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Abstract

In this work, we introduce and study a new, potentially rich model for selfish routing
over non-cooperative networks as an interesting hybridization of the two prevailing such
models, namely the KP model [26] and the W model [36].

In the hybrid model, each of n users is using a mixed strategy to ship its unsplittable
traffic over a network consisting of m parallel links. In a Nash equilibrium, no user can
unilaterally improve its Expected Individual Cost. To evaluate Nash equilibria, we introduce
Quadratic Social Cost as the sum of the expectations of the latencies incurred by the squares
of the accumulated traffics. This modeling is unlike the KP model, where Social Cost [26] is
the expectation of the maximum latency incurred by the accumulated traffics; but it is like
the W model since Quadratic Social Cost can be expressed as a weighted sum of Expected
Individual Costs. We use Quadratic Social Cost to define Quadratic Coordination Ratio.
Here are our main findings:

• Quadratic Social Cost can be computed in polynomial time. This is unlike the #P-
completeness [18] of computing Social Cost for the KP model.

• For the case of identical users and identical links, the fully mixed Nash equilibrium [29],
where each user assigns positive probability to every link, maximizes Quadratic Social
Cost.

• As our main result, we present a comprehensive collection of tight, constant (that is,
independent of m and n), stictly less than 2, lower and upper bounds on Quadratic
Coordination Ratio for several, interesting special cases. Some of the bounds stand
in contrast to corresponding super-constant bounds on Coordination Ratio previously
shown in [13, 25, 26, 29] for the KP model.
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1 Introduction

1.1 Motivation and Framework

1.1.1 Outline

We propose a new model for selfish routing over non-cooperative networks as a hybridization of
the two prevailing such models, namely the KP model due to Koutsoupias and Papadimitriou [26]
and the W model due to Wardrop [36]. Although proposed only recently in the context of
studying selfish traffic over the Internet, the KP model has yet received a lot of interest – see,
e.g., [3, 12, 13, 15, 16, 18, 20, 23, 25, 28, 29] or [17, 24] for surveys. The W model dates back to
studies of transportation networks in the 1950s; however, much recent work on selfish routing
(see [34] and references therein) has witnessed a revival of interest into the W model.

Within the new model, we study some interesting strategic game, originally proposed in [26];
we are especially interested in the associated Nash equilibria [31, 32]. At a Nash equilibrium,
no player (here, user) can unilaterally improve its objective by switching to a different strat-
egy (here, link). In a pure Nash equilibrium, each player chooses exactly one strategy (with
probability one); in a mixed Nash equilibrium, each player uses a probability distribution over
strategies, and in the fully mixed Nash equilibrium [29] all probabilities are (strictly) positive.

1.1.2 The KP Model and the W Model

The two models differ with respect to their assumptions about the following parameters:

• The structure and topology of the underlying network they consider; in both cases, two
distinguished nodes, the source and the destination, are considered.

• The splittability or unsplittability of the selfish traffic; unsplittable traffic is routed all
together along a single path, while splittable traffic may split into infinitesimal pieces.

• The type of equilibria (pure or mixed) they consider.

• The definition of (Expected) Individual Cost they adopt; these are used for defining Nash
equilibria and Wardrop equilibria, respectively.

• The definitions of Social Cost (a performance measure for equilibria) and Optimum (an
optimality measure for general assignments). In turn, these are used for defining Coordi-
nation Ratio [26] as the worst-case ratio of Social Cost over Optimum, over all equilibria.
A worst-case equilibrium maximizes the particular Social Cost.

We continue to describe separately the KP model and the W model.
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• The KP model has considered a simple network consisting of m parallel links from source
to destination; each link bears a capacity – its traffic processing rate. Selfish traffic is
modeled as a finite collection of users, each bearing an unsplittable traffic and shipping
it using a mixed strategy – a probability distribution over links. The Expected Individual
Cost of a user is its expected (conditional) latency on a link it chooses; in a Nash equilib-
rium, no Expected Individual Cost can be unilaterally decreased. The Social Cost is the
expectation of the maximum link latency; the Optimum is the least possible maximum
link latency. The KP model may be viewed as a weighted congestion game [30] equipped
with Social Cost and Coordination Ratio.

• The W model has considered arbitrary multicommodity networks (that is, networks with
multiple sources and destinations) with a latency function for each link. Selfish traffic is
modeled as a splittable flow. The Individual Cost for a path (from source to destination)
is the sum of the latencies incurred on its links. In a Wardrop equilibrium, all (used) paths
have the same Individual Cost. In the W model, users may be thought of as (infinitely
many) non-atomic entities, each carrying infinitesimal traffic; then, the definitions of
Individual Cost for the W and the KP models are the same, while pure and mixed equilibria
coincide in the W model. The Social Cost is the sum, over all paths, of Individual Costs.∗

The Optimum is the least possible, over all flows, Social Cost.

1.1.3 The Hybrid Model

We follow the KP model to consider the parallel links network, unsplittable traffic and mixed
Nash equilibria. The Expected Individual Cost we adopt is the expected latency incurred to
a user. This generalized definition applies to arbitrary latency functions, while it matches the
original definition of Expected Individual Cost for the KP model [26] in the case of linear latency
functions. Hence, the Nash equilibria for our new model are exactly those for the KP model.
However, we follow the W model to model Social Cost as some kind of total latency, which
turns out to be a certain sum of Expected Individual Costs. So, our hybrid model represents
the first step towards accommodating unsplittable traffic and mixed strategies within the W

model, but also the first step towards accomodating total latency within the KP model.
We continue to describe the hybrid model in some more detail. For any link, consider the

latency incurred by the square of the total traffic on the link; add up the expectations of these
latencies over all links. This results to Quadratic Social Cost. (Similar modelings that have
employed quadratic cost functions can be found in both the scheduling literature [1, 8, 10, 27]
and the networking literature [2].) Quadratic Optimum is the best possible Quadratic Social

∗Social Cost as the expectation of maximum latency has also been considered for the W model [11, 35].
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Cost, over all pure assignments. Quadratic Coordination Ratio is the worst-case ratio, over all
Nash equilibria, of Quadratic Social Cost over Quadratic Optimum.

Note that expectation and maximum used in the definition of Social Cost for the KP model
do not commute. However, expectation and sum used in the definition of Quadratic Social Cost
for our model do commute. This commutativity allows some hope for a more tractable analysis
of Nash equilibria in the hybrid model.

1.2 Contribution and Significance

Some of our results deal specifically with the cases of identical users and identical links with
equal (unit) user traffics and link capacities, respectively; the most general cases are those of
arbitrary users and related links, respectively.

1.2.1 Quadratic Social Cost

We observe that Quadratic Social Cost can be expressed as a weighted sum of Expected Individ-
ual Costs, where the weights are the user traffics. This observation allows for the computation
of Quadratic Social Cost for any mixed assignment in polynomial time O(mn) (Theorem 4.1).

For the fully mixed Nash equilibria, we obtain two very simple combinatorial expressions
for Quadratic Social Cost in the two cases of identical links and identical users (Theorems 4.2
and 4.4, respectively). For these two cases, the two expressions imply corresponding polynomial
time algorithms (Corollaries 4.3 and 4.5). For the case of identical users, the link capacities
enter the expression for Quadratic Social Cost via their sum appearing in the denominator.
This dependence excludes Braess-like paradoxes [7], while it implies that the Quadratic Social
Cost of the fully mixed Nash equilibrium is insensitive to reallocating capacity among the links.

We use a combinatorial analysis to prove that, for the case of identical users and identi-
cal links, the fully mixed Nash equilibrium is the worst-case Nash equilibrium with respect to
Quadratic Social Cost (Theorem 4.8). We formulate the Quadratic Fully Mixed Nash Equilib-
rium Conjecture (Conjecture 4.1) to speculate that this happens in the general case.

1.2.2 Quadratic Coordination Ratio

As our main result, we obtain a collection of tight bounds on Quadratic Coordination Ratio.
All bounds we prove are either equal to or bounded by a constant strictly less than 2.

• We first consider pure Nash equilibria.† To establish upper bounds, we prove some new
structural properties of optimal assignments and pure Nash equilibria, which may be of

†These always exist as they coincide with those for the KP model, which are known to exist [18, Theorem 1].
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independent interest. For example, Proposition 3.2 provides an efficient characterization
of optimal assignments in the hybrid model, which implies that those can be decided in
polynomial time (Corollary 3.3). We obtain:

– For the case of identical users, the Quadratic Coordination Ratio is 4
3 (Theorem 5.1).

– For the case of identical links, the Quadratic Coordination Ratio is 9
8 (Theorem 5.2).

These different tight bounds imply a Quadratic Coordination Ratio separation between
the cases of identical links and of identical users, restricted to pure Nash equilibria.

• We continue to consider mixed Nash equilibria.

– For the case of identical links, we prove a tight bound of 1 + min{n, m} − 1
m on

Quadratic Coordination Ratio for the fully mixed Nash equilibrium.

