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Abstract

The s�session problem is studied in asynchronous and semi�synchronous networks� Processes

are located at the nodes of an undirected graph G and communicate by sending messages

along links that correspond to the edges of G� A session is a part of an execution in which

each process takes at least one step� an algorithm for the s�session problem guarantees the

existence of at least s disjoint sessions� The existence of many sessions guarantees a degree of

interleaving which is necessary for certain computations� It is assumed that the �real� time for

message delivery is at most d� In the asynchronous model it is assumed that the time between

any two consecutive steps of any process is in the interval ��� ��� in the semi�synchronous model

the time between any two consecutive steps of any process is in the interval �c� �� for some c

such that � � c � �	 the synchronous model being the special case where c 
 �� All processes

are initially synchronized and take a step at time ��

For the asynchronous model	 an upper bound of diam�G��d� ���s� �� and a lower bound

of diam�G�d�s� �� are presented� diam�G� is the diameter of G� For the semi�synchronous

model	 an upper bound of � � minfb�c c � �� diam�G��d� ��g�s � �� is presented� The main

result of the paper is a lower bound of ��minfb �
�cc� diam�G�dg�s� �� for the time complexity

of any semi�synchronous algorithm for the s�session problem	 under the assumption that d �
d

minfb���cc�diam�G�dg � �� These results imply a time separation between semi�synchronous �in

particular	 synchronous� and asynchronous networks� Similar results are proved for the case

where delays are not uniform�



� Introduction

Most distributed systems are based on a communication network 
 a collection of n processes

arranged at the nodes of an undirected graph G and communicating by sending messages across

links of this graph� Central to the programming of distributed systems are synchronization

problems	 where a process is required to guarantee that all processes have performed a partic�

ular set of steps� Naturally	 the timing information available to processes has critical impact

on the time complexity of synchronization�

Arjomandi	 Fischer and Lynch ����� introduced the session problem to study the impact of

timing information on the time complexity of synchronization� Roughly speaking	 a session

is a sequence of events that contains at least one step by each process� An algorithm for the

s�session problem guarantees that each execution of the algorithm includes at least s disjoint

sessions�

The session problem is an abstraction of the synchronization needed for the execution of

some tasks that arise in a distributed system	 where separate components are each responsible

for performing a small part of a computation� Consider	 for example	 a system which solves a

set of equations by successive relaxation	 where every process holds part of the data �cf� �����

Interleaving of steps by di�erent processes is necessary in order to ensure that a correct value

was computed	 since it implies su�cient interaction among the intermediate values computed

by the processes� Any algorithm which ensures that su�cient interleaving has occurred also

solves the s�session problem� The session problem is also an abstraction of some problems in

real�time computing which involve synchronization of several computer system components	 in

order that they cooperate in performing a task involving real�world components� For example	

multiple robots might cooperate to build a car on an assembly line	 with each robot responsible

for assembling a small piece of the machinery� Interleaving of assembly actions by di�erent

robots is necessary to ensure that pieces are assembled in the right order� a robot should not put

the next item on the assembly line before all robots have completed a particular set of assembly

actions making it possible for the item to ��t in�� Clearly	 any algorithm which ensures that

su�cient interleaving has occurred also solves the s�session problem� Thus	 the di�culty of

solving the s�session problem re�ects those of implementing the successive relaxation method

and building the car on the assembly line�

Arjomandi	 Fischer and Lynch ����� assume that processes communicate via shared variables

and the time complexity of the session problem was studied in synchronous and asynchronous

models� Informally	 in a synchronous system	 processes operate in lock�step	 taking steps
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simultaneously	 while in an asynchronous system	 processes work at completely independent

rates and have no way to estimate time� The results of Arjomandi	 Fischer and Lynch �����

show that there is a signi�cant gap between the time complexities of solving the session problem

in the synchronous and the asynchronous models�

In reality	 however	 there is an important middle ground between the synchronous and the

asynchronous models of computation� in most distributed systems	 processes operate neither

at lock�step nor at a completely independent rate� For example	 processes may have access to

inaccurate clocks that operate at approximately	 but not exactly	 the same rate� We model

these semi�synchronous systems by assuming that there exist a lower and an upper bound on

processes� step time that enable processes to estimate time�

Following Arjomandi	 Fischer and Lynch �����	 we address the cost of synchronization in

semi�synchronous and asynchronous communication networks by presenting upper and lower

bounds for the time complexity of solving the s�session problem�

Informally	 the time complexity of an algorithm is the maximal time	 over all executions	

until every process stops executing the algorithm� The following timing assumptions are made

on the system� Messages sent over any communication link incur a delay in the range ��� d�	

where d � � is a known constant� In the asynchronous model	 processes� step time is in the

range ��� ��� in the semi�synchronous model	 processes� step time is in the range �c� ��	 for some

parameter c such that � � c � ��� Processes are initially synchronized and take a step at time

��

We start with upper bounds� The �rst algorithm relies on explicit communication to

ensure that the needed steps have occurred and does not use any timing information� In

the asynchronous model	 this algorithm has time complexity diam�G��d � ���s � ��	 where

the diameter	 diam�G�	 of an undirected graph G is the maximum distance between any two

nodes� In the semi�synchronous model	 this algorithm can be improved to take advantage of the

initial synchronization and achieve a time complexity of ��diam�G��d����s���� The second

algorithm does not use any communication and relies only on timing information� it works only

in the semi�synchronous model� The time complexity of this algorithm is �� �b�c c� ���s� ���

These algorithms can be combined to yield a semi�synchronous algorithm for the s�session

problem whose time complexity is � � minfb�c c� �� diam�G��d� ��g�s� ���

We then present lower bounds� For the asynchronous model	 we prove an almost matching

lower bound of diam�G�d�s � �� on the time complexity of any algorithm for the s�session

�The synchronous model is a special case of the semi�synchronous model where c � ��
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problem� For the semi�synchronous model	 we prove two lower bounds� We �rst show a

simple lower bound of b�c �s � ��c for the case where no communication is used� We then

present a lower bound of � � minfb �
�cc� diam�G�dg�s � �� for the time complexity of any

semi�synchronous algorithm for the s�session problem� the proof relies on the assumption that

d � d
minfb���cc�diam�G�dg � ��

These bounds extend in a straightforward way to the case where delays on the communi�

cation links of G 
 �V�E� are not uniform� That is	 for every communication link �i� j� � E	

the delivery time for a message sent over �i� j� is in the interval ��� d�i� j�� for some �xed d�i� j�	

� � d�i� j����

For appropriate values of the various parameters	 our results imply a time separation be�

tween semi�synchronous �in particular	 synchronous� and asynchronous networks� The lower

bound for the semi�synchronous model shows the inherent limitations on using timing infor�

mation� In addition	 it can also be used to derive a lower bound of � � diam�G�d�s� �� for

a model in which processes� step time is in the range ��� �� �rather than in ��� ��	 as in the

asynchronous model�� This is equivalent to requiring that two steps by the same process may

not occur at the same time�� Fix some c� � � such that b �
�c� c � diam�G�d	 and use the

proof of the lower bound for the model where processes� step time is in the range �c�� ��� since

