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Abstract

Balancing networks are highly distributed data structures that are used for providing
efficient solutions to multiprocessor synchronization problems. Traditionally, balancing net-
works have been designed to be accessed by tokens, which correspond to increment opera-
tions. The distribution of tokens on the network’s output specifies the correctness property
of the network. However, tokens alone may be inadequate for synchronization problems that
require decrement operations, such as semaphores and critical regions. For such problems,
antitokens have been introduced to implement the decrement operation [21].

It has been shown that several kinds of networks that satisfy the step property, the
smoothing property and the threshold property for tokens alone preserve their properties when
antitokens are introduced [2, 5, 21]. Thus, such networks are able to solve synchronization
problems that require decrements. A fundamental question that has been left open is to
formally characterize all properties of balancing networks that are preserved under the
introduction of antitokens.

In this work, we provide a simple, combinatorial characterization for all properties war-
ranted by balancing networks which are preserved when antitokens are introduced. This
characterization serves as a theoretical tool for identifying the properties that are preserved

by antitokens.
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Figure 1: A balancer and a balancing network

1 Introduction

1.1 Motivation

Balancing networks were devised by Aspnes et al. [4] as a novel class of distributed data struc-
tures that provide highly-concurrent, low-contention solutions to a variety of synchronization
problems. Balancing networks attract a lot of interest and attention due to their nice perfor-
mance and scalability properties (see, e.g., [1, 2, 3, 5, 6, 7, 8, 14, 15, 16, 18, 19, 20, 21, 22, 23]).

A balancing network is constructed from elementary switches with p input wires and ¢
output wires, called (p, q)-balancers. As illustrated in Figure, a (p, ¢)-balancer accepts a stream
of tokens on its p input wires. The i-th token to enter the balancer leaves on output wire
i mod ¢ (where i = 0,1,...). In Figure 1, we write on each wire the overall number of tokens

that appear on the wire.

One can think of a balancer as having a ”toggle” state variable tracking which output wire
the next token should exit from. A token traversal amounts to a FetchéIncrement operation to
the toggle variable. The operation includes reading first the current state of the toggle, which
is the wire the token should exit from, and then setting the toggle to point to the next output
wire. The distribution of the tokens on the output wires satisfies the step property (described
below).

A balancing network is an acyclic network of balancers, where output wires of some balancers

are linked to input wires of other balancers (sse Figure 1). The network’s input wires are those



input wires of balancers that are not linked from any other balancer, and similarly for the
network’s output wires. Tokens enter the network on the input wires, typically several per
wire, propagate asynchronously through the balancers, and leave on the output wires, typically

several per wire.

Balancing networks are classified according to the distribution of the exiting tokens on the
output wires. Counting networks [4] are those balancing networks for which the exiting tokens
are divided uniformly among the output wires and any excess tokens appear on the upper
wires. Note that the balancing network in Figure 1 is a counting network. We say that the
exiting tokens of a counting network satisfy the step property (see Figure 1). For smoothing
networks [1, 4], the output tokens satisfy the K -smoothing property, for any integer K > 1,
where the sum of tokens on any two output wires may differ by no more than K. In the case of
threshold networks [4, 8], the output tokens satisfy the threshold property, whereby the number
of tokens on the bottom wire increases by one per bunch of w tokens, where w is the number of
output wires of the network (also called fan-out [1]). In the weak threshold property, the output

wire can be redefined to be any output wire.

Based on balancing networks, simple and elegant algorithms have been developed to solve a
variety of synchronization problems that appear in distributed systems. For example, counting
networks are used to implement efficient FetchéIncrement counters [4] as well as linearizable
counters [15]. Furthermore, smoothing networks solve load sharing problems [25], while thresh-
old networks provide solutions to barrier synchronization problems [11, 12]. For applications of
balancing networks, see [4, 15, 16, 18, 21, 23|.

A limitation of balancing networks is that they can be accessed by tokens only. Recall
that a token can be thought of as an increment operation issued by the process inserting the
token into the network. Using tokens only, the capabilities of balancing networks are limited
to using only increment operations. However, many distributed algorithms require the ability
to decrement shared objects as well. For example, the classical synchronization constructs of
semaphores [9], critical regions [17], and monitors [13] all rely on applying both increment and

decrement operations on shared counters (see, e.g., [24, Chapter 6]).