– For the case of identical users and identical links, we prove a (sometimes better)
upper bound of 1 + min

{
m − 1

n , n − 1
m

}
, which holds for all Nash equilibria.

1.3 Directly Related Work and Comparison

Computing the Social Cost of a Nash equilibrium in the KP model is known to be #P-
complete [18, Theorem 8]; this applies even if links are identical. This stands in contrast
to the obtained polynomial computation of Quadratic Social Cost in the hybrid model.

Fully mixed Nash equilibria were introduced and analyzed in [29]. The (yet unproven) Fully
Mixed Nash Equilibrium Conjecture asserts that the worst-case Nash equilibrium for the KP

model is the fully mixed Nash equilibrium. This conjecture has been motivated by some results
in [18]; it was explicitly formulated in [23] and further studied in [21, 22, 28].

Bounds on Coordination Ratio for the KP model were proved in [3, 13, 16, 20, 25, 29].
These include (tight) bounds of Θ

( lg m
lg lg m

)
for the case of identical links [13, 25, 26, 29]

and of Θ
( lg m

lg lg lg m

)
for the case of related links [13]. These bounds are contrasted by the

corresponding constant bounds on Quadratic Coordination Ratio proved here for the hybrid
model. (For the W model, there have been shown constant bounds on Coordination Ratio –
see [34] and references therein.)

1.4 Organization

Section 2 presents the hybrid model. Some preliminary properties of Nash equilibria and optimal
assignments are articulated in Section 3. Quadratic Social Cost is studied in Section 4. The
bounds on Quadratic Coordination Ratio are presented in Section 5. We conclude, in Section 6,
with a discussion of our results and some open problems.
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2 The Model

Our definitions for the new model are built on top of those for the KP model [26]; those
definitions are extended to accomodate features from the W model [36]. The definitions for
the KP model are patterned after those in [29, Section 2], [18, Section 2], [16, Section 2], [23,
Section 2] and [28, Section 2], which, in turn, were based on those in [26, Sections 1 & 2].

Throughout, denote for any integer m ≥ 1, [m] = {1, . . . , m}; take [0] = ∅. For a random
variable X with associated probability distribution P; denote EP(X) the expectation of X. For
a probability p, denote p = 1 − p.

2.1 General

We consider a simple network consisting of a set of m parallel links 1, 2, . . . , m from a source
node to a destination node. Each of n users 1, 2, . . . , n wishes to route a particular amount of
traffic along a (non-fixed) link from source to destination. Assume throughout that m ≥ 2 and
n ≥ 2. (Throughout, we will be using subscripts for users and superscripts for links.)

Denote wi the traffic of user i ∈ [n]. Define the n × 1 traffic vector w in the natural
way. Without loss of generality, assume that w1 ≥ w2 ≥ . . . ≥ wn. Denote W =

∑
i∈[n] wi,

W1 =
∑

i∈[n] w
2
i and W2 =

∑
i,j∈[n],i<j wiwj . (These quantities will be used in our later proofs.)

Note that W 2 = W1 + 2W2. It is a well known simple fact that W1 ≥ W 2

n .
Denote c� > 0 the capacity of link � ∈ [m], representing the rate at which the link processes

traffic. So, the latency for traffic w through link � equals w/c�. Assume throughout, without
loss of generality, that c1 ≥ c2 ≥ . . . ≥ cm. Denote C =

∑
j∈[m] c

j . An instance is a pair 〈w, c〉.
In the case of identical users, all user traffics are 1; in the case of identical links, all link

capacities are 1. In the general case, we talk about arbitrary users and related links.

2.2 Strategies and Assignments

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user i ∈ [n] is a
probability distribution over pure strategies; so, it is a probability distribution over links.

A pure assignment is an n-tuple L = 〈�1, �2, . . . , �n〉 ∈ [m]n; a mixed assignment is an n×m

probability matrix P of nm probabilities pj
i , i ∈ [n] and j ∈ [m], where pj

i is the probability that
user i chooses link j. Throughout, we will cast a pure assignment as a special case of a mixed
assignment in which all (mixed) strategies are pure. Moreover, the mixed assignment P can
be cast as a collection of pure assignments LP = 〈�1, �2, . . . , �n〉 such that for all users i ∈ [n],
p�i

i > 0; any such pure assignment LP will be called consistent with P. So, a mixed assignment
P induces a probability distribution PP on the space of all pure assignments consistent with P.
A mixed assignment P is fully mixed [29, Section 2.2] if for all users i ∈ [n] and links j ∈ [m],
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pj
i > 0. A user i ∈ [n] is solo in the pure assignment L if no other user is assigned to link �i; in

such case, say that link �i is solo as well.
Fix now a mixed assignment P. The load δ�(P) on link � ∈ [m] induced by P is the total

traffic assigned to the link according to P; so, δ�(P) is a random variable. For each link � ∈ [m],
denote θ�(P) the expected load on link � ∈ [m]; thus, θ�(P) = EP(δ�(P)) =

∑
i∈[n] p

�
iwi. The

latency Δ�(P) on link � ∈ [m] induced by P is the latency due to the load assigned to the link

according to P; so, Δ�(P) is a random variable and Δ�(P) = δ�(P)
c� .

2.3 Costs

2.3.1 Individual Cost and Expected Individual Cost

For a pure assignment L, the Individual Cost for user i ∈ [n], denoted λi(L), is λi(L) = Δ�i(L);
so, the Individual Cost for a user is the latency of the link it chooses. For a mixed assignment
P, the Expected Individual Cost for user i ∈ [n], denoted λi(P), is the expectation according
to P of the Individual Cost for the user in any pure assignment LP consistent with P; so,
λi(P) = EP (λi(LP)).

2.3.2 Quadratic Social Cost

Associated with an instance 〈w, c〉 and a mixed assignment P is the Quadratic Social Cost,
denoted as QSC(w, c,P), which is the expectation according to P of the sum of the link latencies
due to the squares of the incurred loads in a pure assignment L consistent with P; so,

QSC (w, c,P) = EP

⎛⎝ ∑
�∈[m]

(
δ�(LP)

)2

c�

⎞⎠ .

For a pure assignment LP = 〈�1, . . . , �n〉, changing the summation order and using the definition

of Individual Cost yields that
∑

�∈[m]

(
δ�(LP)

)2

c� =
∑

i∈[n] wi · δ�i(LP)
c�i

=
∑

i∈[n] wiλi(LP). So,
linearity of expectation and the definition of Expected Individual Cost imply that

QSC(w, c,P) =
∑
i∈[n]

wi λi(P) .

Thus, the Quadratic Social Cost is a weighted sum of Expected Individual Costs, where the
weights are the user traffics. There is a counterpart of Quadratic Social Cost in the KP model.
Associated with an instance 〈w, c〉 and a mixed assignment P is the Maximum Social Cost [26],
denoted MSC (w, c,P), which is the expectation according to P of the maximum of the incurred
link latencies in a pure assignment LP; so,

MSC (w, c,P) = EP

(
max
�∈[m]

Δ�(LP)
)

.
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2.3.3 Quadratic Optimum

Associated with an instance 〈w, c〉 is the Quadratic Optimum, denoted QOPT(w, c), which is
the least possible, over all pure assignments, sum of link latencies incurred by the squares of
the total traffics on the links; so,

QOPT(w, c) = min
L∈[m]n

∑
�∈[m]

(
δ�(L)

)2

c�
.

Note that QOPT(w, c) refers to the optimal pure assignment. Formally, a pure assignment
L is optimal for the instance 〈w, c〉 if QSC (w, c,L) = QOPT (w, c). Clearly, for the case of
identical users and identical links, QOPT (w, c) ≥ max

{
n, n2

m

}
= n max

{
1, n

m
}
. There is a

counterpart of Quadratic Optimum in the KP model. This is the Maximum Optimum [26],
denoted MOPT (w, c) and defined as the least possible, over all pure assignments, maximum
incurred link latency; so,

MOPT (w, c) = min
L∈[m]n

max
�∈[m]

Δ�(L) .

2.4 Nash Equilibria

Given an instance 〈w, c〉, the mixed assignment P is a Nash equilibrium [26, Section 2] if for
each user i ∈ [n], it minimizes the Expected Individual Cost λi(P), over all mixed assignments
Q that differ from P only with respect to the mixed strategy of user i; that is, for all such
mixed assignments Q, λi(P) ≤ λi(Q). Thus, in a Nash equilibrium, there is no incentive for a
user to unilaterally deviate from its mixed strategy.

Denote a fully mixed Nash equilibrium as F. In the case of identical links, a fully mixed
Nash equilibrium exists always and uniquely [29, Lemma 15]; there, all links are equiprobable
(each chosen with probability 1

m) for each user. The fully mixed Nash equilibrium does not
necessarily exist in the case of identical users [29, Lemma 22]; when it exists, it is unique but
for each user, each link � ∈ [m] is now chosen with probability m + n − 1

(n − 1)C c� − 1
n − 1.

