when using threshold networks
(e.g., associating a local counter with only one output wire). Thus, it would
be necessary to construct weak threshold networks of arbitrary width in or-
der to adapt to arbitrary dynamic changes in the number of processes ac-

t A balancer can be implemented both on a shared-memory multi-processor ma-
chine and in message-passing [2,14].

cessing a barrier implemented that way. This paper addresses the problem
of constructing weak threshold networks of arbitrary width. More precisely,
what is the width of weak threshold networks that can be constructed us-
ing a finite (but unbounded) number of balancers whose width is in the set
{po,P1,---,Pm-1}7 An additional motivation for our study is the existence of
general tradeoffs between depth, width and contention in balancing networks
(see, e.g., [5,7,9,11]).% An optimal weak threshold network for a fixed number
of processes may have to optimize both width and contention; the optimal
width may be arbitrary.

We show that if w does not divide P?, then there is no weak threshold (in
particular, threshold) network of width w and depth d, where P is the least
common multiple of pg, p1, ..., Pm_1. Moreover, this impossibility result imme-
diately implies a lower bound of logp w on the maximal path length, viz. depth,
of any weak threshold network. However, our combinatorial proof techniques
yield a strictly stronger impossibility result. We show that every path from an
input wire to any output wire that exhibits the threshold property must have
length at least log, ~ w, where ppax is the maximum among po, p1, - - -, Prm—1-

The problem of constructing networks of arbitrary width using balancers
whose width is in a fixed set has been studied before by Aharonson and
Attiya [1], Busch and Mavronicolas [6] and Moran and Taubenfeld [13] for
counting and smoothing networks, and generalizations of them. Busch and
Mavronicolas [6] show corresponding lower bounds on distances for count-
ing and smoothing networks. Our results generalize all of these results and
strictly strengthen them, since any smoothing network is also a weak thresh-
old network but not vice versa; moreover, our proof techniques are completely
different from all other published techniques of similar results in being purely
combinatorial. Brit et al. [4] present impossibility results and lower bounds
for public counters, satisfying several kinds of correctness conditions for con-
current counting; these results are similar in flavor to ours.

The rest of this paper is organized as follows. In Section 2, we outline a com-
binatorial framework for the study of balancing networks. Weak threshold,
threshold and smoothing networks are introduced and studied in Section 3.
Section 4 derives impossibility results for weak threshold networks. We con-
clude, in Section 5, with a discussion of our results.

§ The depth of a balancing network is the length of the longest path from an input
wire to an output wire.

2 Framework

In this Section, we present a combinatorial framework for the study of balanc-
ing networks. Our presentation closely follows the one in [6], where the reader
is referred for a more detailed treatment.

For any integer w > 2, X(*) denotes the vector {zo,zi,...,2z,_1)", while
[X(wW and LX(w)J denote the integer vectors ([zo], [z1],..., [zu_1])" and
{lzo], [#1], .-+ [Zw_i1])T, respectively. We use 0(*) to denote (0,0,...,0)T, a
vector with w zero entries. For any integer p > 1, denote [p| = {0,1,...,p—1}.
In all of our discussion, we will refer to a set P = {pg, p1,...,pm—1} of positive
integers no less than two, and we will let py.x and P denote the maximum
and the least common multiple, respectively, of integers in P.

Fix any integer p > 2, and let Yo, z;p' denote the representation of the
integer > 0 in the p-ary arithmetic system, where, for each i, z; € [p]. For
any integer k > 1, define z |, k = Socicpr zp' and z T, k = Y5 2,0
that is, = |, k is the integer represented by the k least significant p-ary digits
in the representation of z in the p-ary arithmetic system, while z T, &k is the
integer obtained from this representation by setting each of those digits to
zero. Clearly, z |, k+z T, k = z. Furthermore, define z , k = z;_1p*~!; that
is, z [, k is the integer represented by the kth least significant p-ary digit of
z. The definitions of z |, k, ¢ T, k and & [, k involving the integer z can be
extended component-wise to any vector X(*) in the natural way.

