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Abstract

The s-sesston problem is studied in asynchronous and semi-synchronous networks. Processes
are located at the nodes of an undirected graph ' and communicate by sending messages
along links that correspond to the edges of (G. A session is a part of an execution in which
each process takes at least one step; an algorithm for the s-session problem guarantees the
existence of at least s disjoint sessions. The existence of many sessions guarantees a degree of
interleaving which is necessary for certain computations. It is assumed that the (real) time for
message delivery is at most d. In the asynchronous model it is assumed that the time between
any two consecutive steps of any process is in the interval [0, 1]; in the semi-synchronous model
the time between any two consecutive steps of any process is in the interval [¢, 1] for some ¢
such that 0 < ¢ < 1, the synchronous model being the special case where ¢ = 1. All processes

are initially synchronized and take a step at time 0.

For the asynchronous model, an upper bound of diam(G)(d+ 1)(s — 1) and a lower bound
of diam(G)d(s — 1) are presented; diam(G) is the diameter of G. For the semi-synchronous
model, an upper bound of 1 + min{[1] + 1, diam(G)(d+ 1)}(s — 2) is presented. The main
result of the paper is a lower bound of 1+ min{| 4|, diam(G)d}(s — 2) for the time complexity

of any semi-synchronous algorithm for the s-session problem, under the assumption that d >

T Ll/?cjddiam(G)d} + 2. These results imply a time separation between semi-synchronous (in
particular, synchronous) and asynchronous networks. Similar results are proved for the case

where delays are not uniform.



1 Introduction

Most distributed systems are based on a communication network — a collection of n processes
arranged at the nodes of an undirected graph G and communicating by sending messages across
links of this graph. Central to the programming of distributed systems are synchronization
problems, where a process is required to guarantee that all processes have performed a partic-
ular set of steps. Naturally, the timing information available to processes has critical impact

on the time complexity of synchronization.

Arjomandi, Fischer and Lynch ([1]) introduced the session problem to study the impact of
timing information on the time complexity of synchronization. Roughly speaking, a session
is a sequence of events that contains at least one step by each process. An algorithm for the
s-session problem guarantees that each execution of the algorithm includes at least s disjoint

sessions.

The session problem is an abstraction of the synchronization needed for the execution of
some tasks that arise in a distributed system, where separate components are each responsible
for performing a small part of a computation. Consider, for example, a system which solves a
set of equations by successive relaxation, where every process holds part of the data (cf. [5]).
Interleaving of steps by different processes is necessary in order to ensure that a correct value
was computed, since it implies sufficient interaction among the intermediate values computed
by the processes. Any algorithm which ensures that sufficient interleaving has occurred also
solves the s-session problem. The session problem is also an abstraction of some problems in
real-time computing which involve synchronization of several computer system components, in
order that they cooperate in performing a task involving real-world components. For example,
multiple robots might cooperate to build a car on an assembly line, with each robot responsible
for assembling a small piece of the machinery. Interleaving of assembly actions by different
robots is necessary to ensure that pieces are assembled in the right order; a robot should not put
the next item on the assembly line before all robots have completed a particular set of assembly
actions making it possible for the item to “fit in”. Clearly, any algorithm which ensures that
sufficient interleaving has occurred also solves the s-session problem. Thus, the difficulty of
solving the s-session problem reflects those of implementing the successive relaxation method

and building the car on the assembly line.

Arjomandi, Fischer and Lynch ([1]) assume that processes communicate via shared variables
and the time complexity of the session problem was studied in synchronous and asynchronous

models. Informally, in a synchronous system, processes operate in lock-step, taking steps



simultaneously, while in an asynchronous system, processes work at completely independent
rates and have no way to estimate time. The results of Arjomandi, Fischer and Lynch ([1])
show that there is a significant gap between the time complexities of solving the session problem

in the synchronous and the asynchronous models.

In reality, however, there is an important middle ground between the synchronous and the
asynchronous models of computation: in most distributed systems, processes operate neither
at lock-step nor at a completely independent rate. For example, processes may have access to
inaccurate clocks that operate at approximately, but not exactly, the same rate. We model
these semi-synchronous systems by assuming that there exist a lower and an upper bound on

processes’ step time that enable processes to estimate time.