2.5 Quadratic Coordination Ratio

The Quadratic Coordination Ratio, denoted QCR, is the worst-case ratio QSC (w, c,P)
QOPT (w, c) , over

all instances 〈w, c〉 and associated Nash equilibria P. This is similar to Maximum Coordination

Ratio, denoted MCR, which was defined in [26] as the worst-case ratio MSC (w, c,P)
MOPT (w, c) , over all

instances 〈w, c〉 and associated Nash equilibria P.
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3 Preliminaries

We present some properties of Nash equilibria and optimal assignments in the new model. We
first prove that Expected Individual Cost takes a special form for any (mixed) assignment.

Lemma 3.1 Fix an instance 〈w, c〉 and a mixed assignment P. Then, for each user i ∈ [n],

λi (P) =
∑

�∈[m]

p�
i

wi +
∑

k∈[n]:k �=i p�
kwk

c�
.

Proof: By the definition of Individual Cost and Expected Individual Cost, we obtain that

λi(P) =
∑

LP∈[m][n]

PP(LP) · λi(LP)

=
∑

j∈[m]

⎛⎝ ∑
LP∈[m][n]: li=j

PP(LP) · λi(LP)

⎞⎠
=

∑
j∈[m]

⎛⎝ ∑
LP∈[m][n]\{i}: li=j

pj
i PP(LP) · λi(LP)

⎞⎠
=

∑
j∈[m]

pj
i

⎛⎝ ∑
LP∈[m][n]\{i}: li=j

PP(LP) · λi(LP)

⎞⎠
=

∑
j∈[m]

pj
i

⎛⎝ ∑
LP∈[m][n]\{i}

PP(LP) · λi(LP) |li=j

⎞⎠
=

∑
j∈[m]

pj
i

⎛⎝ ∑
LP∈[m][n]\{i}

PP(LP) ·
(∑

k∈[n]:lk=j wk

cj

)⎞⎠
=

∑
j∈[m]

pj
i

⎛⎝ ∑
LP∈[m][n]\{i}

PP(LP) ·
(

wi +
∑

k∈[n]\{i}:lk=j wk

cj

)⎞⎠
=

∑
j∈[m]

pj
i

⎛⎝wi

cj
+

∑
LP∈[m][n]\{i}

PP(LP) ·
(∑

k∈[n]\{i}:lk=j wk

cj

)⎞⎠ .

Reorder users so that i = n. We prove by backward induction on r, 0 ≤ r ≤ n − 1, that

λi(P) =
∑

j∈[m]

pj
i

⎛⎝wi

cj
+

∑
k∈[n−1]\[r]

pj
kwk

cj
+

∑
LP=〈l1,...,lr〉∈[m][r]

PP(LP) ·
(∑

k∈[r]:�k=j wk

cj

)⎞⎠ .

For the basis case, where r = n − 1,
∑

k∈[n−1]\[r]
pj

kwk

cj = 0; so, the claim reduces to

λi(P) =
∑

j∈[m]

pj
i

⎛⎝wi

cj
+

∑
LP∈[m][n−1]

PP(LP) ·
(∑

k∈[n−1]:�k=j wk

cj

)⎞⎠ ,

9



which has been shown. Assume the claim for r, 0 < r ≤ n − 1. and prove it for r − 1. So,

∑
LP∈[m][r]

PP(LP)

(∑
k∈[r+1]:�k=j wk

cj

)

=
∑

LP∈[m][r]:�r=j

PP(LP)

(∑
k∈[r]:�k=j wk

cj

)
+

∑
LP∈[m][r]:�r �=j

PP(LP)

(∑
k∈[r]:�k=j wk

cj

)

=
∑

LP∈[m][r]:�r=j

PP(LP)

(
wr +

∑
k∈[r−1]:�k=j wk

cj

)
+

∑
LP∈[m][r]:�r �=j

PP(LP)

(∑
k∈[r−1]:�k=j wk

cj

)

=
∑

LP∈[m][r−1]

PP(LP) pj
r

(
wr +

∑
k∈[r−1]:�k=j wk

cj

)
+

∑
LP∈[m][r−1]

PP(LP) pj
r

(∑
k∈[r−1]:�k=j wk

cj

)

=
∑

LP∈[m][r−1]

PP(LP)

(
pj

rwr

cj
+

∑
k∈[r−1]:�k=j wk

cj

)

=
pj

rwr

cj
+

∑
LP∈[m][r−1]

PP(LP)

(∑
k∈[r−1]:�k=j wk

cj

)
.

Hence, by induction hypothesis, it follows that

λi(P)

=
∑

j∈[m]

pj
i

⎛⎜⎜⎝wi

cj
+

∑
k∈[n−1]\[r]

pj
kwk

cj
+

pj
rwr

cj
+

∑
LP ∈ [m][r−1]

PP(LP)

(∑
k∈[r−1]:�k=j wk

cj

)⎞⎟⎟⎠

=
∑

j∈[m]

pj
i

⎛⎜⎜⎝wi

cj
+

∑
k∈[n−1]\[r−1]

pj
kwk

cj
+

∑
LP ∈ [m][r−1]

PP(LP)

(∑
k∈[r−1]:�k=j wk

cj

)⎞⎟⎟⎠ ,

as needed to prove the claim for r. Setting now r = 0 yields that

λi (P) =
∑

j∈[m]

pj
i

wi +
∑

k∈[n]:k �=i pj
kwk

cj
.

as needed.

For each user i ∈ [n] and link j ∈ [m], define the Conditional Expected Individual Cost [26]
of user i on link j as

λj
i (P) =

wi +
∑

k∈[n]:k �=i pj
kwk

cj
.

By Lemma 3.1, λi(P) =
∑

j∈[m] p
j
i λj

i (P); thus, the definition of Nash equilibrium implies that

for each link j ∈ [m] such that pj
i > 0, for each link j′ ∈ [m], either λj

i = λj′
i if pj′

i > 0 or
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λj
i ≤ λj′

i if pj′
i = 0. (This property was used for defining Nash equilibria in the original work of

Koutsoupias and Papadimitriou [26].)
We now consider the case of identical users, where we characterize optimal assignments.

Proposition 3.2 (Global Optimality = Local Optimality) Consider a pure assignment
Q for an instance 〈w, c) in the case of identical users. Then, Q is optimal if and only if for
every pair of distinct links j, j′ ∈ [m],

2δj(Q) + 1
cj

≥ 2δj′(Q) − 1
cj′ .

Proof: Assume first that Q is optimal, so that QSC (w, c,Q) = QOPT (w, c). Consider any
pair of distinct links j, j′ ∈ [m] and use Q to construct a new pure assignment Q′ by switching
any single user from link j′ to link j. Then, clearly,

QSC
(
w, c,Q′) − QSC (w, c,Q) =

(δj(Q) + 1)2

cj
+

(δj′(Q) − 1)2

cj′ − (δj(Q))2

cj
− (δj′(Q))2

cj′

=
2δj(Q) + 1

cj
− 2δj′(Q) − 1

cj′ .

Since Q is optimal, QSC (w, c,Q′) ≥ QSC(w, c,Q), so that

2δj(Q) + 1
cj

≥ 2δj′(Q) − 1
cj′ ,

as needed.
Assume now that for every pair of links j, j′ ∈ [m],

2δj(Q) + 1
cj

≥ 2δj′(Q) − 1
cj′ .

We will prove that Q is an optimal assignment for the instance 〈w, c〉. To do so, we will
consider an optimal assignment R for the same instance, and we will prove that QSC(w, c,Q) =
QSC(w, c,R). If δ�(Q) = δ�(R) for all links � ∈ [m], then QSC(w, c,Q) = QSC(w, c,R) and
the optimality of Q follows. So assume otherwise. Since

∑
�∈[m] δ

�(Q) =
∑

�∈[m] δ
�(R) = n, it

follows that there exist distinct links j, j′ ∈ [m] such that δj(R) > δj(Q) and δj′(Q) > δj′(R);
that is, link j is assigned more traffic in R than in Q, while link j′ is assigned more traffic in Q

than in R. Since loads are integral in the case of identical users, it follows that δj(R)−δj(Q) ≥ 1
and δj′(Q) − δj′(R) ≥ 1.

Since R is optimal, it holds for links j′, j ∈ [m] that

2δj′(R) + 1
cj′ ≥ 2δj(R) − 1

cj
.

11



On the other hand, our assumption on Q implies that

2δj(Q) + 1
cj

≥ 2δj′(Q) − 1
cj′ .