�c�� �� � ��� ��	 the claim follows� This implies the �rst time separation between this model

and the synchronous model� �The proof in ��� relies heavily on the ability to schedule many

steps by the same process at the same time�� Our �rst algorithm for the semi�synchronous

model only requires that two steps by the same process do not occur at the same time� This

implies that the almost matching upper bound of �� diam�G��d� ���s� �� holds also for the

asynchronous model where processes� step time is in the range ��� ���

The lower bounds presented in this paper use the same general approach as in ���� However	

since we assume processes communicate by sending messages while ��� assumes processes com�

municate via shared memory	 the precise details di�er substantially� The lower bound proof

in ��� uses fan�in arguments	 while our lower bounds are based on information propagation ar�

guments using long delays of messages	 combined with appropriate selection of processes and

careful timing arguments� Our asynchronous lower bound is based and improves on a result

of Lynch ����� showing a lower bound of rad�G�d�s� ����

Awerbuch ����� introduced the concept of a synchronizer as a way to translate algorithms

�We remark that this is the more common way of measuring time in an asynchronous system �e�g�� ������
�The radius� rad�G� of G is the minimum� over all nodes in V of the maximum distance from that node to

any other node in V � For any undirected graph G� rad�G� � diam�G� � 	rad�G��
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designed for synchronous networks to asynchronous networks� Although the results of ���

may suggest that any synchronous network algorithm can be translated into an asynchronous

algorithm with constant time overhead	 our results imply that this is not the case� for some

values of the parameters	 any translation of a semi�synchronous �in particular	 synchronous�

algorithm for the s�session problem to an asynchronous algorithm must incur a non�constant

time overhead�

The rest of this paper is organized as follows� Section � presents the system model	 de�nes

the session problem and introduces some notation� Section � includes our upper bounds for

both models	 while Section � includes our lower bounds for both models� In Section �	 we

consider the non�uniform case and state the corresponding upper and lower bounds� We

conclude	 in Section �	 with a discussion of the results and some open problems�

� De�nitions

In this section	 we present the de�nitions for the underlying formal model	� de�ne what it

means for an algorithm to solve the s�session problem and introduce some notation�

��� The System Model

A system consists of n processes p�� � � � � pn� Processes are located at the nodes of a graph

G 
 �V�E�	 where V 
 �n�� For simplicity	 we identify processes with the nodes they are

located at and we refer to nodes and processes interchangeably� Each process pi is modeled as

a �possibly in�nite� state machine with state set Qi� The state set Qi contains a distinguished

initial state q��i� The state set Qi also includes a subset Ii of idle states� we assume q��i �� Ii�

We assume that any state of pi includes a special component	 bu�er i	 which is pi�s message

bu�er� A con�guration is a vector C 
 �q�� � � � � qn� where qi is the local state of pi� denote

statei�C� 
 qi� The initial con�guration is the vector �q���� � � � � q��n�� Processes communicate

by sending messages	 taken from some alphabet M	 to each other� A send action send�j�m�

represents the sending of message m to a neighboring process pj � Let Si denote the set of all

send actions send�j�m� for all m � M and all j � �n�	 such that �i� j� � E� that is	 Si includes

all the send actions possible for pi�

�These de
nitions are similar in style to those in �	� and could be expressed in terms of the general timed

automaton model described in ���� �� 
��
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We model computations of the system as sequences of atomic events	 or simply events�

Each event is either a computation event	 representing a computation step of a single process	

or a delivery event	 representing the delivery of a message to a process� Each computation

event is speci�ed by comp�i� S� for some i � �n�� In the computation step associated with

event comp�i� S�	 the process pi	 based on its local state	 changes its local state and performs

some set S of send actions	 where S is a �nite subset of Si� Each delivery event has the form

del�i�m� for some m � M� In a delivery step associated with the event del�i�m�	 the message

m is added to bu�er i	 pi�s message bu�er��

Each process pi follows a deterministic local algorithm Ai that determines pi�s local compu�

tation	 i�e�	 the messages to be sent and the state transition to be performed� More speci�cally	

for each q � Qi	 Ai�q� 
 �q�� S� where q� is a state and S is a set of send actions� We assume

that once a process enters an idle state	 it will remain in an idle state	 i�e�	 if q is an idle state	

then q� is an idle state� An algorithm �or a protocol� is a sequence A 
 �A�� � � � �An� of local

algorithms�

An execution is an in�nite sequence of alternating con�gurations and events

� 
 C�� ��� C�� � � � � �j� Cj� � � � �

satisfying the following conditions�

�� C� is the initial con�guration�

�� If �j 
 del�i�m�	 then statei�Cj� is obtained by adding m to bu�er i�

�� If �j 
 comp�i� S�	 then statei�Cj� and S are obtained by applying Ai to statei�Cj����

�� If �j involves process i	 then statek�Cj��� 
 statek�Cj� for every k �
 i�

�� For each m � M and each process pi	 let S�i�m� be the set of j such that �j contains

a send�i�m� and let D�i�m� be the set of j such that �j is a delivery event del�i�m��

Then there exists a one�to�one onto mapping �i�m from S�i�m� to D�i�m� such that

�i�m�j� � j for all j � S�i�m��

That is	 in an execution the changes in processes� states are according to the transition function	

only a process which takes a step or to which a message is delivered changes its state	 and

�The system model can be extended to allow arbitrary state change upon message delivery without changing

the results� for clarity of presentation� we chose not to do so�

�



each sending of a message is matched to a later message delivery and each message delivery

to an earlier send� We adopt the convention that �nite pre�xes of an execution end with a

con�guration	 and denote the last con�guration in a �nite execution pre�x � by last���� We

say that �j 
 comp�i� S� is a non�idle step of the execution if statei�Cj��� �� Ii	 i�e�	 it is taken

from a non�idle state�

A timed event is a pair �t� ��	 where t	 the �time�	 is a nonnegative real number	 and �

is an event� A timed sequence is an in�nite sequence of alternating con�gurations and timed

events

� 
 C�� �t�� ���� C�� � � � � �tj � �j�� Cj� � � � �

where the times are nondecreasing and unbounded�

Timed executions in this model are de�ned as follows� Fix real numbers c and d	 where

� � c � � and � � d � �� Letting � be a timed sequence as above	 we say that � is a timed

execution of A provided that the following all hold�

�� C�� ��� C�� � � � � �j� Cj� � � � is an execution of A�

�� �Synchronous start� There are computation events for all processes with time ��

�� �Upper bound on step time� If the jth timed event is �tj � comp�ij� S��	 then there exists

a k � j with tk � tj � � such that the kth timed event is �tk� comp�ij � S����

�� �Lower bound on step time� If the jth timed event is �tj � comp�ij� S��	 then there does

not exist a k � j with tk � tj � c such that the kth timed event is �tk� comp�ij� S
����

�� �Upper bound on message delivery time� If message m is sent to pi at the jth timed

event	 then there exists k � j such that the kth timed event is the matching delivery

�tk� del�i�m�� �i�e�	 �i�m�j� 
 k� and tk � tj � d�

We say that � is an execution fragment of A if there is an execution �� of A of the form

�� 
 ����� This de�nition is extended to apply to timed executions in the obvious way� For

a �nite execution fragment � 
 C�� �t�� ���� C�� � � � � �tk� �k�� Ck	 we de�ne tstart ��� 
 t� and

tend ��� 
 tk�

The asynchronous model is de�ned by taking c 
 �	 while the semi�synchronous model is

de�ned by taking � � c � �� the synchronous model is a special case of the latter� Note that

the asynchronous model	 as de�ned above	 allows two computation steps of the same process

to occur at the same time �Condition � is vacuous when c 
 ��� We remark that our proofs	 as
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well as the proof in ���	 use this property� If we want to de�ne the more common asynchronous

model	 where a process can have at most one computation step at each time	 we have to replace

Condition � above with�

�Lower bound on step time� If the jth timed event is �tj � comp�ij� S��	 then there

does not exist a k � j with tk 
 tj such that the kth timed event is �tk� comp�ij � S
����

In both models	 we say that a process pi enters an idle state by time t� �in a timed execution

�� if there exists a timed event �tj��� �j��� in � such that tj�� � t�	 �j�� 
 comp�i� S�	 and

statei�Cj� � Ii� We say that a process pi receives the message m by time t� �in a timed

execution �� if	 by time t�	 pi has a computation event that is preceded in � by a delivery event

del�i�m�� For the rest of the paper let D denote d� �� Note that if m is sent to pj at time t	

then pj receives m by time t�D�

��� The Session Problem

An execution fragment C�� ��� C� � � � � �m� Cm is a session if for each i	 i � �n�	 there exists at

least one event �j 
 comp�i� S�	 for some j � �m�	 which is a non�idle step of the underlying

execution� Intuitively	 a session is an execution fragment in which each process takes at least

one non�idle step� An execution � contains s sessions if it can be partitioned into at least s

execution fragments with pairwise disjoint sets of events such that each of them is a session�

These de�nitions are extended to apply to timed executions in the obvious way�

An algorithm solves the s�session problem within time t �onG� if each of its timed executions

� satis�es the following� � contains s sessions and all processes enter an idle state no later

than time t in ��

��� Notation

Consider an undirected graph G 
 �V�E�� For any i� j � V 	 let dist�i� j� be the distance

of i and j in G	 i�e�	 the number of edges in the shortest path in G �from i to j� The

diameter ofG	 diam�G�	 is the maximum distance between any two nodes in V 	 i�e�	 diam�G� 


maxi�j�V dist�i� j��

A node i � V is a peripheral node of G if maxj�V dist�i� j� 
 diam�G�� informally	 a

peripheral node �realizes� the diameter of G� A node j � V is antipodal to a node i � V if

dist�i� j� 
 maxk�V dist�i� k�� informally	 j is a �farthest neighbor� of i in G� Note that if j is

antipodal to a peripheral node then j is peripheral�

�



� Upper Bounds

��� The Asynchronous Model

We start with a simple asynchronous algorithm in which processes communicate in order

to learn about completion of a session before advancing to the next session� Each process

maintains as part of its state a variable that gives its current session number� upon hearing

that every other process has reached its current session	 it increments its session number by one

and noti�es all other processes� Noti�cation is done by sending messages along a shortest�path

tree rooted at it� The process enters an idle state when its session number is set to s� We

prove�

Theorem ��� Let G be any graph� There exists an asynchronous algorithm� Aas� that solves

the s�session problem on G within time diam�G�D�s� ���

Proof� We describe an asynchronous algorithm	 Aas	 that solves the s�session problem on G

within time diam�G�D�s� ��� that is	 in any execution of Aas there are at least s sessions and

all processes enter an idle state no later than diam�G�D�s� ��� The algorithm is described

here informally� this description can be easily translated into a state transition function�

For each i � �n�	 the state of pi consists of the following components� bu�er 
 a bu�er	 an

unordered set of elements of M	 initially �� session 
 a nonnegative integer	 initially �� The

message alphabet	 M	 consists of the pairs �i� k�	 where i � �n� and � � k � s � �� The initial

state of pi is non�idle�

The algorithm is as follows� Upon taking its �rst computation step	 pi broadcasts �i� ��� If

for all j � �n�	 �j� sessioni� � bu�er i	 pi increments sessioni by �� If sessioni 
 s	 pi enters an

idle state and remains in this state forever� Otherwise	 pi broadcasts �i� sessioni��

We assume that messages from a process are �ooded on a shortest path tree rooted at this

process� That is	 Aas uses a routing algorithm by which	 for any nodes u� v � G	 a message

from u to v is routed through exactly dist�u� v� communication links in G� The details of how

this is done are not discussed here� the reader is referred to	 e�g�	 �����

If sessioni 
 k	 we say that pi is in its kth session� The message �i� k� can be interpreted

as �process i executed a step in the kth session��

We start by showing that in any execution of Aas there are at least s sessions� Fix an

arbitrary timed execution � of Aas� Clearly	 each process pi receives �j� �� for all j � �n� and
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sets sessioni to �� By induction	 it is simple to show that for any k	 � � k � s	 pi sets sessioni

to k in �� For any k	 � � k � s	 de�ne �k to be the longest pre�x of � that does not include

a con�guration in which for some i � �n�	 sessioni � k	 i�e�	 no process has passed its kth

session� Note that �� 
 �	 the empty sequence	 and that for each k	 � � k � s � �	 �k is a

pre�x of �k��� For each k	 � � k � s� �	 let �k be such that �k�� 
 �k�k� let �s be such that

� 
 �s�s�

Lemma ��� For each k� � � k � s � �� there is a session in �k�

Proof� Let pi be a process which sets sessioni to k � �� By de�nition	 this event is not

in �k� By the algorithm	 this implies that for each j	 j � �n� and j �
 i	 pi has received a

�j� k� message� However	 by de�nition	 no process pj has sessionj � k in �k� Thus	 by the

algorithm	 no process pj sends a �j� k� message in �k � Hence	 there is a step by every process	

and	 therefore	 a session in �k�

In addition	 there is a session in �s	 since	 for every i � �n�	 a computation step is included

in �s at which pi sets sessioni to s� �Note that	 by the de�nition of �s	 such a step cannot

be included in �s�� This implies that there are at least s sessions in �� Since � was chosen

arbitrarily	 this implies the correctness of Aas� We now analyze the time complexity of Aas�

Informally	 the next de�nition captures the latest time at which the kth session can be

completed� For each k	 � � k � s	 de�ne

Tk 
 max
i�V

ft � pi sets sessioni to k at time t in �g �

By the algorithm	 T� 
 �� We have�

Lemma ��� For each k� � � k � s� Tk�� � Tk � diam�G�D�

Proof� Fix some process pi	 and let t be the time at which pi broadcasts �i� k�� note that

by de�nition t � Tk� Clearly	 for every process pj 	 the delivery event del�j� �i� k��	 delivering

the message �i� k� to pj 	 will occur at a time � t � �diam�G� � ��D � d� Thus	 by time

t � diam�G�D every process has a computation step in which �i� k� is in the bu�er� Thus	 by

time Tk � diam�G�D every process has a computation step in which �i� k� is in the bu�er	 for

any i � �n�� By the algorithm	 at this step the process sets its session variable to k � �� The

claim follows�

Since T� 
 �	 it follows that Ts � diam�G�D�s� ��� Hence	 every process enters an idle

state after setting session to s	 no later than time diam�G�D�s � ��� Thus	 Aas solves the

s�session problem on G within time diam�G�D�s� ���
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��� The Semi�Synchronous Model

In the semi�synchronous model we can slightly improve Aas by taking advantage of the available

initial synchronization� speci�cally	 each process operates exactly as in Aas	 except that it does

not wait to hear that every other process has completed its �rst session	 but passes directly to

the second one upon taking its second step� We prove�

Theorem ��� Let G be any graph� There exists a semi�synchronous algorithm� Ass
� � that

solves the s�session problem on G within time � � diam�G�D�s� ���

Proof� We describe a semi�synchronous algorithm	 Ass
� which is very similar to Aas and

solves the s�session problem on G within time ��diam�G�D�s���� For each i � �n�	 the state

of pi consists of the following components� bu�er 
 a bu�er	 an unordered set of elements of

M	 initially �� session
 a nonnegative integer	 initially �� The message alphabet	 M	 consists

of the pairs �i� k� where i � �n� and � � k � s� �� The initial state of pi is non�idle�

Upon taking its second computation step	 pi increments sessioni to � and broadcasts �i� ���

If for all j � �n�	 �j� sessioni� � bu�er i	 pi increments sessioni by �� If sessioni 
 s	 pi enters

an idle state and remains in this state forever� Otherwise	 pi broadcasts �i� sessioni�� As in

Aas	 we assume that messages from a process are �ooded on a shortest path tree rooted at

this process� We say that pi is in its kth session if sessioni 
 k and we interpret the message

�i� k� as �process i executed a step in the kth session��

We start by showing that in any execution of Ass
� there are at least s sessions� Fix an

arbitrary execution � of Ass
� � For each k	 � � k � s	 de�ne �k to be the longest pre�x of �

that does not include a con�guration in which	 for some i � �n�	 sessioni � k	 i�e�	 no process

has passed its kth session� Note that �� 
 �	 and that for each k	 � � k � s� �	 �k is a pre�x

of �k��� For each k	 � � k � s � �	 let �k be such that �k�� 
 �k�k� let �s be such that

� 
 �s�s�

Lemma ��� There is a session in ���

Proof� Note that �� 
 ��	 since �� 
 �� For every process pi	 the steps of pi that are

included in �� are exactly those that occur at time �� Since every process has a step at time

�	 there is a session in �� 
 ���

As in Lemma ���	 we can prove�

��



Lemma ��� For each k� � � k � s � �� there is a session in �k�

In addition	 there is a session in �s� This implies that there are at least s sessions in ��

Since � was chosen arbitrarily	 this implies the correctness of Ass
� �

We now analyze the time complexity of Ass
� � For each k	 � � k � s	 we de�ne�

Tk 
 max
i�V

ft � pi sets sessioni to k at time t in �g �

Note that T� � �� In addition	 as in Lemma ���	 we have�

Lemma ��� For each k� � � k � s� Tk�� � Tk � diam�G�D�

Since T� � �	 it follows that Ts � � � diam�G�D�s � ��� Every process enters an idle

state after setting session to s	 no later than time �� diam�G�D�s� ��� Thus	 Ass
� solves the

s�session problem on G within time � � diam�G�D�s� ���

We next show that the timing information available in the semi�synchronous model can

be exploited to obtain a bound which is sometimes better than the previous bound� This

algorithm uses no communication� intuitively	 this means that no process state transition can

result in a send action� Formally	 an algorithm A uses no communication if for every i	 i � �n�	

for every q � Qi	 Ai�q� 
 �q�� �� for some q� � Qi� We prove�

Theorem ��	 Let G be any graph� There exists a semi�synchronous algorithm� Ass
� � which

solves the s�session problem on G within time � � �b�cc� ���s� ��� Furthermore� Ass
� uses no

communication�

Proof� We describe a semi�synchronous algorithm	 Ass
� 	 which solves the s�session problem

on G within time ���b�c c����s� ��� For each i � �n�	 the state of pi consists of a counter	 an

integer	 initially ��� The initial state of pi is non�idle� At each computation event	 pi increments

counteri� pi enters an idle state when counteri is equal to � � �b�cc � ���s� ���

We start by showing that in any execution of Ass
� there are at least s sessions� Consider an

arbitrary execution � of Ass
� � We partition � into execution fragments	 � 
 ���� � � ��s��	 such

that� �i� �� consists only of the computation steps at time �	 and �ii� for each k	 � � k � s��	

�� � � ��k is the shortest pre�x of � that includes a con�guration in which	 for some i � �n�	

counter i 
 k�b�cc� ��� We have�
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Lemma ��
 For each k� � � k � s � �� there is a session in �k�

Proof� Let pi be the �rst process to set counteri to k�b
�
c c� �� in �� By the de�nition of �k	

the steps at which counteri is equal to �k � ���b�c c� �� � j	 for � � j � b�c c� �	 are included

in �k � Thus	 there are at least b�c c � � steps by pi in �k � These steps take time at least

c�b�cc � �� � c�c 
 �� thus	 there exists a computation step by every process and	 therefore	 a

session in �k�

In addition	 there is a session in �� since every process takes a step at time ��

There is also a session in �s��	 since	 by the de�nition of �s��	 each process sets its counter

to � � �s � ���b�cc � �� at its last non�idle step� Together with Lemma ���	 this implies that

there are at least s sessions in any timed execution of Ass
� �

Each process will enter an idle state no later than time � � �b�cc � ���s� ��	 since for any

process the time between successive computation steps is at most �� Thus	 Ass
� solves the

s�session problem within time � � �b�c c� ���s� ���

When d and diam�G� are known	 it is possible to calculate in advance which of the algo�

rithms of Theorems ��� and ��� is faster	 and run it� Furthermore	 even if d and diam�G� are

not known	 it is possible to run the algorithms of Theorems ��� and ��� �side by side	� halting

when the �rst of them does� In both cases we get�

Theorem ���� Let G be any graph� There exists a semi�synchronous algorithm� Ass� which

solves the s�session problem on G within time � � minfb�cc � �� diam�G�Dg�s� ���

� Lower Bounds

In all our lower bounds we use an in�nite timed execution in which processes take steps in

round�robin order	 starting with p�	 with step time close to �	 and all messages are delivered

after exactly d delay� It is called a slow� synchronous timed execution�

��� The Asynchronous Model

We start by showing that for the asynchronous model	 the algorithm presented in Theorem ���

is optimal� The proof of the following theorem is based on delaying information propagation