Following Arjomandi, Fischer and Lynch ([1]), we address the cost of synchronization in
semi-synchronous and asynchronous communication networks by presenting upper and lower

bounds for the time complexity of solving the s-session problem.

Informally, the time complexity of an algorithm is the maximal time, over all executions,
until every process stops executing the algorithm. The following timing assumptions are made
on the system. Messages sent over any communication link incur a delay in the range [0, d],
where d > 0 is a known constant. In the asynchronous model, processes’ step time is in the
range [0, 1]; in the semi-synchronous model, processes’ step time is in the range [¢, 1], for some
parameter ¢ such that 0 < ¢ < 1.} Processes are initially synchronized and take a step at time

0.

We start with upper bounds. The first algorithm relies on explicit communication to
ensure that the needed steps have occurred and does not use any timing information. In
the asynchronous model, this algorithm has time complexity diam(G)(d 4 1)(s — 1), where
the diameter, diam((G), of an undirected graph G is the mazimum distance between any two
nodes. In the semi-synchronous model, this algorithm can be improved to take advantage of the
initial synchronization and achieve a time complexity of 14 diam(G)(d+1)(s—2). The second
algorithm does not use any communication and relies only on timing information; it works only
in the semi-synchronous model. The time complexity of this algorithm is 14 ([1] 4+ 1)(s—2).
These algorithms can be combined to yield a semi-synchronous algorithm for the s-session
problem whose time complexity is 1 4+ min{[1| + 1, diam(G)(d+ 1)}(s — 2).

We then present lower bounds. For the asynchronous model, we prove an almost matching

lower bound of diam(G)d(s — 1) on the time complexity of any algorithm for the s-session

1The synchronous model is a special case of the semi-synchronous model where ¢ = 1.



problem. For the semi-synchronous model, we prove two lower bounds. We first show a

simple lower bound of [1(s — 2)| for the case where no communication is used. We then

present a lower bound of 1 + min{|J:|,diam(G)d}(s — 2) for the time complexity of any
semi-synchronous algorithm for the s-session problem; the proof relies on the assumption that

d
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These bounds extend in a straightforward way to the case where delays on the communi-
cation links of G = (V, F) are not uniform. That is, for every communication link (¢,7) € F,
the delivery time for a message sent over (¢, 7) is in the interval [0, d(¢, j)] for some fixed d(¢, ),
0 <d(t,7) < oc.

For appropriate values of the various parameters, our results imply a time separation be-
tween semi-synchronous (in particular, synchronous) and asynchronous networks. The lower
bound for the semi-synchronous model shows the inherent limitations on using timing infor-
mation. In addition, it can also be used to derive a lower bound of 1 + diam(G)d(s — 2) for
a model in which processes’ step time is in the range (0,1] (rather than in [0,1], as in the
asynchronous model). This is equivalent to requiring that two steps by the same process may
not occur at the same time.? Fix some ¢/ > 0 such that |;5] > diam(G)d, and use the
proof of the lower bound for the model where processes’ step time is in the range [¢/, 1]; since
[¢/,1] C (0,1], the claim follows. This implies the first time separation between this model
and the synchronous model. (The proof in [1] relies heavily on the ability to schedule many
steps by the same process at the same time.) Our first algorithm for the semi-synchronous
model only requires that two steps by the same process do not occur at the same time. This
implies that the almost matching upper bound of 1 + diam(G)(d+ 1)(s— 2) holds also for the

asynchronous model where processes’ step time is in the range (0, 1].

The lower bounds presented in this paper use the same general approach as in [1]. However,
since we assume processes communicate by sending messages while [1] assumes processes com-
municate via shared memory, the precise details differ substantially. The lower bound proof
in [1] uses fan-in arguments, while our lower bounds are based on information propagation ar-
guments using long delays of messages, combined with appropriate selection of processes and

careful timing arguments. Our asynchronous lower bound is based and improves on a result

of Lynch ([6]) showing a lower bound of rad(G)d(s—1).3

Awerbuch ([4]) introduced the concept of a synchronizer as a way to translate algorithms

2We remark that this is the more common way of measuring time in an asynchronous system (e.g., [11]).
*The radius, rad(G) of G is the minimum, over all nodes in V' of the maximum distance from that node to

any other node in V. For any undirected graph G, rad(G) < diam(G) < 2rad(G).



designed for synchronous networks to asynchronous networks. Although the results of [4]
may suggest that any synchronous network algorithm can be translated into an asynchronous
algorithm with constant time overhead, our results imply that this is not the case: for some
values of the parameters, any translation of a semi-synchronous (in particular, synchronous)
algorithm for the s-session problem to an asynchronous algorithm must incur a non-constant

time overhead.