It follows that

2δj′(R) + 1
cj′

≥ 2δj(R)−1
cj

≥ 2δj(Q)+1
cj (since δj(R) ≥ δj(Q) + 1)

≥ 2δj′ (Q)−1

cj′

≥ 2δj′ (R)+1

cj′ (since δj′(Q) ≥ δj′(R) + 1)

It follows that all terms in this sequence of inequalities are equal. In particular,

2δj(R) − 1
cj

=
2δj(Q) + 1

cj
,

or δj(R) = δj(Q) + 1; also,

2δj′(Q) − 1
cj′ =

2δj′(R) + 1
cj′ ,

or δj′(Q) = δj′(R) + 1. Thus, the difference of the loads on each of the links j, j′ ∈ [m] is
exactly 1 (in absolute value) in both Q or R. Since

∑
l∈[m] δ

l(Q) =
∑

l∈[m] δ
l(R), this implies

that the number of links j ∈ [m] such that δj(R) > δj(Q) and the number of links j′ ∈ [m]
such that δj′(Q) > δj′(R) are equal. It also follows from the preceding sequence of inequalities
that

2δj′(R) + 1
cj′ =

2δj(Q) + 1
cj

,

which implies that

(δj(Q))2

cj
+

(δj′(R) + 1)2

cj′ =
(δj′(R))2

cj′ +
(δj(Q) + 1)2

cj
.

Since δj(R) = δj(Q) + 1 and δj′(Q) = δj′(R) + 1, it follows that

(δj(Q))2

cj
+

(δj′(Q))2

cj′ =
(δj′(R))2

cj′ +
(δj(R))2

cj
.

Thus, links j, j′ ∈ [m] have the same contribution to Quadratic Social Cost in both Q and R.
Since the number of links j ∈ [m] such that δj(R) > δj(Q) and the number of links j′ ∈ [m]
such that δj′(Q) > δj′(R) are equal, the total contribution to Quadratic Social Cost of links
j ∈ [m] such that δj(R) > δj(Q) is equal to the total contribution to Quadratic Social Cost of
links j′ ∈ [m] such that δj′(Q) > δj′(R). It follows that QSC(w, c,Q) = QSC(w, c,R), so that
Q is optimal, as needed.

12



Proposition 3.2 establishes that the (global) optimality of a pure assignment is equivalent
to a collection of Θ(m2) local conditions – one for each pair of distinct links and each checkable
in time Θ(1), given the link loads. Hence, an immediate consequence of Proposition 3.2 follows.

Corollary 3.3 Consider the case of identical users. Then, the optimality of a pure assignment
can be decided in time O(n + m2).

We continue to prove a relation between pure Nash equilibria and optimal (pure) assignments
in the case of identical users.

Lemma 3.4 (Optimal Assignment versus Nash Equilibrium) Consider an optimal as-
signment Q and a pure Nash equilibrium P for an instance 〈w, c〉 in the case of identical users.
Then, for each link j ∈ [m], δj(Q) − δj(P) ≤ 1.

Proof: Assume, by way of contradiction, that there is some link j ∈ [m] such that δj(Q) −
δj(P) ≥ 2. Since

∑
l∈[m] δ

l(Q) =
∑

l∈[m] δ
l(P), there also exists some link j′ ∈ [m] such that

δj′(Q) − δj′(P) ≤ −1. Since Q is optimal, Proposition 3.2 implies that

2δj(Q) − 1
cj

≤ 2δj′ (Q)+1

cj′

≤ 2(δj′ (P)−1)+1

cj′ (since δj′(Q) ≤ δj′(P) − 1)

= 2δj′ (P)−1

cj′

≤ 2 δj(P)+1
cj − 1

cj′ (since P is a Nash equilibrium)

≤ 2 δj(Q)−2+1
cj − 1

cj′ (since δj(P) ≤ δj(Q) − 2)

= 2δj(Q)−1
cj − 1

cj − 1
cj′ .

It follows that 1
cj + 1

cj′ ≤ 0. A contradiction.

We now consider an instance 〈w, c〉 for the case of identical links. Call user i ∈ [n] bursty if
wi > W

m . Intuitively, the traffic of a bursty user exceeds the fair share of traffic for a link. We
prove a simple property of bursty users:

Lemma 3.5 (Bursty Users are Solo) Consider any instance in the case of identical links.
Then, a bursty user is solo in either an optimal assignment or a pure Nash equilibrium.

Proof: Fix an instance 〈w, c〉 and a bursty user i ∈ [n].

13



Consider first an optimal assignment Q = 〈q1, . . . , qn〉. Note that δqi(Q) ≥ wi. Since i is
a bursty user, it follows that δqi(Q) > W

m ; Since
∑

l∈[m] δ
l(Q) = W , there is some other link

j ∈ [m] with j 	= qi such that δj(Q) < W
m . Assume, by way of contradiction, that some user

k 	= i is assigned to link qi. Modify Q to obtain Q′ by switching user k to link j. Then,

QSC (w, c,Q′) − QSC(w, c,Q) = (δqi(Q′))2 +
(
δj(Q′)

)2 − (δqi(Q))2 − (
δj(Q)

)2

= w2
i +

(
δj(Q) + wk

)2 − (wi + wk)2 − (
δj(Q)

)2

= 2wk

(
δj(Q) − wi

)
.

Since δj(Q) < W
m and wi > W

m , it follows that δj(Q) − wi < 0, so that QSC(w, c,Q′) <

QSC(w, c,Q). Since Q is optimal, QSC(w, c,Q′) ≥ QSC(w, c,Q). A contradiction.
Consider now a pure Nash equilibrium P = 〈�1, . . . , �n〉. Note that δ�i(P) ≥ wi > W

m . Since∑
l∈[m] δ

l(P) = W , there is some other link j ∈ [m] with j 	= �i such that δj(P) < W
m . Assume,

by way of contradiction, that some user k 	= i is assigned to link �i. Then, λk(P) ≥ wi + wk >
W
m +wk. However, if user k switches to link j, its Individual Cost becomes δj(P)+wk < W

m +wk.
Since P is a Nash equilibrium, δj(P) + wk ≥ λk(P) > W

m + wk. A contradiction.

Say that an instance 〈w, c〉 is bursty if some user i ∈ [n] is bursty; otherwise, the instance
is non-bursty. We start with a very simple observation about pure Nash equilibria associated
with non-bursty instances in the case of identical links.

Lemma 3.6 (Non-Zero Loads in Nash Equilibrium for NonBursty Instance) Consi-
der a pure Nash equilibrium P for a non-bursty instance 〈w, c〉 in the case of identical links.
Then, for each link j ∈ [m], δj(P) > 0.

Proof: Assume, by way of contradiction, that there is a link j ∈ [m] with δj(P) = 0. This
implies that there is also some link j′ ∈ [m] with δj′(P) ≥ W

m − 1 > W
m . Consider any user

i ∈ [n] assigned to link j′. Then, λi(P) = δj′(P) > W
m , while λj

i (P) = wi ≤ W
m (since no user

is bursty). This contradicts the assumption that P is a Nash equilibrium.

We continue with another preliminary property of pure Nash equilibria associated with non-
bursty instances in the case of identical links; roughly speaking, we prove that link loads are
balanced in a pure Nash equilibrium for a non-bursty instance.

Lemma 3.7 (Balanced Loads in Nash Equilibrium for NonBursty Instance) Consi-
der a pure Nash equilibrium P for a non-bursty instance 〈w, c〉 in the case of identical links.
Then, for each link j ∈ [m], δj(P) ≤ 2 minl∈[m] δ

l(P).
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Proof: Assume, by way of contradiction, that there is some link j ∈ [m] such that δj(P) >

2 minl∈[m] δ
l(P). Choose link j so that it maximizes δl(P) over all links l ∈ [m].

Clearly, δj(P) ≥ W
m . Moreover, if δj(P) = W

m , then δl(P) = W
m for all links l ∈ [m] and

the claim follows. So, assume that δj(P) > W
m . We proceed by case analysis.

• Assume first that there is a single solo user i ∈ [n] on link j, so that δj(P) = wi. Since
link j maximizes latency, wi ≥ δl(P) for all links l ∈ [m]. Moreover, our assumption
implies that wi > minl∈[m] δ

l(P). It follows that mwi >
∑

l∈[m] δ
l(P) = W , or wi > W

m .

Since 〈w, c〉 is a non-bursty instance, wi ≤ W
m . A contradiction.

• Assume now that at least two users are assigned to link j. Consider the smallest traffic wi

of some user i ∈ [n] among all users assigned to link j. Then, clearly, wi ≤ δj(P)
2 . Hence,

δj(P) − wi ≥ δj(P)
2 > minl∈[m] δ

l(P) (by assumption). So, minl∈[m] δ
l(P) + wi < δj(P).

Since P is a Nash equilibrium, minl∈[m] δ
l(P) + wi ≥ δj(P). A contradiction.

Since we obtained a contradiction in all possible cases, the proof is now complete.

4 Quadratic Social Cost

Some combinatorial expressions for Quadratic Social Cost, and corresponding efficient algo-
rithms, are presented in Section 4.1. Section 4.2 determines the worst-case Nash equilibrium
with respect to Quadratic Social Cost.

4.1 Combinatorial Expressions

Recall that the Quadratic Social Cost can be expressed as the weighted sum of Expected
Individual Costs. Hence, Lemma 3.1 implies that the Quadratic Social Cost of any mixed
assignment P for the instance 〈w, c〉 can be written as

QSC (w, c,P) =
∑
i∈[n]

wi

⎛⎝ ∑
j∈[m]

pj
i

pj
i wi + θj(P)

cj

⎞⎠ ,

which immediately implies:

Proposition 4.1 (Quadratic Social Cost of Mixed Assignment) The Quadratic Social
Cost of any mixed assignment can be computed in time O(nm).