��



and then perturbing an execution to obtain an execution of the algorithm which does not

include s sessions�

Theorem ��� Let G be any graph� There does not exist an asynchronous algorithm which

solves the s�session problem on G within time strictly less than diam�G�d�s� ���

Proof� Assume	 by way of contradiction	 that there exists an asynchronous algorithm	 A	

which solves the s�session problem on G within time strictly less than diam�G�d�s� ��� We

construct a timed execution of A which does not include s sessions�

The following is an informal outline of the proof� We start with a slow	 synchronous timed

execution of A and partition it into s�� execution fragments each of which is completed within

time � diam�G�d� Since communication is slow	 there is no communication between any pair of

antipodal nodes during a fragment� By �retiming�	 we will perturb each fragment to get a new

execution fragment in which there is a �fast� peripheral node which takes all of its steps before

a �slow� antipodal node takes any of its steps� Our construction will have the �slow� node of

each execution fragment be identical to the �fast� node of the next execution fragment� In each

execution fragment	 a session can be completed as soon as the �slow� peripheral node takes its

�rst computation step� since the �fast� peripheral node does not take any more computation

steps	 no more sessions can be completed in this execution fragment� This will guarantee that

at most one session is contained in each execution fragment� thus	 the total number of sessions

in the �retimed� execution is at most s � �	 contradicting the correctness of A�

We now present the details of the formal proof�

Pick some 	 such that � � 	 � �diam�G�d�s� �� � ����� Consider a slow	 synchronous

timed execution 
 
 ��� of A	 with step time � � 		 where � is the shortest pre�x of 
 such

that all processes are in an idle state in last��� and �� is the remaining part of 
� We perturb

� and �� to obtain timed sequences � and ��	 respectively	 such that ��� is a timed execution

that does not include s sessions��

We �rst show how to modify � to obtain �� By assumption	 tend ��� � diam�G�d�s� ���

Write � 
 ���� � � ��s��	 where �� 
 � and for each k	 � � k � s� �	 tend ��k�� tend ��k��� �

diam�G�d�� � 	� � diam�G�d� �We adopt the convention that tend ���� 
 ��� For some

sequence i�� � � � � is�� of peripheral nodes	 we construct from each execution fragment �k an

execution fragment �k 
 �k�k	 such that�

��� �k contains no computation step of pik�� 	 and

��



��� �k contains no computation step of pik �

In this construction	 ik is the �fast� node which takes all of its steps in the execution

fragment �k	 before the �slow� node ik�� takes any of its steps� �All the steps of ik are in �k ��

Our construction uses peripheral nodes since they maximize the time to transfer information

to other nodes	 which is	 roughly	 diam�G�d� In particular	 ik�� will be antipodal to ik�

We now show	 for each k	 � � k � s � �	 how to construct �k	 by induction on k� For the

base case	 let i� be an arbitrary peripheral node of G	 and take �� to be the empty execution�

Assume we have picked i�� � � � � ik�� and constructed ��� � � � � �k��� Let ik be some node that

is antipodal to ik��	 i�e�	 dist�ik��� ik� 
 diam�G�� note that ik is also peripheral� We now

show how to construct �k�

For any node u	 �k includes all events at u that occur at time � tend ��k����dist�u� ik���d

in �k � �k includes all events at u that occur at time � tend ��k����dist�u� ik���d in �k � Events

at each process occur in the same order as in �k and all occur at time �	 in both �k and �k�

In addition	 ordering of events across di�erent processes that occur at the same time in �k is

preserved within each of �k and �k �

Since

tend ��k��� � dist�ik� ik���d 
 tend ��k��� � diam�G�d � tend ��k� �

and all events at ik occur at time � tend ��k� in �k 	 this implies that all events at ik will appear

in �k� On the other hand	 since

tend ��k��� � dist�ik��� ik���d 
 tend ��k��� �

and all events at ik�� in �k occur at time � tend ��k���	 all events at ik�� in �k will appear in

�k� Thus	 �k 
 �k�k has properties ��� and ��� above�

Let � 
 ���� � � � �s���

By construction	 events at each process pi	 i � �n�	 occur in the same order in � as in

�� Hence	 pi undergoes the same state changes in � as in � and therefore	 statei�last���� 


statei�last�����

We now modify �� to obtain ��� The �rst computation step of any process in �� will occur

at time � and all later computation steps of it are � time unit apart� Any message delivery

event at a process will occur at time d after the corresponding message sending event�

We next establish that ��� is a timed execution of A� We start by showing�

��



Lemma ��� Each receive event is after the corresponding send event in ����

Proof� Consider the message send event �� at node u� which occurs at time t� in ��� and let

�� be the corresponding message receive event at node u� which occurs at time t� in ���� Note

that u� and u� are neighboring processes	 i�e�	 dist�u�� u�� 
 �� Hence	 dist�u�� ik��� � � �

dist�u�� ik���� The only non�trivial case is when �� and �� occur in the same �k	 for some k	

� � k � s� �� We show that the ordering of �� and �� is the same in �k as in �k �

The only case of interest is when �� occurs in �k	 while �� occurs in �k� In this case	

t� � tend ��k��� � dist�u�� ik���d	 while t� � tend ��k��� � dist�u�� ik���d� Then	

t� 
 t� � d

� tend ��k��� � dist�u�� ik���d� d �since �� occurs in �k�


 tend ��k��� � �dist�u�� ik��� � ��d

� tend ��k��� � dist�u�� ik���d �

a contradiction�

All events in � occur at time � and computation steps in �� occur with step time ��

Since there are no lower bounds on either process step time or message delivery time in the

asynchronous model	 we have�

Lemma ��� Lower and upper bounds on step time are preserved in ����

Lemma ��� Lower and upper bounds on message delay time are preserved in ����

To derive a contradiction	 we prove�

Lemma ��� There are at most s� � sessions in ��

Proof� We show	 by induction on k	 that �� � � � �k���k does not contain k sessions	 for � �

k � s� ��

For the base case	 note that	 by construction	 �� 
 � and �� does not include a computation

step of pi� � Thus	 ���� cannot contain one session�

For the induction step	 assume that the claim holds for k � �	 i�e�	 �� � � ��k���k�� does

not contain k � � sessions	 for � � k � s� Hence	 the kth session does not start within

��



�� � � � �k���k��� Since neither �k�� nor �k contains a computation step of pik�� 	 �k���k does

not contain a session� Thus	 �� � � � �k���k does not contain k sessions�

To complete the proof	 note that �s�� does not contain a session since	 by construction	 it

does not contain a computation step of pis���

Thus	 there are strictly less than s sessions in �� however	 in �� no process takes a non�idle

step	 so there cannot be an additional session in ��� A contradiction�

We remark that the general outline of this lower bound proof follows ��	 ��� However	 while

the proofs in ��	 �� use causality arguments to reorder the events in the execution	 our proof

presents an explicit reordering and retiming of the events� We do so because this provides a

basis for the retiming arguments used in the proof of the lower bound for the semi�synchronous

model� Our improvement over ��� is achieved by carefully choosing only peripheral nodes in

the construction of ��

��� The Semi�Synchronous Model

In Section ���	 we have seen two algorithms that solve the s�session problem in the semi�

synchronous model� The �rst of them	 Ass
� 	 solves the s�session problem on G within time