The rest of this paper is organized as follows. Section 2 presents the system model, defines
the session problem and introduces some notation. Section 3 includes our upper bounds for
both models, while Section 4 includes our lower bounds for both models. In Section 5, we
consider the non-uniform case and state the corresponding upper and lower bounds. We

conclude, in Section 6, with a discussion of the results and some open problems.

2 Definitions

In this section, we present the definitions for the underlying formal model,* define what it

means for an algorithm to solve the s-session problem and introduce some notation.

2.1 The System Model

A system consists of n processes py,...,p,. Processes are located at the nodes of a graph
G = (V,F), where V. = [n]. For simplicity, we identify processes with the nodes they are
located at and we refer to nodes and processes interchangeably. Fach process p; is modeled as
a (possibly infinite) state machine with state set ();. The state set ¢); contains a distinguished
initial state qo ;. The state set (); also includes a subset I; of idle states; we assume ¢o; € I;.
We assume that any state of p; includes a special component, buffer;, which is p;’s message
buffer. A configuration is a vector C' = (¢1,...,¢q,) where ¢; is the local state of p;; denote
state;(C') = ¢;. The initial configuration is the vector (go1,...,¢on). Processes communicate
by sending messages, taken from some alphabet M, to each other. A send action send(j, m)
represents the sending of message m to a neighboring process p;. Let S; denote the set of all
send actions send(j, m) for all m € M and all j € [n], such that (¢,7) € F; that is, S; includes

all the send actions possible for p;.

*These definitions are similar in style to those in [2] and could be expressed in terms of the general timed

automaton model described in [10, 3, 7].



We model computations of the system as sequences of atomic events, or simply events.
Each event is either a computation event, representing a computation step of a single process,
or a delivery event, representing the delivery of a message to a process. Each computation
event is specified by comp(t,5) for some ¢ € [n]. In the computation step associated with
event comp(t,.9), the process p;, based on its local state, changes its local state and performs
some set S of send actions, where § is a finite subset of §;. Each delivery event has the form
del(i,m) for some m € M. In a delivery step associated with the event del(i,m), the message

m is added to buffer;, p;’s message buffer.?

Each process p; follows a deterministic local algorithm A; that determines p;’s local compu-
tation, i.e., the messages to be sent and the state transition to be performed. More specifically,
for each ¢ € @Q;, Ai(q) = (¢',5) where ¢’ is a state and S is a set of send actions. We assume
that once a process enters an idle state, it will remain in an idle state, i.e., if ¢ is an idle state,
then ¢ is an idle state. An algorithm (or a protocol) is a sequence A = (A4,...,A,) of local

algorithms.
An execution is an infinite sequence of alternating configurations and events
a = Co,ﬂ'l,Cl,...,ﬂ']‘,C]‘ ey

satisfying the following conditions:

1. Cy is the initial configuration;

2. If 7; = del(i,m), then state;(C;) is obtained by adding m to buffer;.

3. If m; = comp(t,5), then state;(C;) and S are obtained by applying A; to state;(C;_1);
4. If w; involves process 7, then state,(C;_1) = statey(C};) for every k # i

5. For each m € M and each process p;, let S(i, m) be the set of j such that 7; contains
a send(i,m) and let D(i,m) be the set of j such that 7; is a delivery event del(i,m).
Then there exists a one-to-one onto mapping o;,, from S(¢,m) to D(i,m) such that

oim(j) > jforall j € 5(i,m).

That is, in an execution the changes in processes’ states are according to the transition function,

only a process which takes a step or to which a message is delivered changes its state, and

®The system model can be extended to allow arbitrary state change upon message delivery without changing

the results; for clarity of presentation, we chose not to do so.



each sending of a message is matched to a later message delivery and each message delivery
to an earlier send. We adopt the convention that finite prefixes of an execution end with a
configuration, and denote the last configuration in a finite execution prefix a by last(a). We
say that 7; = comp(i,.5) is a non-idle step of the execution if state;(C;_1) € I;, i.e., it is taken

from a non-idle state.