Since a probability matrix P has size O(nm), Proposition 4.1 implies that the Quadratic
Social Cost of any mixed assignment can be computed in linear time. We remark that this
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achieved efficiency has not needed the assumption that the mixed assignment is a Nash equi-
librium. We next establish that the Quadratic Social Cost takes a particularly nice form for
the case of the fully mixed Nash equilibrium. We prove:

Theorem 4.2 (Quadratic Social Cost of Fully Mixed Nash Equilibrium) Consider
an instance 〈w, c〉 in the case of identical links. Then,

QSC (w, c,F) = W1 +
2
m

W2 =
W 2

m
+

(
1 − 1

m

)
W2 .

Proof: Since W 2 = W1 + 2W2, it suffices to prove the first equality. Recall that f j
i = 1

m for
all users i ∈ [n] and links j ∈ [m] in the fully mixed Nash equilibrium F. Thus, by Lemma 3.1,
λi(F) =

∑
�∈[m]

1
m

(
wi +

∑
k∈[n]:k �=i

1
m wk

)
= wi +

∑
k∈[n]:k �=i

1
m wk. Since QSC (w, c,F) =∑

i∈[n] wiλi(F), the claim follows from the definitions of W1 and W2.

Theorem 4.2 immediately implies:

Corollary 4.3 Consider the case of identical links. Then, the Quadratic Social Cost of the
fully mixed Nash Equilibrium can be computed in time O(n2).

We continue to prove:

Theorem 4.4 Consider an instance 〈w, c〉 in the case of identical users for which the fully
mixed Nash equilibrium F exists. Then,

QSC (w, c,F) =
n (n + m − 1)

C
.

Proof: Recall that in the case of identical users, for all users i ∈ [n] and each link j ∈ [m],

f j
i = m + n − 1

(n − 1)C cj − 1
n − 1. Hence, by Lemma 3.1, λi(F) =

∑
j∈[m]

(
f j

i

1 +
∑

k∈[n]:k �=i f j
k

cj

)
=

∑
j∈[m]

(
f j

i
1 + (n − 1)f j

i

cj

)
=

∑
j∈[m]

(
f j

i
m + n − 1

C

)
= m + n − 1

C . Since QSC (w, c,F) =∑
i∈[n] λi(F), the claim follows.

Theorem 4.4 immediately implies:

Corollary 4.5 Consider the case of identical users. Then, the Quadratic Social Cost of the
fully mixed Nash Equilibrium can be computed in time O(m).

For the special case of identical users and identical links, Theorem 4.4 immediately implies:

Corollary 4.6 Consider the case of identical users and identical links. Then,

QSC (w, c,F) =
n (n + m − 1)

m
.
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4.2 The Worst-Case Nash Equilibrium

We restrict attention to the case of identical users and identical links, for which the fully mixed
Nash equilibrium always exists. We start by proving:

Lemma 4.7 Consider the case of identical users and identical links, and let P be any (mixed)
Nash equilibrium. Then, for all users i ∈ [n], λi(P) ≤ λi(F).

Proof: Assume, by way of contradiction, that λi(P) > λi(F), for some user i ∈ [n].
For the Nash equilibrium P, recall that all Conditional Expected Individual Costs λj

i for
those links such that pj

i > 0 are equal; hence, Lemma 3.1 implies that λi(P) = λj
i (P) =

1 +
∑

k∈[n]:k �=i pj
k. Moreover, all Conditional Expected Individual Costs for those links j ∈ [m]

such that pj
i = 0 are no less than λi(P). For the fully mixed Nash equilibrium F, the same

argument implies that λi(F) = λj
i (F) for any link j ∈ [m].

By Lemma 3.1, λj
i (P) = 1 +

∑
k∈[n]:k �=i pj

k and λj
i (F) = 1 +

∑
k∈[n]:k �=i f j

k . Since λi(P) >

λi(F),
∑

k∈[n]:k �=i pj
k >

∑
k∈[n]:k �=i f j

k . But
∑

�∈[m]

(∑
k∈[n]:k �=i p�

k

)
=

∑
�∈[m]

(∑
k∈[n]:k �=i f �

k

)
=

n−1. It follows that there exists some link j′ ∈ [m] such that
∑

k∈[n]:k �=i pj′
k <

∑
k∈[n]:k �=i pj′

k . By

definition of Conditional Expected Individual Cost, this implies that λj′
i (P) < λj′

i (F). However,
λi(P) ≤ λj′

i (P), while λi(F) = λj′
i (F). It follows that λi(P) < λi(F). A contradiction.

Since the Quadratic Social Cost is a weighted sum of Expected Individual Costs, Lemma 4.7
immediately implies:

Theorem 4.8 Consider the case of identical users and identical links. Then, for any arbitrary
Nash equilibrium P, QSC (w, c,P) ≤ QSC (w, c,F).

Theorem 4.8 proves that the fully mixed Nash equilibrium maximizes Quadratic Social Cost
in the case of identical users and identical links. It is natural to ask if the same holds in all cases.
In analogy to the yet unproven Fully Mixed Nash Equilibrium Conjecture [23], we conjecture:

Conjecture 4.1 (Quadratic Fully Mixed Nash Equilibrium Conjecture) When it ex-
ists, the fully mixed Nash equilibrium maximizes Quadratic Social Cost.

5 Quadratic Coordination Ratio

Some of our proofs in this section will make use of the following notation. Consider an instance
〈w, c〉 with an associated pure assignment P. Fix a set of links L, inducing a set of users U
that are assigned by the assignment P to links in L. Then, w \ U and c \ L denote the vectors
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resulting from w and c, respectively, by eliminating the entries corresponding to users in U and
links in L, respectively; P \ (U ,L) denotes the assignment induced by these eliminations. Pure
and mixed Nash equilibria are considered in Sections 5.1 and 5.2,

5.1 Pure Nash Equilibria

Identical users and identical links are considered in Sections 5.1.1 and 5.1.2, respectively.

5.1.1 Identical Users

As our main result, we prove:

Theorem 5.1 Consider the case of identical users, restricted to pure Nash equilibria. Then,
QCR = 4

3 .

Proof: We first prove the upper bound. We start with an informal outline of our proof. We
shall partition the set of links into a number of groups so that in each group, the total loads
on links of the group incurred by a Nash equilibrium and an optimal assignment match each
other. We then separately sum up the loads on links that are loaded more (resp., less) in the
Nash equilibrium than in the optimal assignment. We use simple properties of Nash equilibria
to compare the corresponding partial sums of the Nash equilibria and the optimal assignment.
Adding together these two partial sums provides the required relation between the Quadratic
Social Costs of the Nash equilibrium and the optimal assignment. We now continue with the
details of the formal proof.

Consider any arbitrary instance 〈w, c〉 and an associated pure Nash equilibrium P. Let Q

be an optimal (pure) assignment for the instance 〈w, c〉; so, QSC (w, c,Q) = QOPT (w, c).
Call a link j ∈ [m] overloaded if δj(P) > δj(Q), underloaded if δj(P) < δj(Q) and indifferent

otherwise. Lemma 3.4 implies that δj(P) = δj(Q)−1 is the only possibility for an underloaded
link j. Note also that δj(Q) ≥ 1 for each underloaded link j. Let j1, . . . , jk be the overloaded
links. Partition the set of links [m] into k + 1 groups I,L1, . . . ,Lk as follows:

• I = {j ∈ [m] | δj(P) = δj(Q)} is the set of indifferent links. So, clearly,
∑

j∈I δj(P) =∑
j∈I δj(Q).

• For each l ∈ [k], the set Ll contains the overloaded link jl and δjl(P)−δjl(Q) underloaded
links. So, |Ll| = δjl(P) − δjl(Q) + 1.
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Such a partition is possible due to Lemma 3.4. Note that for each l ∈ [k],∑
j∈Ll

δj(P) = δjl(P) +
∑

j∈Ll\{jl}
δj(P)

= δjl(P) +
∑

j∈Ll\{jl}
(δj(Q) − 1)

= δjl(P) +
∑

j∈Ll\{jl}
δj(Q) − (|Ll| − 1)

= δjl(P) +
∑

j∈Ll\{jl}
δj(Q) − (δjl(P) − δjl(Q))

=
∑
j∈Ll

δj(Q) .

We proceed to analyze the Quadratic Social Costs of P and Q.

• By definition of I, it follows that∑
j∈I

(δj(P))2

cj
=

∑
j∈I

(δj(Q))2

cj
.

• For each overloaded link jl, l ∈ [k], our construction implies that δjl(P) = δjl(Q)+|Ll|−1.
So, ∑

l∈[k]

(δjl(P))2

cjl
=

∑
l∈[k]

(δjl(Q))2 + 2 (|Ll| − 1)δjl(Q) + (|Ll| − 1)2

cjl
.