In order to solve such kinds of problems, Shavit and Touitou [21] invented the antitoken,
an entity that a processor shepherds through the network in order to perform a decrement
operation. Unlike a token, which traverses a balancer by fetching the toggle value and then
advancing it, an antitoken first sets the toggle back and then fetches it. Informally, an antitoken
"cancels” the effect of the most recent token on the balancer’s toggle state, and vice versa.

Furthermore, when a token and an antitoken ”meet” while they are each individually traversing
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Figure 2: A balancer and a balancing network accessed simultaneously by tokens and antitokens

the network, they can eliminate each other, thus avoiding the need to traverse the rest of the
network. Antitokens are depicted in Figure 2, where an antitoken is drawn with a filled circle,
meant to correspond to the algebraic quantity -1, whereas a token is drawn with an empty

circle, meant to correspond to the algebraic quantity +1.

In the same paper, Shavit and Touitou provide an operational proof that a specific kind
of counting networks which have the form of binary trees count correctly even when they are
traversed by both tokens and antitokens. Namely, they showed that, for such networks, the

step property is preserved by the introduction of antitokens.

Subsequently, Aiello et al. [2] generalized the results of Shavit and Touitou [21] to far more
general classes of balancing networks and properties of balancing networks. More specifically,
Aiello et al. considered boundedness properties, a generalization of the step and K-smoothing
properties. They showed that boundedness properties are preserved by the introduction of
antitokens. Busch et al. [5] considered the threshold property [4], and they showed that this
property is also preserved by the introduction of antitokens. Furthermore, they showed that for
reqular balancing networks, where the number of input and output wires is the same for each

balancer, the weak threshold property [7] is preserved too.

1.2 Contribution

A fundamental question that was left open by the results in [2, 5, 21] is to formally characterize
all properties of balancing networks that are preserved under the introduction of antitokens.

Such characterization would be used for identifying properties that are preserved by antitokens.
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Figure 3: The characterization of properties preserved by antitokens

Moreover, the characterization would enable practitioners to rule out balancing networks sat-
isfying properties that are not preserved by antitokens from being used in specific application
algorithms that involve decrement operations. In this work, we provide the first answer to this

fundamental question.

We provide a simple, combinatorial characterization of properties warranted by balancing

networks which are preserved when decrement operations via antitokens are introduced.

For any arbitrary balancing network, we define a new, natural class of properties, that we
call closed under the nullity of the balancing network, which precisely characterize all the prop-
erties that are preserved by antitokens. This characterization provides necessary and sufficient
conditions for all the properties that are preserved. Specifically, for any property that is satis-
fied by a balancing network for tokens only, the property is still satisfied by the network when

antitokens are introduced if and only if the property is closed under the nullity of the network.

This characterization provides a theoretical tool for identifying which properties are pre-
served by the introduction of antitokens. Consider any propertyof a balancing network which
we know a balancing network satisfies for tokens only. In order to prove that that this property
will be preserved by the introduction of antitokens, we only need to show that this property is
closed under the nullity of the network. Equipped with this theoretical tool, the practitioner
can determine if a specific property of balancing networks can be used to implement algorithms

that require decrements.

Furthermore, the necessity of the characterization enables us to classify all the properties
which are already known to be preserved by antitokens. Necessity implies that all these proper-

ties must satisfy the characterization; therefore, they are closed under the nullity of a balancing



networks providing the property. Consequently, the counting property, the K-smoothing prop-
erty, and, in general, any boundedness property are each closed under the nullity of a balancing
network providing the property (see Figure 3). Furthermore, the threshold and the weak thresh-
old properties (for regular networks) are each closed under the nullity of a balancing network
that satisfies it.

Our proof techniques are purely combinatorial. We manage to abstract out the main ideas
from the proofs in [2, 5] that were dealing with specific properties; we generalize these ideas to

an abstract, property-independent setting, and this yields the characterization.

1.3 Road Map

The rest of this paper is organized as follows. Section 2 provides some background for our
discussion and introduces some formal definitions. Our main combinatorial characterization
result is presented in Section 3. We conclude, in Section 4, with a discussion of our results and

some open problems.

2 Framework

Our formal framework is patterned after [2, Sections 2 & 3].

2.1 Vectors

We consider integer vectors. For any integer g > 2, x(9) denotes the vector (xg, z, . .. ,g_1)T.
For any vector x(9), denote 3" x(9) = f:_ol z;. We use 009) to denote (0,0,...,0)T, a vector with
g zero entries. In a constant vector, all entries are equal to some constant c. In a non-negative
vector, all entries are non-negative integers. Say that an integer d divides a vector x9) if each

entry of x(9) is some integer multiple of d.