� � diam�G�D�s� ��� Designed for the asynchronous model	 Ass
� has the interesting property

that processes do not use any timing information� Loosely speaking	 the lower bound proved

in Theorem ��� says that if processes have no timing information	 then diam�G�d�s� �� is a

lower bound for any asynchronous algorithm which solves the s�session problem on G�

Recall	 also	 that Ass
� uses no communication	 but relies only on timing information to

achieve an upper bound of � � �b�cc � ���s� ��� We �rst show that this upper bound is close

to optimal in the absence of communication�

Theorem ��� Let G be any graph� There does not exist a semi�synchronous algorithm which

solves the s�session problem on G within time strictly less than b�c �s � ��c and uses no com�

munication�

Proof� Assume	 by way of contradiction	 that there exists a semi�synchronous algorithm	 A	

which solves the s�session problem on G within time strictly less than b�c �s� ��c	 and uses no

communication� We construct a timed execution of A which does not include s sessions�

��



Let � be a slow	 synchronous timed execution of A with step time �� Assume	 without loss

of generality	 that pn is the last process to enter an idle state in �� Let � 
 ���
�	 where ��

includes events at time �	 while �� is the remaining part of �� Let m be the number of non�idle

steps taken by any process in ��� It must be that m � b�c �s� ��c	 since A solves the s�session

problem within time � b�c �s� ��c	 and � is slow�

Now modify �� to get a new timed execution fragment � in which all processes except pn	

operate with fastest step time	 i�e�	 c� This can be done since there are no receive events in ��

In �	 each process but pn enters an idle state at some time � cm � cb�c �s���c � c�c �s��� 


s� �� Thus	 in � pn performs strictly less than s� � steps when all other processes are not in

an idle state� Therefore	 at most s � � sessions can be completed in �� hence	 at most s � �

sessions can be completed in ���� A contradiction�

We show next that communication and timing information cannot be combined to get an

upper bound that is signi�cantly better than the upper bound achieved in Theorem ����� We

prove�

Theorem ��� Let G be any graph and assume that d � d
minfb���cc�diam�G�dg � �� There does

not exist a semi�synchronous algorithm which solves the s�session problem on G within time

strictly less than � �minfb �
�cc� diam�G�dg�s� ���

Proof� Assume	 by way of contradiction	 that there exists a semi�synchronous algorithm	 A	

which solves the s�session problem on Gwithin time strictly less than ��minfb �
�cc� diam�G�dg�s�

��� We construct a timed execution of A which does not include s sessions�

The general structure of our lower bound proof closely follows that of Theorem ���	 though

there are several complications� First	 the early events of the execution	 happening at time � �

and including processes� steps occurring at time �	 are handled separately �unlike the proof

of Theorem ����� Second	 the additional timing requirements placed in the semi�synchronous

model require more careful arguing to show the correctness of the construction�

We start with a slow	 synchronous timed execution of A and partition it into an execution

fragment containing the events at time � and s � � execution fragments each of which is

completed within time � minfb �
�cc� diam�G�dg� Since communication is slow	 there is no

communication between any pair of antipodal nodes during a fragment� Furthermore	 since

the execution is slow	 a process takes	 roughly	 at most �
�c steps	 so it is possible to have these

all steps occur at the same time another process takes only one step� By �retiming�	 we will

��



perturb each fragment to get a new execution fragment in which there is a �fast� peripheral

node which takes all of its steps before a �slow� antipodal node takes any of its steps� The part

of the proof that shows that the �retimed� execution preserves the timing constraints of the

semi�synchronous model requires substantially more careful arguments than the corresponding

part in the proof of Theorem ���� In particular	 we need to choose the execution fragments

to take time � b �
�cc	 so that it will be possible for a process not to have a computation step

during a large part of the execution fragment� Our construction will have the �slow� node

of each execution fragment be identical to the �fast� node of the next execution fragment�

Arguing as in Theorem ���	 this will guarantee that at most one session is contained in each

execution fragment� Thus	 the total number of sessions in the �retimed� execution is at most

s� �	 contradicting the correctness of A�

We now present the details of the formal proof�

Denote b 
 minfb �
�cc� diam�G�dg�

If b � �	 then the lower bound we are trying to prove is � � � ��s � �� 
 s � �� Since s

steps of each process are necessary if s sessions are to occur and they can occur � time unit

apart	 it follows that s� � is a lower bound� Thus	 we assume	 without loss of generality	 that

b � �� It follows that c � �
� � Note that	 by assumption	 d � d

b � �	 i�e�	 d � �b
b�� � Since b � �	

it follows that d � ��

Let 
 be a slow	 synchronous timed execution of A with step time �� Assume 
 
 ����
�	

where �� contains only events that occur at time � �	 and ��� is the shortest pre�x of 


such that all processes are in an idle state in last�����	 and �� is the remaining part of 
�

Denote T 
 tend ������ Since 
 is slow and s steps of each process are necessary to guarantee

s sessions	 T � s � �� Since A solves the s�session problem within time strictly less than

� � b�s� ��	 it follows that T � � � b�s� ��� Note that	 by construction	 tstart��� 
 �� Thus	

tend ���� tstart ��� 
 T �� � b�s���	 and hence dT��b e � �s���� Denote s� 
 dT��b e� it follows

that s� � �s� ���

We write � 
 ���� � � ��s� 	 where�

� For each k	 � � k � s�	 �k contains all events that occur at time t	 where � � �k� ��b �

t � � � kb	 and

� �s� contains all events occurring at time t	 where � � �s� � ��b � t � T �

That is	 we partition � into execution fragments	 each taking time � b�

��



Figure � should appear here�

Figure �� The timed execution ����
�

Figure � depicts the timed execution ����
�� Each horizontal line represents events hap�

pening at one process� We use the symbol � to mark non�idle process steps� similarly	 we use

the symbol 	 to mark idle process steps� Arrows show typical message delay times between

pairs of processes� dashed vertical lines mark time points that are used in the proof�

We reorder and retime events in � to obtain a timed sequence � and reorder and retime

events in �� to obtain a timed sequence ��	 such that ����
� is a timed execution of A that does

not include s sessions�

We �rst show how to modify � to obtain an execution fragment � 
 ���� � � � �s� that

includes at most s� � s � � sessions� For some sequence i�� � � � � is� of peripheral nodes	 we

construct from each execution fragment �k an execution fragment �k 
 �k�k 	 such that�

��� �k contains no computation step of pik�� 	 and

��� �k contains no computation step of pik �

Like in the proof of Theorem ���	 in this construction	 ik�� is the �fast� node which takes

all its steps in the execution fragment �k	 before the �slow� node ik takes any of its steps� �All

the steps of ik are in �k �� Our construction uses peripheral nodes since they maximize the

time to transfer information to other nodes	 which is	 roughly	 diam�G�d� In particular	 ik��

will be antipodal to ik�

For each k	 � � k � s�	 we show how to construct �k inductively� For the base case	 let i�

be an arbitrary peripheral node of G�

Assume we have picked i�� � � � � ik�� and constructed ��� � � � � �k��� Let ik be some node

that is antipodal to ik��	 i�e�	 dist�ik��� ik� 
 diam�G�� note that ik is also peripheral� We

now show how to construct �k� For any node u	 �k includes all events at u that occur at

time � � � �k � ��b � dist�u� ik���d in �k� �k includes all events at u that occur at time

� � � �k � ��b� dist�u� ik���d in �k� Events at each process occur in the same order as in �k

and all occur at step time of c	 in both �k and �k� In addition	 ordering of events that occur

at the same time	 in di�erent processes	 in �k is preserved within each of �k and �k � Since

�� �k� ��b�dist�ik� ik���d 
 ���k� ��b�diam�G�d� ���k� ��b� b 
 ��kb � tend ��k� �

��



Figure � should appear here�

Figure �� The timed execution ����
�

and all events at ik occur at time � tend ��k� in �k 	 this implies that all events at ik will appear

in �k� On the other hand	 since

� � �k � ��b� dist�ik��� ik���d 
 �� �k � ��b � tstart��k� �

and all events at ik�� in �k occur at time � tstart��k�	 all events at ik�� in �k will appear in

�k� Thus	 �k 
 �k�k has properties ��� and ��� above�

To complete our construction	 we assign times to events in �k� Let tstart ���� 
 c� The

�rst and last computation steps of ik in �k occur at times tstart��k� 
 tend ��k��� � c and

tend ��k�	 respectively� Similarly	 the �rst and last computation steps of ik�� in �k occur at

times tstart��k� 
 tend ��k� and tend ��k�	 respectively� Steps are taken c time units apart� For

each process pj 	 we schedule each computation step �j of pj in �k to occur simultaneously

with a computation step	 �ik 	 of ik which is such that �j and �ik occurred at the same time in

�k� Similarly	 for each process pj 	 we schedule each computation step �j of pj in �k to occur

simultaneously with a computation step	 �ik�� 	 of ik�� which is such that �j and �ik�� occurred

at the same time in �k � Any message delivery event at a process will occur right after and at

exactly the same time as the computation step of the process which immediately precedes the

delivery event in �k � We shall shortly show that assigning times in this manner is consistent

with the requirements from a timed execution�

We now modify �� to obtain ��� The �rst computation step of any process in �� will occur

at time c after its last computation step in � and all later computation steps of it will occur

at c time units apart in ��� Any message delivery event at a process will occur at time d after

the corresponding message send event�

Figure � depicts the timed execution ����
� using the same conventions as in Figure ��

We remark that what allowed us to �separate� the steps at ik�� �from those at ik in each

of the execution fragments was the assumption that the length of each execution fragment is

less than diam�G�d which is the time needed for a communication between an antipodal pair

of nodes to be established�

We �rst show that ����
� is a timed execution of A� By Lemma ���	 since s� � s � � and

�� contains exactly one session	 we derive a contradiction�

��



By the same arguments as in Lemma ���	 we prove�

Lemma ��	 Each receive event is after the corresponding send event in ����
��

Before showing that the timing constraints are preserved in ����
�	 we prove the following

simple fact�

Claim ��
 ��� For any k� � � k � s� � �� tend ��k���� tend ��k� � �� c�

��� For any k� � � k � s�� tend ��k�� tend ��k��� � �� c�

Proof� We �rst show that for any k	 � � k � s� � �	 tend ��k���� tend ��k� �
�
� 	 and for any

k	 � � k � s�	 tend ��k�� tend ��k� �
�
� � c�

Fix some k	 � � k � s�� By construction	

tstart��k� � � � �k � ��b�

while

tend ��k� � � � kb�

Thus

tend ��k�� tstart��k� � � � kb� �� �k � ��b 
 b � b
�

�c
c�

Let m be the maximum number of steps over all processes that some process takes within �k�

If both tstart��k� and tend��k� are integral	 tend��k�� tstart��k� � b �
�cc� �� then	 since � is

a slow execution	

m � tend��k�� tstart��k� � � � b
�

�c
c �

�

�c
�

If at least one of tstart ��k� and tend��k� is not integral	 then	 since � is a slow execution	

m � dtend ��k�� tstart��k�e � db
�

�c
ce 
 b

�

�c
c �

�

�c
�

Thus	 in any case	 m � �
�c � Let nk be the number of computation steps of process pik�� in

�k and nk�� be the number of computation steps of process pik�� in �k��� �Recall that	 by

construction	 in �k	 pik�� will have all its steps in �k	 while in �k��	 pik�� will have all its steps

in �k���� Thus

tend ��k���� tend ��k� 
 nk��c � mc �
�

�c
c 


�

�
�

��



Also	 since pik�� takes nk steps in �k with the �rst occurring at time tstart��k� 
 tend��k� and

the last occurring at time tend��k� 
 tend��k�	 we have

tend ��k�� tend ��k� 
 �nk � ��c � �m� ��c � �
�

�c
� ��c 


�

�
� c �

Now	 we have

tend ��k���� tend ��k� 
 tend ��k���� tend ��k� � tend ��k�� tend ��k� �
�

�
�

�

�
� c 
 �� c�

which proves ���� Also	

tend ��k�� tend ��k��� 
 tend ��k�� tend ��k� � tend ��k�� tend ��k��� �
�

�
� c�

�

�

 �� c�

which proves ����

We next show�

Lemma ���� Lower and upper bounds on step time are preserved in ����
��

Proof� By construction	 no two computation steps are closer than c in ����
�� so	 the lower

bound on step time is preserved� Note also that the di�erence between consecutive computation

steps of a process is maximized when the process is a peripheral node	 ik	 for some k such that

� � k � s� � �	 that has no computation steps in either �k or �k��� By Claim ������	 this is

less than or equal to ��

To complete the proof that ����
� is a timed execution we show�

Lemma ���� The time between a send event and the corresponding receive event in ����
� is

at most d�

Proof� Let �� be a computation event at node u� which occurs at time t� in ����
�	 in which

a message is sent� let �� be the corresponding delivery event at node u�	 occurring at time t�

in �� Assume �� is scheduled to occur at time t�� and �� occur at time t�� in ����
��

If �� occurs in �� then	 by construction	 t�� � t�� 
 d	 in ����
�� So assume �� and �� occur

in ���� We �rst consider the case where both �� and �� occur in �� Assume �� appears in

�k� and �� appears in �k� 	 where � � k� � k� � s�� Clearly	 in �	 �� appears in �k� and ��

��



appears in �k� � Note that	 by construction	 d 
 t� � t� � �k�� ��b� k�b 
 �k�� k�� ��b	 i�e�	

k� � k� � � � d
b � It follows that

t�� � t�� � tend ��k��� tstart��k�� � tend ��k��� tend ��k����



k�X

j	k�

�tend ��j�� tend ��j����

� �k� � k� � �� �by Claim �������

�
d

b
� � � d �by assumption� �

as needed�

Finally	 we consider the case where �� occurs in ��	 i�e�	 t� 
 �� Assume that �� occurs

in �k� � By construction	 d 
 t� � t� 
 t� � �k� � ��b	 i�e�	 k� � � � d
b � Reasoning as in the

previous case	 we get�

t�� � t�� � tend��k�� 

k�X

j	�

�tend ��j�� tend ��j���� � k� �
d

b
� � � d �

as needed�

Lemma ��� implies that � contains at most s� � s � � sessions� also	 �� contains exactly

one session� Therefore	 there are at most s � � sessions in ���� Since in �� no process takes

a non�idle step	 there is no additional session in ��� Thus	 there are at most s � � sessions in

����
�� A contradiction�

� The Non�Uniform Case

In this section we consider the case problem where delays on communication links are not

uniform� Speci�cally	 we assume that for each �i� j� � E	 the delay of any message along �i� j�

is in the interval ��� d�i� j�� for some d�i� j� such that � � d�i� j����

We �rst develop some notation that is necessary for stating our results� Let p be a path

from node v� to node vk in G	 i�e�	 a sequence of nodes v�� v�� � � � � vk such that for each i	

� � i � k	 �vi� vi��� � E� Denote by l�p� the length	 k	 of p� We de�ne the delay on p	 d�p�	 to

be the sum of the delay on its edges	 i�e�	

d�p� 

k��X

i	�

d�vi� vi��� �

��



We de�ne the delay from node i to node j	 del�i� j�	 to be the minimum of d�p� over all paths

p between i and j� Naturally	 the delay on G	 �d�G�	 is the maximum of the delay from one

node of G to another	 over all pairs of nodes in G	 i�e�	

�d�G� 
 max
i�j�V

del�i� j� �

Intuitively	 �d�G� is the worst�case delay that a message between a pair of nodes may incur

along a �shortest�delay� path from i to j in G� However	 because of local processing time a

message that is sent along a path p can e�ectively incur a delay of up to d�p�� l�p�	 since each

process in the path can incur a local processing delay of at most � and postpone forwarding

the message until its next computation step� Thus	 we de�ne the e�ective delay on G to be

�D�G� 
 max
i�j�V

min
p a path from i to j

�d�p� � l�p�� �

Clearly	 in the uniform case	 when all delays are equal to d	 �d�G� and �D�G� are equal to

diam�G�d and diam�G�D	 respectively� Also	

�d�G� � �D�G� � �d�G� � diam�G� �

Denote dmin 
 min�i�j��E d�i� j��

To obtain bounds for the non�uniform case	 we observe that �D�G� naturally replaces

diam�G�D in the upper bounds for the uniform analogs	 while �d�G� naturally replaces diam�G�d

in the corresponding lower bounds�

Also	 for the lower bounds for the semi�synchronous model	 let b� 
 minfb �
�cc�

�d�G�g and

assume	 as in the proof of Theorem ���	 that b� � �� Note that if the condition d � d
b� �� holds

with dmin for d	 then it also holds with d�i� j�	 for any �i� j� � E	 for d� This implies that the

non�uniform analog of the condition d � d
b � � is dmin �

dmin

b� � �� We next state our upper

and lower bound results for the non�uniform case� Their proofs exactly follow those of their

uniform analogs and are omitted�

Theorem ��� Let G be any graph� There exists an asynchronous algorithm Aas
w which solves

the s�session problem on G within time �D�G��s� ���

Theorem ��� Let G be any graph� There exists a semi�synchronous algorithm Ass
w which

solves the s�session problem on G within time � � minfb�cc � �� �D�G�g�s� ���

��



Figure � should appear here�

Figure �� Summary of the results

Theorem ��� Let G be any graph� There does not exist an asynchronous algorithm which

solves the s�session problem on G within time strictly less than �d�G��s� ���

Theorem ��� Let G be any graph and assume that dmin �
dmin

minfb���cc�diam�G�
d�G�g
� �� There

does not exist a semi�synchronous algorithm which solves the s�session problem on G within

time strictly less than � � minfb �
�cc�

�d�G�g�s� ���

� Discussion and Directions for Future Research

Assuming that � 
 d	 i�e�	 that D � d	 we have almost matching upper and lower bounds

of diam�G�D�s� �� for the asynchronous model� For the semi�synchronous model	 we have

proved an upper bound of � � minfb�c c � �� diam�G�Dg�s � �� and a lower bound of � �

minfb �
�cc� diam�G�dg�s � ��� The proof of the last lower bound relies on the assumption

d � d
minfb���cc�diam�G�dg � �� We remark that this condition holds for large enough values of

�
c and d� Neglecting roundo�s	 the upper bound is within a factor of � of the lower bound�

Similar results were proved for the cases where message delays are not uniform� We summarize

our main results in Figure �� The case where processes do not start simultaneously is studied

elsewhere �����	 where our techniques are extended to yield similar results for this case�

The work presented in this paper continues the study of time bounds in the presence of tim�

ing uncertainty within the framework of the semi�synchronous model ���	 ���� Our results give

a time separation between semi�synchronous �in particular	 synchronous� and asynchronous

networks� Unlike previous separation results ���	 ���	 our results do not rely on the ability to

schedule several steps by the same process at the same real time�

The results presented in this paper have been extended to the model where processes

communicate via shared memory ���	 ����� Rhee and Welch also studied the session problem

in two intermediate timing models
the sporadic model and the periodic model �������

Our work leaves open several interesting problems� An obvious open problem is to close

the gap between the lower and the upper bounds for the semi�synchronous case� It will be

interesting to relax the assumption d � d
minfb���cc�diam�G�dg � � used to prove the lower bound

��



for the semi�synchronous model� The de�nition of a session does not require processes to be

�aware� of a session�s end� how do the bounds change if this requirement is imposed�

Our results show that there are some synchronous algorithms that cannot be simulated by

asynchronous algorithms without signi�cant time overhead �e�g�	 algorithms for the s�session

problem�� In contrast	 the results of Awerbuch ����� indicate that there are some synchronous

algorithms which can be simulated by asynchronous algorithms with only constant time over�

head� Perhaps the most interesting extension of our research is to characterize the synchronous

algorithms which can �respectively	 cannot� be e�ciently simulated by asynchronous algo�

rithms�
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Step time range Upper bound Lower bound

��� �� diam�G�D�s� �� diam�G�d�s� ��

��� �� � � diam�G�D�s� �� � � diam�G�d�s� ��

b�c �s� ��c	

if no communication is used

�c� �� � � minfb�c c� �� diam�G�Dg�s� ��

�� � c � �� � � minfb �
�cc� diam�G�dg�s� ��	

if d � d
minf �

�c
�diam�G�dg

� �
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