• For each underloaded link j ∈ ⋃
l∈[k] (Ll \ {jl}), δj(P) = δj(Q) − 1. So,∑

l∈[k]

∑
j∈Ll\{jl}

(δj(P))2

cj
=

∑
l∈[k]

∑
j∈Ll\{jl}

(δj(Q))2 − 2δj(Q) + 1
cj

≤
∑
l∈[k]

∑
j∈Ll\{jl}

(δj(Q))2 − δj(Q)
cj

.

Summing up we obtain that∑
j∈I

(δj(P))2

cj
+

∑
l∈[k]

(δjl(P))2

cjl
+

∑
l∈[k]

∑
j∈Ll\{jl}

(δj(P))2

cj

≤
∑
j∈I

(δj(Q))2

cj
+

∑
l∈[k]

(δjl(Q))2 + 2 (|Ll| − 1)δjl(Q) + (|Ll| − 1)2

cjl
+

∑
l∈[k]

∑
j∈Ll\{jl}

(δj(Q))2 − δj(Q)
cj

=
∑
j∈I

(δj(Q))2

cj
+

∑
l∈[k]

(δjl(Q))2

cjl
+

∑
l∈[k]

∑
j∈Ll\{jl}

(δj(Q))2

cj

+
∑
l∈[k]

2 (|Ll| − 1)δjl(Q) + (|Ll| − 1)2

cjl
−

∑
l∈[k]

∑
j∈Ll\{jl}

δj(Q)
cj
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or

QSC (w, c,P)

≤ QSC (w, c,Q) +
∑
l∈[k]

2 (|Ll| − 1)δjl(Q) + (|Ll| − 1)2

cjl
−

∑
l∈[k]

∑
j∈Ll\{jl}

δj(Q)
cj

= QSC (w, c,Q) +
∑
l∈[k]

(|Ll| − 1)δjl(Q)
cjl

+
∑
l∈[k]

(|Ll| − 1)(δjl(Q) + |Ll| − 1)
cjl

−
∑
l∈[k]

∑
j∈Ll\{jl}

δj(Q)
cj

= QSC (w, c,Q) +
∑
l∈[k]

(|Ll| − 1)δjl(Q)
cjl

+
∑
l∈[k]

∑
j∈Ll\{jl}

δjl(Q) + |Ll| − 1
cjl

−
∑
l∈[k]

∑
j∈Ll\{jl}

δj(Q)
cj

= QSC (w, c,Q) +
∑
l∈[k]

(|Ll| − 1)δjl(Q)
cjl

+
∑
l∈[k]

∑
j∈Ll\{jl}

(
δjl(Q) + |Ll| − 1

cjl
− δj(Q)

cj

)

= QSC (w, c,Q) +
∑
l∈[k]

(|Ll| − 1)δjl(Q)
cjl

+
∑
l∈[k]

∑
j∈Ll\{jl}

(
δjl(P)

cjl
− δj(Q)

cj

)
.

We will analyze separately each sum in the last right expression.

• Recall that for every x, y ∈ R, xy ≤ 1
4 (x + y)2. So, for every overloaded link jl, (|Ll| −

1)δjl(Q) ≤ 1
4 (δjl(Q)+ |Ll|−1)2 = (δjl(P))2. Summing up over all overloaded links yields

that ∑
l∈[k]

(|Ll| − 1)δjl(Q)
cjl

≤ 1
4

∑
l∈[k]

(δjl(P))2

cjl

≤ 1
4

QSC (w, c,P) .

• Consider any pair of an overloaded link jl and an undeloaded link j ∈ Ll\{jl}. Recall that

δj(Q) = δj(P) + 1. Hence, since P is a Nash equilibrium, δjl(P)
cjl

≤ δj(P) + 1
cj = δj(Q)

cj .
This implies that the second sum is non-positive.

Hence, it follows that QSC (w, c,P) ≤ QSC (w, c,Q) + 1
4 QSC (w, c,P), or QSC (w, c,P)

QOPT (w, c) ≤ 4
3.

Since the instance 〈w, c〉 and the associated pure Nash equilibrium P were chosen arbitrarily,
this implies that QCR ≤ 4

3, and the proof of the upper bound is complete.
We continue to prove the lower bound. Fix an instance 〈w, c〉 with n = 2(m − 1); for each

link l ∈ [m], set cl = 2(m − 1) if l = 1 and 1 otherwise. Consider pure assignments P and Q,
such that:

• In P, all users are assigned to link 1. Note that for each user i ∈ [2(m − 1)] λ1
i =

2(m − 1)
2(m − 1) = 1 and for each link l ∈ [m], l 	= 1, λl

i = 1; so, P is a Nash equilibrium.

Clearly, QSC(w, c,P) = (2(m − 1))2
2(m − 1) = 2(m − 1).
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• In Q, m − 1 users are assigned to link 1 and each of the rest is assigned to each link

2, . . . , m, respectively. Clearly, QSC(w, c,Q) = (m − 1)2
2(m − 1) + (m − 1)12

1 = 3
2 (m − 1).

So, QCR ≥ QSC(w, c,P)
QOPT(w, c) ≥ QSC(w, c,P)

QSC(w, c,Q) = 4
3, as needed.

5.1.2 Identical Links

We prove:

Theorem 5.2 Consider the case of identical links, restricted to pure Nash equilibria. Then,
QCR = 9

8 .

Proof: We first prove the upper bound. Consider any arbitrary instance 〈w, c〉, with associ-
ated pure Nash equilibrium P and optimal assignment Q. We consider two cases:

1. The instance 〈w, c〉 is non-bursty. Recall that in this case, by Lemma 3.7, for each link
j ∈ [m], δj(P) ≤ 2 minl∈[m] δ

l(P). So transform the set of loads
{
δl(P) | l ∈ [m]

}
into a

new set of loads
{

δ̂l(P) | l ∈ [m]
}

as the output of the following repetitive procedure:

for each link l ∈ [m], do

δ̂l(P) := δl(P);
while there are distinct j, j′ ∈ [m] with minl∈[m] δ

l(P) < δ̂j(P) ≤ δ̂j′(P) <

2 minl∈[m] δ
l(P) do

δ̂j(P) := δ̂j(P) − min
{

δ̂j(P) − minl∈[m] δ
l(P), 2 minl∈[m] δ

l(P) − δ̂j′(P)
}

;

δ̂j′(P) := δ̂j′(P) + min
{

δ̂j(P) − minl∈[m] δ
l(P), 2 minl∈[m] δ

l(P) − δ̂j′(P)
}

end while

Intuitively, our transformation procedure chooses at each step two intermediate loads
δj(P) and δj′(P) (that is, two loads that are not yet pushed either to the upper end or
to the lower end of the interval of link loads); it transfers the (strictly) positive quantity
min

{
δ̂j(P) − minl∈[m] δ

l(P), 2 minl∈[m] δ
l(P) − δ̂j′(P)

}
from the small load δj(P) to the

large load δj′(P). Clearly, each step of the procedure either pushes the small load δj(P)
to the lower end minl∈[m] δ

l(P) of the interval of link loads, or pushes the large load δj′(P)
to the upper end 2 minl∈[m] δ

l(P) of the interval of link loads (or both). So, when the
procedure terminates, there is at most one intermediate load. Hence, by reordering links,
we obtain that there exists an integer ĵ, 0 ≤ ĵ ≤ m − 1, such that for each link j ∈ [m],

δ̂j(P) =

⎧⎪⎨⎪⎩
2 minl∈[m] δ

l(P), j ∈ [̂j]
(1 + x) minl∈[m] δ

l(P), j = ĵ + 1
minl∈[m] δ

l(P), j ∈ [m] \ [̂j + 1]
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where 0 ≤ x ≤ 1. Intuitively, ĵ is the number of overloaded links.

Note that this procedure maps a set of loads to a new set of loads, without explicitly
mapping an instance to a new instance. However, for the sake of analysis, we will also
consider that the procedure maps an instance 〈w, c〉 and a Nash equilibrium P to a new
instance 〈ŵ, ĉ〉 and a new Nash equilibrium P̂. Note also that the procedure preserves
(at each step) the sum of loads. So, it also preserves the total traffic, so that W = Ŵ .
For any single step transforming the load set

{
δl(P) | l ∈ [m]

}
into

{
δ̂l(P) | l ∈ [m]

}
,

QSC
(
ŵ, ĉ, P̂

)
− QSC (w, c,P)

=
(

δ̂j(P) − min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

})2

+
(

δ̂j′
(P) + min

{
δ̂j(P) − min

l∈[m]
δl(P), 2 min

l∈[m]
δl(P) − δ̂j′

(P)
})2

−
(
δ̂j(P)

)2

−
(
δ̂j′

(P)
)2

= 2 min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

}
·
(
δ̂j′

(P) − δ̂j(P)
)

+2
(

min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

})2

> 0 .