2.2 Balancers

This section is adapted from [2, Section 2.2].

Balancing networks are constructed from acyclically wired elements, called balancers, that
route tokens and antitokens through the network, and wires. For the sake of generality, we

define balancers as “multibalancers,” in the style of Aharonson and Attiya [1], Felten et al.



[10], and Hardavellas et al. [14]; however, we follow Shavit and Touitou [21] Aiello et al. [2],
and Busch et al. [5] to insist that our balancers handle both tokens and antitokens. We think
of a token and an antitoken as the basic “positive” and “negative” unit, respectively, that are

routed through the balancer.

So, for any pair of positive integers fin, and fout, an (fin, fout)-balancer, or balancer for short,
is a routing element receiving tokens and antitokens on fi, input wires, numbered 0, 1, ..., fin—1,
and sending out tokens and antitokens to fout output wires, numbered 0,1,..., fout — 1; fin
and fou are called the balancer’s fan-in and fan-out, respectively. A regular balancer is an

(fin, fout)-balancer such that fi, = fous; that is, fan-in equals fan-out for a regular balancer.

Tokens and antitokens arrive on the balancer’s input wires at arbitrary times, and they
are output on its output wires. Roughly speaking, a balancer acts like a “generalized” toggle,
which, on a stream of input tokens and antitokens, alternately forwards them to its output
wires, going either down or up on each input token and antitoken, respectively. For clarity, we

assume that all tokens and antitokens are distinct.

For each input index i, 0 < i < fi, — 1, we denote by x; the balancer input state variable
that stands for the algebraic sum of the numbers of tokens and antitokens that have entered
on input wire ¢; that is, z; is the number of tokens that have entered on input wire ¢ minus the
number of antitokens that have entered on input wire i. Denote x(fin) = (20,21, .. ,xfin,1>T;
call x(in) an input vector. For each output index j, 0 < j < four — 1, we denote by y; the
balancer output state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have exited on output wire j; that is, y; is the number of tokens that have
exited on output wire j minus the number of antitokens that have exited on output wire j.

Denote yfout) = (4o, 41, ... Y fons—1) T call yFout) an output vector.

The configuration of a balancer at any given time is the tuple (x(fin) y(fout)): roughly speak-
ing, the configuration is the collection of its input and output state variables. In the ini-

tial configuration, all input and output wires are empty; that is, in the initial configuration,
X(fin) — O(fin)’ and y(fout) — O(fout)_

A configuration of a balancer is quiescent if there are no tokens or antitokens in the balancer.
Note that the initial configuration is a quiescent one. The following formal properties are

required for an (fin, fout)-balancer.

1. Safety property: in any configuration, a balancer never creates either tokens or antitokens

spontaneously.



2. Liveness property: for any finite numbers ¢ of tokens and a of antitokens that enter the
balancer, the balancer reaches within a finite amount of time a quiescent configuration
where t—e tokens and a—e antitokens have exited the network, where e, 0 < e < min{¢,a},

is the number of tokens and antitokens that are “eliminated” in the balancer.

3. Step property: in any quiescent configuration, for any pair of output indices j and k such
that 0 <j <k < four —1,0<y; —yp < 1.

From the safety and liveness properties, it follows that for any quiescent configuration
(x(fin) y(fout)) of a balancer, ||x(fin)||; = |ly(feut)||; that is, in a quiescent configuration, the
algebraic sum of tokens and antitokens that exited the balancer is equal to the algebraic sum
of tokens and antitokens that entered it. Note that the equality holds even though some of the

tokens and antitokens may be “eliminated” in the balancer.

We are mostly interested in quiescent configurations of a balancer. For any input vector
x(fin) to balancer b, denote y(fout) = p(x(fin)) the output vector in the quiescent configuration
that b will reach after all tokens and antitokens that entered b have exited (or eliminated

themselves); write also b : x(fin) — y(fout) to denote the balancer b.