Balancing networks are constructed from computing elements called balancers
and wires. For each integer p > 2, a p-balancer b, : X*) — Y®) or balancer
for short, is a computing element which receives non-negative, integer inputs
Zo, L1,...,ZT,—1 o0 input wires 0,1,...,p— 1, respectively, and computes non-
negative integer outputs yo, y1,...,y,—1 on output wires 0,1,...,p—1, respec-
tively, such that for each 7, 0 < j < p—1,y; = [(X0g =1 — 7)/p]. We say
that a p-balancer has width or type p. For each 7, 0 < 57 < p — 1, the order
of output wire j, denoted ord(y), is defined to be j/p. A balancer over P is a
p-balancer for some p € P.

A balancing network B : X — Y of width w over P is a collection of
balancers over P, where output wires are connected to input wires, having
w designated input wires 0,1,...,w — 1 (which are not connected to output
wires of balancers), w designated output wires 0,1,...,w — 1 (similarly not
connected to input wires of balancers), and containing no cycles. Non-negative,
integer inputs zg, z1,...,T,_1 are received on input wires 0,1,...,w — 1, re-
spectively, and non-negative, integer outputs yo, y1, ..., Yw—1 are computed on

output wires 0,1,...,w — 1, respectively, in the natural way. For a balancing
network B, the depth of B, denoted depth(B), is defined to be the maximal

depth of any of its wires, where the depth of a wire is defined to be zero for an
input wire of B, and maxep,) depth(z;) + 1, for an output wire of a p-balancer
with input wires zg, z1,...,Z,-1.

In case depth(B) = 1, B will be called a layer. For a layer B, we define a
matrix Dg with w rows and w columns, called the distance matriz, which
determines the distance between input and output wires. Formally, for any 1
and 7, 0 < 1,7 < w— 1, Dg[yz] = 1 if input wire ¢ and output wire 7 are
connected via a balancer, else Dg[ji] = 0 if input wire ¢ and output wire j
coincide, and oo otherwise.

If depth(B) = d is greater than one, then B can be uniquely partitioned into
layers By, By, ..., B, from left to right in the obvious way. We inductively
extend the definition of the distance matrix from layers to arbitrary balancing
networks as follows. Let B’ be the balancing network resulting from B by
removing its rightmost layer By. Then, Dg[jt] = minep,)(Dg[jl] + Dg,[l]),
for any ¢ and 7, 0 < ¢,7 < w — 1. That is, the distance of input wire ¢ and
output wire j is the minimum over all [of the sum of the distance of input
wire 1 and output wire [in B’ and the distance of input wire [and output wire
jin B'.

The following result shows that for any balancing network, the output vector
takes a particular algebraic form as a function of the input vector, depending
on the types of balancers used, and the depth and topology of the network.

Proposition 1 (Busch and Mavronicolas [6]) Let B : X — Y(®) e q
balancing network of depth d over P. Then,

Yy — Is- X (w) Tpd+ FB(X(w) lpd),

for some matriz Ig and a vector function Fy : [PYY — Nv,

Call Iz and Fp the transfer parameters of B. We next sample properties of
the transfer parameters that will be used later.

Proposition 2 (Busch and Mavronicolas [6]) For any balancing network
B: X -y

(1) the matriz Iz is doubly stochastic;
(2) Fs(0) =00,
(3) for anyi and j, 0 <4,5 <w — 1, Ig[ji] > 1/pPslil,

max

3 Weak Threshold, Threshold and Smoothing Networks

In this section, we introduce weak threshold, threshold, and smoothing net-
works, and present several preliminary properties of them.

Smoothing networks require that outputs come as close to each other as pos-

sible.

Definition 3 (Aspnes et al. [2]) A smoothing network over P is a balanc-
ing network B : X() — Y () over P such that for any j and k, 0 < 7,k <
w—1, |y —wl < 1.

A straightforward implication of Definition 3 follows.

Proposition 4 Assume B : X(®) — Y®) s a smoothing network over P.
Then, for each input vector X\"), there exists at least one j € [w] such that
y; = |2 zi/w], and for each j € [w], either y; = |15 aif/w] ory; =
(S @i/w] +1.

Our next definition extends the original one of threshold networks over {2}
given by Aspnes et al. [2, Section 5.3].