A timed event is a pair (t,7), where ¢, the “time”, is a nonnegative real number, and =
is an event. A timed sequence is an infinite sequence of alternating configurations and timed

events

o = Co, (tl,ﬂ'l),cl, .. .,(t]‘,ﬂ']‘),cj‘ ey
where the times are nondecreasing and unbounded.

Timed executions in this model are defined as follows. Fix real numbers ¢ and d, where
0<e<1land 0<d< oo, Letting a be a timed sequence as above, we say that a is a timed

execution of A provided that the following all hold:

1. Co,m,Ch,y...,m;,C5, ... is an execution of A;
2. (Synchronous start) There are computation events for all processes with time 0.

3. (Upper bound on step time) If the jth timed event is (¢;, comp(i;, 5)), then there exists
a k> j with t; <t; 4 1 such that the kth timed event is (¢, comp(i;,5"));

4. (Lower bound on step time) If the jth timed event is (¢;, comp(;,5)), then there does
not exist a k > j with ¢; < ¢; 4 ¢ such that the kth timed event is (¢, comp(i;, S"));

5. (Upper bound on message delivery time) If message m is sent to p; at the jth timed
event, then there exists k > j such that the kth timed event is the matching delivery
(tg, del(i,m)) (i.e., 0, (j) = k) and t5 < t; 4 d.

We say that « is an execution fragment of A if there is an execution o’ of A of the form
o' = BaB’. This definition is extended to apply to timed executions in the obvious way. For
a finite execution fragment o = Cy, (t1,71),C1,. .., (tg, Tk), Ck, we define (o) = ¢1 and

tend(a) = 1.

The asynchronous model is defined by taking ¢ = 0, while the semi-synchronous model is
defined by taking 0 < ¢ < 1; the synchronous model is a special case of the latter. Note that
the asynchronous model, as defined above, allows two computation steps of the same process

to occur at the same time (Condition 4 is vacuous when ¢ = 0). We remark that our proofs, as



well as the proof in [1], use this property. If we want to define the more common asynchronous
model, where a process can have at most one computation step at each time, we have to replace

Condition 4 above with:

(Lower bound on step time) If the jth timed event is (¢;, comp(i;,5)), then there
does not exist a k > j with ¢ = ¢; such that the kth timed event is (¢, comp(i;, 5"));

In both models, we say that a process p; enters an idle state by time t' (in a timed execution
a) if there exists a timed event (¢;_1,7;_1) in a such that ¢;_q < ¥, 7,1 = comp(, ), and
state;(C;) € I;. We say that a process p; receives the message m by time t' (in a timed
execution «) if, by time ¢, p; has a computation event that is preceded in a by a delivery event
del(i,m). For the rest of the paper let D denote d + 1. Note that if m is sent to p; at time ¢,
then p; receives m by time t 4+ D.

2.2 The Session Problem

An execution fragment C'y, 7y, Cy..., Ty, Cpy is a session if for each i, ¢ € [n], there exists at
least one event 7; = comp(, 5), for some j € [m], which is a non-idle step of the underlying
execution. Intuitively, a session is an execution fragment in which each process takes at least
one non-idle step. An execution a contains s sessions if it can be partitioned into at least s
execution fragments with pairwise disjoint sets of events such that each of them is a session.

These definitions are extended to apply to timed executions in the obvious way.

An algorithm solves the s-session problem within time t (on () if each of its timed executions
a satisfies the following: a contains s sessions and all processes enter an idle state no later

than time ¢ in .

2.3 Notation

Consider an undirected graph G = (V, F). For any 7,j € V, let dist(i,7) be the distance
of 7 and j in G, i.e., the number of edges in the shortest path in G ;from ¢ to j. The
diameter of G, diam((), is the maximum distance between any two nodes in V', i.e., diam(G) =
max; jev dist(i, 7).

A node 7 € V is a peripheral node of G if max;ey dist(i,j) = diam((G); informally, a
peripheral node “realizes” the diameter of G. A node j € V is antipodal to a node ¢ € V if
dist(i,7) = maxgey dist(i, k); informally, j is a “farthest neighbor” of 7 in (. Note that if j is
antipodal to a peripheral node then j is peripheral.