For any quiescent configuration (x(fin) y(fout)y of a balancer b : x(fin) — y(fout) the state of
the balancer b, denoted statey, ((x(fin) y(fout))) "is defined to be

statep ((x(fn), yTou))) - = |lyFow) ||} mod fou ;
by definition of quiescent configuration, it follows that

stater, ((x(fin), ytou))) - = [[xUin) ||} mod fous
Thus, for the sake of simplicity, we will denote

stateb(x(fin)) = stateb((x(fi ), y(fo‘“))) .
We remark that the state of an (fin, fout)-balancer is some integer in the set {0, 1,. .., fout —

1}, which captures the “position” to which it is set as a toggle mechanism. This integer is
determined by either the balancer input state variables or the balancer output state variables

in the quiescent configuration. Note that the state of the balancer in the initial configuration
is 0.

Figure 2 depicts a (2,4)-balancer with two input wires and four output wires, stretched

horizontally; the balancer is stretched vertically. In the left part, tokens and antitokens are



denoted with empty and full circles, respectively; the numbering reflects the real-time order of
tokens and antitokens in an execution where they traverse the balancer one by one (such an
execution is called a sequential execution). On each wire we write the total algebraic sum of

tokens and antitokens that appear on the wire.

2.3 Balancing Networks

This section is adopted from [2, Section 2.3].

A (win, Wout ) -balancing network B is a collection of interwired balancers, where output wires
are connected to input wires, having wi, designated input wires, numbered 0,1, ..., wiy, — 1,
which are not connected to output wires of balancers, having woyt designated output wires,
numbered 0,1, ..., woyt — 1, similarly not connected to input wires of balancers, and containing

no cycles. A balancing network is regular if each of its interwired balancers is regular.

Tokens and antitokens arrive on the network’s input wires at arbitrary times, and they
traverse a sequence of balancers in the network in a completely asynchronous way till they exit

(or eliminate themselves) on the output wires of the network.

For each input index 7, 0 < ¢ < wi, — 1, we denote by x; the network input state variable
that stands for the algebraic sum of the numbers of tokens and antitokens that have entered
on input wire 7; that is, z; is the difference of the number of tokens that have entered on input
wire i minus the number of antitokens that have entered on input wire i. Denote x(¥in) =
(20, 1,5+, Ty, 1) T call xWin) an input vector. For each output index j, 0 < j < fous — 1, we
denote by y; the network output state variable that stands for the algebraic sum of the numbers
of tokens and antitokens that have exited on output wire j; that is, y; is the number of tokens
that have exited on output wire j minus the number of antitokens that have exited on output

wire j. Denote y(Wout) = (yo, 41, ... Y1) T call y(Wout) an output vector.

The configuration of a network at any given time is the tuple of configurations of its in-
dividual balancers. In the initial configuration, all input and output wires of balancers are
empty. The safety and liveness property for a balancing network follow naturally from those of
its balancers. Thus, a balancing network eventually reaches a quiescent configuration in which
all tokens and antitokens that entered the network have either exited the network or pairwise
“eliminated” themselves. In any quiescent configuration of B we have ||x(“in)|; = |ly(Wout)||;;
that is, in a quiescent configuration, the algebraic sum of tokens and antitokens that exited the

network is equal to the algebraic sum of tokens and antitokens that entered it.

10



Naturally, we are interested in quiescent configurations of a network. For any quiescent
configuration of a network B with corresponding input and output vectors x(®in) and y(“’°“t),
respectively, the state of B, denoted stateB(x(Win)), is defined to be the collection of the states
of its individual balancers. We remark that we have specified x(*in) as the single argument of
stateg, since x(@in) uniquely determines all input and output vectors of balancers of B, which are
used for defining the states of the individual balancers. Note that the state of the network in its
initial configuration is a collection of 0’s. For any input vector x(“in), denote y(®eut) = B (x(win))
the output vector in the quiescent configuration that B will reach after all tokens and antitokens
that entered B have exited (or eliminated themselves); write also B : x(%in) — y(®out) to denote
the network B. Clearly, B(0(%in)) = @(wout),

Figure 2 depicts a balancing network with four input wires and eight output wires using
the same conventions as for the (2,4)-balancer in the left part of the same figure (see also
Section 2.2).

2.4 Fooling Pairs

Our presentation follows [2, Section 4].

Say that input vectors ngi“) and xéfi“) are a fooling pair to balancer b : xfin) — y(four) (2,
(fi“)) (f“‘)); roughly speaking, a fooling pair “drives” the balancer

Section 4] if statey, (x = statep (x

to identical states in the two corresponding quiescent configurations. The concept of a fooling

pair can be extended from a single balancer to a network in the natural way. Say that input

vectors xgwi“) and xgwi“) are a fooling pair to network B : x(in) — y(Wou) if for each balancer
b of B, the input vectors of b in quiescent configurations corresponding to xgwi“) and xgwi“),

respectively, are a fooling pair to b; roughly speaking, a fooling pair “drives” all balancers of

the network to identical states in the two corresponding quiescent configurations.