Definition 5 A threshold network over P is a balancing network B : X(*) —
Y ") over P for which there exists some fized index jo € [w], such that for
each input vector X y. = [ey Jw].

Roughly speaking, a threshold network can detect input “chunks” of size w
on some fixed output wire jo, called threshold wire. Relaxing the requirement
that a threshold wire be fixed leads to a weaker definition.

Definition 6 A weak threshold network over P s a balancing network B :
X — Y over P for which for each input vector X(*), there exists some
index 5o = jo(X™)) € [w] such that y;, = | @ /w)].

Roughly speaking, a weak threshold network can still detect input “chunks”
of size w on some thrshold wire which, however, need not be the same for
all inputs. Clearly, any threshold network is also a weak threshold network.
Moreover, Proposition 4 immediately implies that weak threshold networks
generalize smoothing networks too.

Proposition 7 Assume B is a smoothing network over P. Then, B is a weak
threshold network over P.

Consider a network B : X — Y®) which is the “cascade” of the “parallel
composition” of two counting networks, followed by a layer consisting of w/2
balancers by, b1, ..., b, 2_1; for each 4 € [w/2], balancer b; receives as inputs

the ith output of the “top” counting network, and the (w/2—1—1)th output of
the “bottom” counting network, and produces the corresponding outputs. A
straightforward case analysis reveals that B is a smoothing network. Assume,
however, that z,,.1 = 0 while z; = 1 for [# w — 1; by construction of B, it
follows that y,,_1 = 0 while y; = 1 for [£ w — 1. Thus, output wire w — 1 is a
“candidate” for a threshold wire. Assume now that z,,/;_; = 0 while z; = 1 for
I #w/2 —1; by construction of B, it follows that y,/2—1 = 0 while y; = 1 for
[# w/2—1. Thus, output wire w/2—1 is a second “candidate” for a threshold
wire. Since there are two different input vectors for which there correspond
different threshold wires, it follows that B is not a threshold network. Thus,
we obtain:

Proposition 8 Assume B is a smoothing network over P. Then, B is not
necessarily a threshold network over P.

Since any threshold network is also a weak threshold network, Proposition 8
immediately implies:

Proposition 9 Assume B is a weak threshold network over P. Then, B is
not necessarily a threshold network over P.

4 TImpossibility Results

We present our main impossibility result for weak threshold networks.

Theorem 10 Assume B : X — Y®) {5 o weak threshold network of depth
d over P. Then, w divides P?.

Proof. Fix any index 1 € [w], and set z; = P? and z; = 0 for [# 4, so that
ZT; Tp d = Pd, Iy Tp d =0 for [7£ ’1:, X(w) lp d = O(W) and Z}"U:_Ol Iy Tp d = Pd.
By Definition 6, there exists some index j, € [w] such that y;, = |P?/w],
while by Proposition 1,

w—1

vio = > Isljol] @ Tp d + Fs(X™ |p d)[jo] = Is[joi] P* + Fs(00))[jo].

(=0

By Proposition 2(2), F5(0)) = 0. It follows that |P?/w]| = Is[joi]P?,
or I[joi] = | P?/w|/P?. Thus, Is[joi] is independent of 7; since ¢+ was chosen
arbitrarily, this implies that 1" Is[j0l] = wIs[jot]. However, by Proposi-
tion 2(1), 319" Is[jol] = 1. Hence, I[joi] = 1/w. It follows that |P?/w]| =
P?/w. This implies that w divides P?, as needed.

Since any threshold network is a weak threshold network, Theorem 10 imme-
diately implies:

Corollary 11 Assume B : X — Y®) s ¢ threshold network of depth d
over P. Then, w divides P?.

An immediate implication of Theorem 10 and Corollary 11 is a lower bound
on depth for weak threshold and threshold networks.

Corollary 12 Assume B : X — Y®) s q weak threshold or threshold
network of depth d over P. Then, d > logp w.

An inspection of the proof of Theorem 10 reveals that for a threshold wire
Jo € [w] of any weak threshold network B : X(*) — Y) 1g[jsi] = 1/w for all
1 € [w]. Hence, Proposition 2(3) immediately implies a result strictly stronger
than Corollary 12.