Hence,

QSC(w, c,P)

≤ QSC(ŵ, ĉ, P̂)

=
(
4ĵ + (1 + x)2 + (m − ĵ − 1)

)
·
(

min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

})2

=
(
x2 + 2x + m + 3ĵ

)
·
(

min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

})2

.

On the other hand,

QOPT(w, c)

≥ W 2

m

=
Ŵ 2

m

=

(∑
j∈[m] δ̂

j(P)
)2

m

=

(
2ĵ + (1 + x) + (m − ĵ − 1)

)2

m
·
(

min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

})2

=

(
x + m + ĵ

)2

m
·
(

min
{

δ̂j(P) − min
l∈[m]

δl(P), 2 min
l∈[m]

δl(P) − δ̂j′
(P)

})2

.
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It follows that

QCR ≤ (x2 + 2x + m + 3ĵ) m

(x + m + ĵ)2
.

Define the real function

f(k) =
(x2 + 2x + m + 3ĵ)m

(x + m + ĵ)2

of a real variable ĵ. (The quantity x is taken as a parameter, while m is a fixed constant.)
Clearly, QCR ≤ supĵ f(ĵ). So, we will determine supĵ f(ĵ).

To gain some intuition, write

f(ĵ) =

(
m
ĵ

)2

+ 3m
ĵ

+ m(x2 + 2x)
ĵ2(

m
ĵ

+ 1 + x
ĵ

)2

=
y(y + 3) + m(x2 + 2x)

ĵ2(
y + 1 + x

ĵ

)2 ,

where y = m
ĵ

is the ratio of the total number of links to the number of overlaodad links

ĵ. Since we are interested in the ratio m
ĵ

and x ∈ [0, 1], we can assume that ĵ is so large

that x
ĵ

is negligibe. Then, f(ĵ) essentailly behaves as the function g(y) = y(y + 3)
(y + 1)2

, which

is maximized for y = 3 achieving the value 9
8. We now return to the formal proof.

To maximize the function f(ĵ), observe that the first and second derivatives of f(ĵ) are

df(ĵ)
dĵ

=
m

(x + m + ĵ)3
·
(
−2x2 − x + m − 3ĵ

)
and

d2f(ĵ)
dĵ2

= m ·
(
−3(x + m + ĵ)3 − (−2x2 − x + m − 3ĵ) · 3(x + m + ĵ)2

(x + m + ĵ)6

)
,

respectively. The only root of df(ĵ)
dĵ

is ĵ0 = m − x − 2x2

3 . For ĵ = ĵ0,
d2f(ĵ)

dĵ2
evaluates

to −81m
8(x + 2m − x2)3

< 0. Thus, ĵ0 is a local maximum of the function f(ĵ). Since f(ĵ) is

a continuous function with a single extremum point that is a local maximum, it follows
that f(ĵ) ≤ f(ĵ0) = 9m

4(2m + x − x2)
≤ 9

8 (since x ∈ [0, 1]), as needed.
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2. The instance 〈w, c〉 is bursty. Denote U the (non-empty) set of bursty users. Recall that,
by Lemma 3.5, U induces sets of solo links LP and LQ for the Nash equilibrium P and
the optimal assignment Q, respectively, so that |LP| = |U| and |LQ| = |U|. Since links
are identical, we assume that LP = LQ = L, with |L| ≥ 1. So,

QSC(w, c,P) =
∑
l∈L

(
δl(P)

)2
+ QSC (w \ U , c \ L,P \ (U ,L))

=
∑
i∈U

w2
i + QSC (w \ U , c \ L,P \ (U ,L))

and

QOPT(w, c) = QSC(w, c,Q)

=
∑
l∈L

(
δl(P)

)2
+ QSC (w \ U , c \ L,Q \ (U ,L))

=
∑
i∈U

w2
i + QSC (w \ U , c \ L,Q \ (U ,L)) .

Note first that the assignment P \ (U ,L) is a Nash equilibrium for the instance 〈w \
U , c \ L〉. Moreover, since Q is an optimal assignment for the instance 〈w, c〉, it fol-
lows that Q \ (U ,L) is an optimal assignment for the instance 〈w \ U , c \ L〉, so that
QSC (w \ U , c \ L,Q \ (U ,L)) = QOPT (w \ U , c \ L). Thus,

QOPT(w, c) =
∑
i∈U

w2
i + QOPT (w \ U , c \ L) .

It follows that

QSC(w, c,P)
QOPT(w, c)

=
∑

i∈U w2
i + QSC (w \ U , c \ L,P \ (U ,L))∑

i∈U w2
i + QOPT (w \ U , c \ L)

≤ QSC (w \ U , c \ L,P \ (U ,L))
QOPT (w \ U , c \ L)

.

So consider the instance 〈w\U , c\L〉 and the associated pure Nash equilibrium P\(U ,L).
There are two possibilities according to the burstiness of the instance 〈w \ U , c \ L〉.

• Assume first that the smaller instance 〈w \ U , c \ L〉 is non-bursty. Then, we are
reduced to the previous case of non-bursty instances, and the upper bound follows
inductively.

• Assume now that the smaller instance 〈w\U , c\L〉 is bursty. We repeatedly identify
the set of bursty users for the smaller instance, and we reduce this smaller instance
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to an even smaller instance that may be bursty or non-bursty. This procedure
eventually yields a non-bursty instance (even the trivial one with one user), and the
claim for the original bursty instance follows inductively.

The proof of the upper bound is now complete. We continue to prove the lower bound. Fix
n = 8 and m = 3. Set wi = 1 for 1 ≤ i ≤ 2 and wi = 1

3 otherwise. Observe that P =
〈1, 1, 2, 2, 2, 3, 3, 3〉 is a pure Nash equilibrium with QSC(w, c,P) = 22 + 12 +12 = 6. Moreover,

consider the pure assignment Q = 〈1, 2, 1, 2, 3, 3, 3, 3〉 that achieves QSC(w, c,Q) = 3 ·
(

4
3

)2
=

16
3 . Thus, QCR ≥ QSC(w, c,P)

QSC(w, c,Q) = 6
16
3

= 9
8, as needed.

5.2 Mixed Nash Equilibria

Throughout this section, we focus on the case of identical links. The fully mixed Nash equilib-
rium is treated in Section 5.2.1. The case of identical users is considered in Section 5.2.2.

5.2.1 Identical Links and Fully Mixed Nash Equilibrium

We prove:

Theorem 5.3 Consider the case of identical links. Then, restricted to the fully mixed Nash
equilibrium,

QCR = 1 +
min{n, m} − 1

m
.

Proof: We first prove the upper bound. Consider any arbitrary instance 〈w, c〉 with an
associated fully mixed Nash equilibrium F and optimal (pure) assignment Q. Assume, without
loss of generality, that δ1(Q) ≥ . . . ≥ δm(Q); that is, the links are indexed in non-increasing
order of their loads in Q. Clearly, QSC (w, c,Q) =

∑
l∈[m](δ

l(Q))2, while by Theorem 4.2,

QSC (w, c,F) = W 2

m +
(
1 − 1

m

)
W1.

Transform the instance 〈w, c〉 to an instance 〈ŵ, ĉ〉 with m identical links and min{n, m}
users with weights ŵi = δi(Q) for i ∈ [min{n, m}]. Clearly, Ŵ = W and Ŵ1 ≥ W1, while

Ŵ1 ≥ Ŵ 2

min{n, m} . Notice that if n ≤ m, then δl(Q) = 0 for all links l > n = min{n, m}, and

the two instances are identical.
Denote Q̂ the pure assignment for the new instance 〈ŵ, ĉ〉 that assigns user i ∈ [min{n, m}]

to the link i ∈ [m]. Clearly, QSC
(
ŵ, ĉ, Q̂

)
= QSC (w, c,Q). Moreover, by construction

QSC
(
ŵ, ĉ, Q̂

)
= Ŵ1.
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Denote also F̂ the fully mixed Nash equilibrium for the new instance 〈ŵ, ĉ〉. By Theorem 4.2,

QSC
(
ŵ, ĉ, F̂

)
= Ŵ 2

m +
(
1 − 1

m

)
Ŵ1 ≥ W 2

m +
(
1 − 1

m

)
W1 = QSC (w, c,F). Hence,

QSC(w, c,F)
QOPT(w, c)

=
QSC(w, c,F)
QSC(w, c,Q)

≤ QSC(ŵ, ĉ, F̂)

QSC(ŵ, ĉ, Q̂)

=

(
1 − 1

m

)
Ŵ1 + Ŵ 2

m

Ŵ1

= 1 − 1
m

+
1
m

Ŵ 2

Ŵ1

≤ 1 − 1
m

+
1
m

min{n, m}

= 1 +
min{n, m} − 1

m
.

Since the instance 〈w, c〉 was chosen arbitrarily, it follows that QCR ≤ 1 + min{n, m} − 1
m , and

the proof of the upper bound is complete.
We continue to prove the lower bound. Fix n = m. Set wi = 1 for all users i ∈ [n].