The next result relates the output vectors of any balancing network on certain combinations

of a fooling pair of input vectors.

Lemma 2.1 (Aiello et al. [2]) Consider a balancing network B : x(Win) — y(Wou) = Take any

input vectors xgwi“) and xéwi“) that are a fooling pair to network B. Then, for any input vector

X(win) s

1. the input vectors xg“’i“) + x(®in) gnd xé“’in) + x(in) qre g fooling pair to network B;

2. B(xgwi“) + x(win)) — B(xgwi“)) = B(xgwi“) + x(win)) — B(xgwi“)) )

11



We continue to survey some further combinatorial properties of fooling pairs that we will
use in our later proofs. Say that x(“in) is a null vector to network B : x(%in) — y(wout) [2, Section
3] if the vectors x(®in) and 0(Win) are a fooling pair to B. Intuitively, a null vector “hides” itself
from the network B in the sense that it does not alter the state of B while traversing it. The
next claim determines the output of a balancing network on any non-negative multiple of a null

vector.

Lemma 2.2 (Aiello et al. [2]) Consider a balancing network B : x(Win) — y(Wout) " Tuke any
vector x(Win) that is null to B. Then, for any integer k > 0,

B(kxWin)) = kB(x(Win)).

For any balancing network B, denote Wy (B), the product of the fan-outs of balancers of
B. The next claim establishes a sufficient condition involving Wy (B) for a vector to be null
to B.

Lemma 2.3 (Aiello et al. [2]) Consider a balancing network B : x(Win) — y(Wout) A gsume
that Wy (B) divides x("in) . Then, x("in) is a null vector to B.

We continue to show some further combinatorial properties of null vectors, which are new.

Lemma 2.4 Consider any balancing network B : x(Win) — yWou) — Assume, xin) is a null

vector of B. Then, B(—x"in)) = —B(x(win)),

Proof: By assumption x(“in) is a null vector of B. We apply Lemma 2.1(2) with 0(%in) for

ngm)’ x(in) for xgwi“), and —x(in) for x(¥in); we obtain that
B(0(win) — x(win)y _ gowm)y = B(xwin) — x(win)y _ B(x(win)y
so that
B(—x"n)) = —B(x{n)),
as needed. ]

We continue to show:

12



Lemma 2.5 Consider any balancing network B : x(Win) — yWou) — Assume, xin) is a null

vector of B. Then, —x"in) is o null vector of B.

Proof: We apply Lemma 2.1.(1) with 0(*in) for xgwi“), x(@in) for xgwi“), and —x(®in) for x(win).
we obtain that 0(in) — x(Win) and x(Win) — x(Win) are a fooling pair to network B. Thus, —x(in)

is a null vector of B, as needed. [ |

2.5 Properties

A property II is a (computable) predicate on integer vectors. We identify IT with the set of

(integer) vectors satisfying it.

Say that a vector y(¥eu) has the property II if y(Wout) satisfies II. Say that a balancing
network B : x(Win) — y(Wout) has g property II if all its output vectors y(“out) have the property
II.

2.5.1 Boundedness Properties

Boundedness properties were introduced by Aiello et al. [2]. Our presentation summarizes |2,

Section 2.4]. Fix throughout any integer g > 2.

For any integer K > 1, the K-smoothing property [1] is defined to be the set of all vectors
y(@ such that for any entries y; and yy, of vy, where 0 < j,k < g—1, ly; — yi| < K; any vector
in the K-smoothing property is a K-smooth vector. A smoothing property is a K-smoothing
property, for some integer K > 1. A boundedness property [2, Section 2.4] is any subset of some
K-smoothing property, for any integer K > 1, that is closed under addition with a constant
vector. Thus, a boundedness property is a strict generalization of the smoothing property.

Clearly, there are infinitely many boundedness properties.

The step property [4] is defined to be the set of all vectors y(@ such that for any entries Yj
and yj, of y@9), where 0 < j <k <g—1,0< yj —yr < 1; any vector in the step property
is a step vector. Clearly, the step property is a boundedness property, since any step vector
is 1-smooth (but not vice versa). A counting network [4] is a balancing network that has the
step property. Similarly, a K-smoothing network [1, 4] is a balancing network that has the
K-smoothing property.