3 Upper Bounds

3.1 The Asynchronous Model

We start with a simple asynchronous algorithm in which processes communicate in order
to learn about completion of a session before advancing to the next session. Each process
maintains as part of its state a variable that gives its current session number; upon hearing
that every other process has reached its current session, it increments its session number by one
and notifies all other processes. Notification is done by sending messages along a shortest-path
tree rooted at it. The process enters an idle state when its session number is set to s. We

prove:

Theorem 3.1 Let G be any graph. There exists an asynchronous algorithm, A*°, that solves

the s-session problem on G within time diam(G)D(s —1).

Proof: We describe an asynchronous algorithm, .4%%, that solves the s-session problem on G
within time diam(G)D(s —1); that is, in any execution of A%® there are at least s sessions and
all processes enter an idle state no later than diam(G)D(s — 1). The algorithm is described

here informally; this description can be easily translated into a state transition function.

For each @ € [n], the state of p; consists of the following components: buffer — a buffer, an
unordered set of elements of M, initially @; session — a nonnegative integer, initially 1. The
message alphabet, M, consists of the pairs (¢, k), where 7 € [n] and 1 < k < s — 1. The initial

state of p; is non-idle.

The algorithm is as follows. Upon taking its first computation step, p; broadcasts (7, 1). If
for all j € [n], (4, session;) € buffer;, p; increments session; by 1. If session; = s, p; enters an

idle state and remains in this state forever. Otherwise, p; broadcasts (1, session;).

We assume that messages from a process are flooded on a shortest path tree rooted at this
process. That is, A% uses a routing algorithm by which, for any nodes u,» € G, a message
from u to v is routed through ezactly dist(u,v) communication links in . The details of how

this is done are not discussed here; the reader is referred to, e.g., [13].

If session; = k, we say that p; is in its kth session. The message (7, k) can be interpreted

as “process ¢ executed a step in the kth session”.

We start by showing that in any execution of A%*° there are at least s sessions. Fix an

arbitrary timed execution « of A*°. Clearly, each process p; receives (j,1) for all j € [n] and



sets session; to 2. By induction, it is simple to show that for any k, 1 < k < s, p; sets session;
to k in a. For any k, 1 < k < s, define a to be the longest prefix of a that does not include
a configuration in which for some i € [n], session; > k, i.e., no process has passed its kth
session. Note that ey = A, the empty sequence, and that for each k, 1 < k < s—1, a; is a
prefix of apiq. Foreach k, 1 <k <s—1, let 8y be such that agy1 = apfk; let 55 be such that

o = azf;.
Lemma 3.2 Foreach k, 1 <k <s—1, there is a session in (.

Proof: Let p; be a process which sets session; to k + 1. By definition, this event is not
in fx. By the algorithm, this implies that for each j, j € [n] and j # ¢, p; has received a
(j, k) message. However, by definition, no process p; has session; > k in aj. Thus, by the
algorithm, no process p; sends a (j, k) message in ay. Hence, there is a step by every process,

and, therefore, a session in . [ |

In addition, there is a session in (3, since, for every ¢ € [n], a computation step is included
in f, at which p; sets session; to s. (Note that, by the definition of ay, such a step cannot
be included in a;.) This implies that there are at least s sessions in a. Since a was chosen

arbitrarily, this implies the correctness of A%°. We now analyze the time complexity of A4%°.

Informally, the next definition captures the latest time at which the kth session can be
completed. For each k, 1 < k < s, define

T, = m&g{{t . p; sets session; to k at time ¢ in a} .
[2S

By the algorithm, T} = 0. We have:
Lemma 3.3 Foreach k, 1 <k <s, Thy1 <Tp+ diam(G)D.