Theorem 13 Assume that jo ts a threshold wire of any weak threshold or
threshold network B : X)) — Y) over P. Then, for each i € [w], Dg[joi] >

log, w.

5 Discussion

We have derived impossibility results for weak threshold (in particular, thresh-
old) networks. More specifically, we have shown that a weak threshold network
of width w and depth d over P does not exist if w does not divide P?, and
that the length of every path from any input wire to an output wire exhibiting
the threshold property is at least log, ~ w.

The most intriguing question left open by our work is whether a weak threshold
(or threshold) network of width w and depth d over P can be constructed if w
divides P?. Recall that a threshold network is a weak threshold network but
not vice versa; on the other hand, a counting network is a threshold network
but not vice versa (cf. [2]). Thus, this is a restricted version of a more general
question for counting networks originally posed by Aharonson and Attiya [1].

Acknowledgments:

We are thankful to one of the referees for constructive criticisms and significant
suggestions.

References

[1] E. Aharonson and H. Attiya, “Counting Networks with Arbitrary Fan-Out,”
Distributed Computing, Vol. 8, pp. 163—169, 1995.

2] J. Aspnes, M. Herlihy and N. Shavit, “Counting Networks,” Journal of the
g
ACM, Vol. 41, No. 5, pp. 1020-1048, September 1994.

[3] C. J. Beckmann and C. D. Polychronopoulos, “Fast Barrier Synchronization
Hardware,” Proceedings of the IEEE Conference on Supercomputing, pp. 180—
189, 1991.

[4] H. Brit, S. Moran and G. Taubenfeld, “Public Data Structures: Counters as
a Special Case,” Proceedings of the 3rd Israel Symposium on the Theory of
Computing and Systems, pp. 98—110, January 1995.

[5] C. Busch, N. Hardavellas and M. Mavronicolas, “Contention in Counting
Networks,” Proceedings of the 13th Annual ACM Symposium on Principles of
Distributed Computing, pp. 404, August 1994.

[6] C. Busch and M. Mavronicolas, “A Combinatorial Treatment of Balancing
Networks,” Journal of the ACM, Vol. 43, No. 5, pp. 794-839, September 1996.

Preliminary version: Proceedings of the 13th Annual ACM Symposium on
Principles of Distributed Computing, pp. 206-215, August 1994.

[7] E. W. Felten, A. LaMarca and R. Ladner, “Building Counting Networks from
Larger Balancers,” Technical Report 93-04-09, Department of Computer Science
and Engineering, University of Washington, April 1993.

[8] R. Gupta and C. R. Hill, “A Scalable Implementation of Barrier
Synchronization Using an Adaptive Tree,” International Journal of Parallel
Programming, Vol. 18, No. 3, pp. 161-180, June 1989.

[9] N. Hardavellas, D. Karakos and M. Mavronicolas, “Notes on Sorting and
Counting Networks,” Proceedings of the 7th International Workshop on
Distributed Algorithms (WDAG-93), Lecture Notes in Computer Science, Vol. #
725 (A. Schiper, ed.), Springer-Verlag, pp. 234-248, Lausanne, Switzerland,
September 1993.

[10] D. Hensgen, R. Finkel and U. Manber, “Two Algorithms for Barrier
Synchronization,” International Journal of Parallel Programming, Vol. 17,
No. 1, pp. 1-17, 1988.

[11] M. Herlihy, B.-C. Lim and N. Shavit, “Scalable Concurrent Counting,” ACM
Transactions on Computer Systems, Vol. 13, No. 4, pp. 343-364, 1995.

[12] D. Knuth, The Art of Computer Programming, Volume 3 (Sorting and
Searching), Addison-Wesley, 1973.

[13] S. Moran and G. Taubenfeld, “A Lower Bound on Wait-Free Counting,”
Proceedings of the 12th Annual ACM Symposium on Principles of Distributed
Computing, pp. 251-259, August 1993.

[14] N. Shavit and A. Zemach, “Diffracting Trees,” ACM Transactions on Computer
Systems, Vol. 14, No. 4, pp. 385-428, 1996.

10