The main result of Aiello et al. [2] establishes that allowing negative inputs does not spoil

the boundedness property of a balancing network.

13



Theorem 2.6 (Aiello et al. [2]) Fiz any boundedness property II. Consider any balancing
network B : x(Win) — y(Wout) gych that y(Weut) has the boundedness property TI whenever x(Win)

is a non-negative vector. Then, B has the boundedness property IL.

2.5.2 Threshold-Like Properties

Say that a vector y(*“eut) is a threshold vector [4] if yuy,, 1 = ||y ") ||1/wout |. The threshold
property is the set of all threshold vectors y(®out). Say that a vector y(out) is a weak threshold
vector [7] if there is some output index j, possibly j # wous —1, such that y; = |y @out) ||} /wout |-
The weak threshold property is the set of all weak threshold vectors y(@eut). A threshold net-
work [4] is a balancing network B : x(Win) — y(Wout) that has the threshold property; similarly,
a weak threshold network [7] is a balancing network B : x(Win) — y(Wout) that has the weak

threshold property.

It has been observed in [5] that the (weak) threshold property is not a boundedness property
in all non-trivial cases (where woy > 2). Thus, Theorem 2.6 does not apply a fortiori to either
threshold networks or weak threshold networks. The main result of Busch et al. [5] establishes

that allowing negative inputs does not spoil the threshold property of a balancing network.

Theorem 2.7 (Busch et al. [5]) Consider any balancing network B : x(Win) — y(Wout) gych
that y(Weut) has the threshold property whenever x("in) is a non-negative vector. Then, B has

the threshold property.

In addition, Busch et al. [5] establish that allowing negative inputs does not spoil the weak

threshold property of a regular balancing network.

Theorem 2.8 (Busch et al. [5]) Consider any regular balancing network B : x(Win) — y(wout)
such that y(“out) has the weak threshold property whenever x(“in) is a non-negative vector. Then,

B has the weak threshold property.

3 Combinatorial Characterization

In this section, we present a combinatorial characterization of properties of balancing networks

that are preserved under the introduction of antitokens.

This section is organized as follows. Section 3.1 gives the closure under nullity definition.

Our main result is shown in Section 3.3. We conclude, in Section 3.3, with some remarks.

14



3.1 Closure Under Nullity

We start with the definition of a new predicate on pairs of a property and a balancing network.

Definition 3.1 Consider any balancing network B : x(Win) — y(Wout) A property II is closed
under the nullity of B if for all non-negative input vectors x*) and for all non-negative null
vectors XWin) of B, it holds that B(x("in)) € II implies B(x("in)) + B(x(win)) € 1.

Definition 3.1 considers any pair of a balancing network B and a property IT and specifies
when we can say that II is closed under the nullity of 5. Roughly speaking, we can say so if
for every non-negative input vector of 5 such that the corresponding output vector satisfies the
property, and for every non-negative vector that is null for B, overimposing these two vectors
as an input to B results in an output vector that satisfies II. By using only non-negative input
and null vectors in Definition 3.1, we can reason whether a property of a balancing network is

closed under the nullity of the network by examining how the network behaves for tokens only.

3.2 Main Result

In the next two claims, we will establish that being closed under the nullity of a balancing
network is a necessary and sufficient condition for a property satisfied by the network in the
presence of tokens alone to be preserved under the introduction of antitokens. We start with

the sufficiency of the characterization.

Proposition 3.1 Fiz any property IL, which is closed under the nullity of a balancing network
B : x(win) 5 y(wouw) — Agsuyme that y(Wou) € II whenever x(¥in) is non-negative. Then, B

satisfies property IL.

Proof: Consider any arbitrary input vector x(*in). We will show that B(x(*in)) e II.

Construct from x(%in) a non-negative input vector x(in) such that for each index i, 0 < i <

Wiy — 1:

e if x; > 0, then &; = 0;

e if 1;; <0, then #; is the least positive multiple of Wy (B) such that z; + #; > 0.
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Intuitively, x(*in) supplies positive multiples of Wy (B) to x(¥in) so that it brings each entry

of the resulting vector above zero.