Then, clearly, QSC(w, c,F) = W1 + 2
m W2 = m · 12 + 2

m
m(m − 1)

2 · 1 = 2m − 1. Moreover,

QOPT(w, c) = m · 12 = m. Thus, QCR ≥ QSC(w, c,F)
QOPT(w, c) = 2 − 1

m , as needed.

Note that since n ≥ 2 and m ≥ 2, the tight bound of 1 + min{n, m} − 1
m is at least 3

2 and
strictly less than 2.

5.2.2 Identical Users and Identical Links

We prove:

Theorem 5.4 Consider the case of identical users and identical links. Then,

QCR ≤ 1 + min
{

m − 1
n

,
n − 1

m

}
.

Proof: Consider any arbitrary instance 〈w, c〉 with an associated Nash equilibrium P. The-

orem 4.8 and Corollary 4.6 imply that QSC(w, c,P) ≤ n(n + m − 1)
m . Since QOPT(w, c) ≥
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n max
{
1, n

m
}
, it follows that

QSC(w, c,P)
QOPT(w, c)

≤ n + m − 1
m

min
{

1,
m

n

}
= (n + m − 1) min

{
1
n

,
1
m

}
= min

{
1 +

m − 1
n

, 1 +
n − 1

m

}
= 1 + min

{
m − 1

n
,
n − 1

m

}
,

as needed.

A simple case analysis on the relation between n and m reveals that for all m ≥ 2 and n ≥ 2,

min
{

m − 1
n , n − 1

m

}
+ max

{
1
n, 1

m

}
≤ min{n, m} − 1

m . This implies that the upper bound in
Theorem 5.4, for the case of identical users and identical links, not only applies to all (mixed)
Nash equilibria but it is no worse than the tight bound in Theorem 5.3, for the case of identical
links, which applies only to the fully mixed Nash equilibrium. So, intuitively, Theorems 5.3
and 5.4 together suggest that for the case of identical links, considering arbitrary users but
restricting to the fully mixed Nash equilibrium may have a more severe influence on Quadratic
Coordination Ratio than considering all mixed Nash equilibria but restricting to identical users.

6 Epilogue

6.1 Summary

We have presented a new, potentially rich model for selfish routing over non-cooperative net-
works as an interesting hybridization of the two prevailing models for selfish routing, namely the
KP model [26] and the W model [36]. Within this model, we focused on certain algorithmic and
combinatorial properties of Nash equilibria; we also introduced and studied Quadratic Social
Cost and Quadratic Coordination Ratio as interesting variants of the well studied Social Cost
and Coordination Ratio, respectively, from the KP model [26].

Most interestingly, we presented a collection of tight bounds on Quadratic Coordination
Ratio for our model; these are the first known constant (or bounded by a constant) bounds
(independent of the number of users and the number of links) for models with unsplittable
traffics. Some of our proof techniques highlight several interesting transformations of instances
(user traffics and link capacities), which could be useful for other applications.
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6.2 Subsequent Work

Some subsequent work has touched issues similar to those addressed in this work.

• Gairing et al. [22] introduce and study a discrete routing game as yet another hybridization
of the KP model and the W model. In their model, the latency on a link is determined by
an arbitrary, non-decreasing, convex function; in turn, the latency defines the Expected
Individual Cost for a user (in the same way as in the KP model). However, the Social
Cost is taken to be the sum of the Expected Individual Costs (as in the W model). When
users are identical and latency functions are linear, this discrete routing game reduces
to the special case of identical users for the model studied in this paper. We note that
the set of Nash equilibria for the model of Gairing et al. [22] (defined through arbitrary,
convex latency functions) is (in general) different from the set of Nash equilibria for the
model in this paper (which coincides with the set of Nash equilibria for the KP model).

The following results in the work of Gairing et al. [22] are related to the model studied in
this paper; some of them, although more general, become less tight than corresponding
results in this paper for the special cases we considered.

– Gairing et al. [22, Theorem 1] prove that the fully mixed Nash equilibrium (when
it exists) is the worst-case Nash equilibrium for the case of identical users in their
model. This extends our Theorem 4.8 to the case of links with arbitrary, convex
latency functions.

– For the case of identical users and identical links with latency functions f(x) = xd,
where d ≥ 1, Gairing et al. [22, Theorem 5] prove a tight bound of Bd+1, the (d+1)-
th Bell number, on Coordination Ratio (for their model). For d = 1, this implies an
upper bound of B2 = 2 on Quadratic Coordination Ratio for the case of identical
users and identical links in our model, which applies to all (mixed) Nash equilibria.
Theorem 5.4 in this work provides a slightly better upper bound.

– For the case of identical users and arbitrary links with polynomial latency functions
of maximum degree d, Gairing et al. [22, Corollary 1] prove an upper bound of d + 1
on Coordination Ratio, restricted to pure Nash equilibria. For d = 1, this implies
an upper bound of 2 on Quadratic Coordination Ratio for the case of identical users
and identical links in our model, restricted to pure Nash equilibria. Theorem 5.1
provides a significantly better bound (43).

• Finally, Gairing et al. [20] introduce and study yet another hybridization of the KP model
and the W model. In their model, the latency on a link is a linear function of load on
the link (as in both the KP model and the model studied in this paper). However, a so
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called Polynomial Social Cost is adopted that extends Quadratic Social Cost to arbitrary
degrees. In turn, this yields Polynomial Coordination Ratio. Gairing et al. [20] only
consider the case of identical users and identical links. For this case, they present a
collection of upper bounds on Polynomial Coordination Ratio.

• Two recent papers [4, 9] make significant progress towards determining the Coordina-
tion Ratio in the more general, related contexts of congestion games [33] and weighted
congestion games [30].

– Awerbuch et al. [4] consider multicommodity weighted network congestion games [19]
in general networks with linear latency functions; they study the Coordination Ratio
with respect to total latency, which coincides with our Quadratic Coordination Ra-
tio. Thus, our model can be cast as the special case of the model in [4] with a single
commodity and a parallel links network. Awerbuch et al. [4] prove that the Coordi-

nation Ratio is precisely 3 +
√

5
2 ≈ 2.618 in the general case, but, restricted to pure

Nash equilibria and identical users, it reduces to 5
2. Both bounds clearly apply as

upper bounds to our model as well, but not as lower bounds since the constructions
employed in [4] for the lower bounds use a multicommodity network different from
the parallel links network. Moreover, Theorem 5.1 implies that the 5

2 bound is not

tight for our model; the tightness of the 3 +
√

5
2 bound for our model is posed as an

open problem.

– Christodoulou and Koutsoupias [9] consider general unweighted congestion games,
both single-commodity and multicommodity, with linear cost functions; they study
the Coordination Ratio with respect to both the sum of Individual Costs and the
maximum Individual Cost, the latter coinciding with our Quadratic Coordination
Ratio (in the case of identical users). For single-commodity congestion games and
pure Nash equilibria, Christodoulou and Koutsoupias [9] prove a tight bound of
5n − 2
2n + 1 on Coordination Ratio, which is strictly less than the cooresponding (tight)

bound of 5
2 shown by Awerbuch et al. [4] for multicommodity networks, pure Nash

equilibria and identical users. This bound clearly applies as an upper bound to our
model as well, but not as a lower bound since the construction employed in [9] for the
lower bound uses a congestion game other than the parallel links network. Again,
Theorem 5.1 implies that this bound is not tight for our model. Christodoulou and
Koutsoupias [9] prove independently the same tight bound of 5

2 on Coordination
Ratio for multicommodity congestion games with identical users and for pure Nash
equilibria, and similar bounds on Coordination Ratio as the maximum Individual
Cost (for both single-commodity and multicommodity congestion games).
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6.3 Open Problems

We conclude this article with a collection of questions that naturally pose themselves within
the new model for selfish routing introduced in this work.

1. What is the time complexity of computing Quadratic Social Cost of an arbitrary Nash
equilibrium? Proposition 4.1 provides a polynomial algorithm with time complexity
O(mn) for any arbitrary assignment. Is this optimal? (Lower bounds are totally missing.)
Can this be improved for Nash equilibria?

2. What is the time complexity of deciding optimality (with respect to Quadratic Social
Cost) for a given pure assignment? Proposition 3.2 implies an O(n + m2) upper bound
for the case of identical users. Is there a polynomial upper bound for the general case?

3. Prove the Quadratic Fully Mixed Nash Equilibrium Conjecture (Conjecture 4.1).

4. What is the value of Quadratic Coordination Ratio, when restricted to pure Nash equi-
libria, for the new model? Theorems 5.1 and 5.2 consider separately the two cases of
identical links and identical users. It is challenging to merge the two separate proofs for
the two special cases into one for the general case (restricted to pure Nash equilibria).

(An upper bound of 3 +
√

5
2 follows from the recent works [4, 9].)

5. What is the value of Quadratic Coordination Ratio when all Nash equilibria are consid-

ered? (Again, the upper bound of 3 +
√

5
2 from [4, 9] applies here as well.)
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