Clearly, Wou(B) divides x(in), By Lemma 2.3, it follows that x(“in) is a null vector of B.
We apply Lemma 2.1(2) with x(in) for xgwi“), 0(win) for ngm)’ and x(@in) for x(*in): we obtain

that

B(i(win) + X(win)) — B(X(win)) + B(i(win)) _ B(O(win))

so that

B(xwm)) = B(x(win) 4 x(win)y _ B(zxwin))

Since x(*in) is a null vector of B, it follows, by Lemma 2.4, that

Bx"m)) = B(xin) 4 x(win)) 4 B(—xlvim)).

Since each entry of x(¥in) 4 x(%in) Jies in the interval [0, Wy (B)], it follows, by assumption,
that B(x(in) + x(in)) € TI. By Lemma 2.5, it follows that —x(®in) is null. Since II is closed
under the nullity of B, it follows that B(x(*in)) € II, as needed. ]

We continue to show that a network may not satisfy any property that is not closed under

its nullity.

Proposition 3.2 Fiz a property II, such that II is not closed under the nullity of a balancing
network B : x(Win) — y(Wout)  Then, B does not satisfy property II.

Proof: Assume, by way of contradiction, that B satisfies property II. Consider any arbitrary

input vector x(*in) and any null vector x(%in) of B.

Since B satisfies IT, it follows that B(x(in)) € II. Since, x(¥in) is a null vector of B, by
Lemma 2.1(2), it follows that B(x(in)) + B(x(win)) = B(x(®in) 4+ %(win)). Since B satisfies IT, it
follows that B(x(Win) 4 x(win)) € TI. Thus, B(x®in)) + B(x(win)) € II.

Since x(¥in) and %(%in) were chosen to be any aritrary input and null vectors of B, respec-

tively, it follows that IT is closed under the nullity of 5. A contradiction. [ |

We are now ready to show our main result.
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Theorem 3.3 Fiz a property II. Consider any balancing network B : x(Win) — y(@out) gycp
that y(Weut) € II whenever xWin) has all of its entries in the interval [0, Wout(B)]. Then, B
satisfies II if and only if II is closed under the nullity of B.

Proof: Assume first that IT is closed under the nullity of B. Since y(®eut) € IT whenever
x(in) has all of its entries in the interval [0, Wy (B)], Proposition 3.1 implies that B satisfies
property II, as needed.

Assume now that B satisfies property II. By Proposition 3.2, IT is closed under the nullity
of B, as needed. [ |

An immediate corollary of Theorem 3.3 precisely identifies the properties satisfied by bal-

ancing networks that are preserved by the introduction of antitokens.

Corollary 3.4 Fiz a property IL. Consider any balancing network B : xWin) — y(Wout) gych
that y(eut) € IT whenever xin) is a non-negative input vector. Then, B satisfies II if and
only if II is closed under the nullity of B.

3.3 Remarks

Since boundedness properties and the threshold property were shown in [2, 5] to be preserved
under the introduction of antitokens, Corollary 3.4 implies that these properties are closed with

respect to the nullity of any balancing network satisfying each in particular.

We remark that Proposition 3.1 implies that, given any balancing network B, any property
that is closed under the nullity of B is a finiteness property [6]: in order to verify that B
satisfies the property II, it satisfies to verify that all vectors with entries in the (finite) interval
[0, Wout (B)] satisfy II. This is the first finiteness result established for properties satisfied by

balancing networks that are traversed by both tokens and antitokens.

We remark the the proofs in [2, 5] established that the boundedness properties and the

threshold property, respectively, are preserved by the introduction of antitokens as follows:

e They first characterized the output of a network satisfying the property on a null vector
of the network; it was found that this output is a constant vector if the network satisfies

the boundedness property, or a saturated vector [5] if the network satisfies the threshold

property;
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e they used this characterization and the closure under addition with such a vector (explic-
itly assumed for the boundedness properties or established for the threshold property) to

show the preservation property.

These are the two main ideas that we abstracted out from these previous works [2, 5].
We used these ideas, and their instantiation for specific properties, to define when a general
(abstract) property is closed under the nullity of a balancing network. We used this definition

to carry out our own proofs in a property-independent setting.

4 Conclusion

We have provided a combinatorial characterization of the properties satisfied by balancing
networks traversed by tokens alone that are preserved when antitokens are introduced. Our
results close the main problem left open by the results in [2, 5]. An interesting question still
left open by our work is to provide a corresponding characterization for randomized balancing

networks [3].
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