Proof: Fix some process p;, and let ¢ be the time at which p; broadcasts (¢, k); note that
by definition ¢ < T}j. Clearly, for every process p;, the delivery event del(j, (i, k)), delivering
the message (¢,k) to p;, will occur at a time < t + (diam(G) — 1)D + d. Thus, by time
t + diam(G)D every process has a computation step in which (¢, %) is in the buffer. Thus, by
time T} + diam(G)D every process has a computation step in which (¢, %) is in the buffer, for
any i@ € [n]. By the algorithm, at this step the process sets its session variable to k + 1. The

claim follows. []

Since T7 = 0, it follows that T < diam(G)D(s — 1). Hence, every process enters an idle
state after setting session to s, no later than time diam(G)D(s — 1). Thus, A*° solves the

s-session problem on G within time diam(G)D(s — 1). |



3.2 The Semi-Synchronous Model

In the semi-synchronous model we can slightly improve A%° by taking advantage of the available
initial synchronization; specifically, each process operates exactly as in A%%, except that it does
not wait to hear that every other process has completed its first session, but passes directly to

the second one upon taking its second step. We prove:

Theorem 3.4 Let G be any graph. There exists a semi-synchronous algorithm, Aj°, that

solves the s-session problem on G within time 1 + diam(G)D(s — 2).

Proof: We describe a semi-synchronous algorithm, A$* which is very similar to A*° and
solves the s-session problem on & within time 14 diam(G)D(s—2). For each ¢ € [n], the state
of p; consists of the following components: buffer — a buffer, an unordered set of elements of
M, initially 0; session — a nonnegative integer, initially 1. The message alphabet, M, consists

of the pairs (¢, k) where i € [n] and 2 < k < s — 1. The initial state of p; is non-idle.

Upon taking its second computation step, p; increments session; to 2 and broadcasts (1, 2).
If for all j € [n], (4, session;) € buffer;, p; increments session; by 1. If session; = s, p; enters
an idle state and remains in this state forever. Otherwise, p; broadcasts (7, session;). As in
A% we assume that messages from a process are flooded on a shortest path tree rooted at
this process. We say that p; is in its kth session if session; = k and we interpret the message

(i,k) as “process ¢ executed a step in the kth session”.

We start by showing that in any execution of A3° there are at least s sessions. Fix an
arbitrary execution a of Aj®. For each k, 1 < k < s, define oy to be the longest prefix of o
that does not include a configuration in which, for some i € [n], session; > k, i.e., no process
has passed its kth session. Note that ay = A, and that for each k, 1 < k < s—1, ag is a prefix
of apy1. Foreach k, 1 < k < s—1, let B be such that agy1 = arfBk; let B, be such that

a = asﬁs-

Lemma 3.5 There is a session in 3.

Proof: Note that 8y = ag, since @y = A. For every process p;, the steps of p; that are
included in a5 are exactly those that occur at time 0. Since every process has a step at time

0, there is a session in as = . [ |

As in Lemma 3.2, we can prove:

10



Lemma 3.6 Foreach k, 1 <k <s—1, there is a session in (.

In addition, there is a session in ;. This implies that there are at least s sessions in a.

Since a was chosen arbitrarily, this implies the correctness of Aj3°.

We now analyze the time complexity of Aj®. For each k, 2 < k < s, we define:
T, = ma%;({t : p; sets session; to k at time ¢ in a} .
1S

Note that Ty < 1. In addition, as in Lemma 3.3, we have:
Lemma 3.7 Foreach k, 2 <k <s, Thy1 < Tp + diam(G)D.

Since T < 1, it follows that T, < 1 4 diam(G)D(s — 2). Every process enters an idle
state after setting session to s, no later than time 1+ diam(G)D(s — 2). Thus, AJ* solves the

s-session problem on G within time 1 4 diam(G)D(s — 2). |

We next show that the timing information available in the semi-synchronous model can
be exploited to obtain a bound which is sometimes better than the previous bound. This
algorithm uses no communication; intuitively, this means that no process state transition can
result in a send action. Formally, an algorithm A uses no communication if for every i, i € [n],

for every ¢ € Q;, Ai(q) = (¢, 0) for some ¢’ € Q;. We prove:

Theorem 3.8 Let (¢ be any graph. There exists a semi-synchronous algorithm, A5°, which
solves the s-session problem on G within time 14 ([1] 4+ 1)(s — 2). Furthermore, A3 uses no

communication.

Proof: We describe a semi-synchronous algorithm, .435°, which solves the s-session problem
on G within time 1+ (|1] 4 1)(s—2). For each i € [n], the state of p; consists of a counter, an
integer, initially -1. The initial state of p; is non-idle. At each computation event, p; increments

counter;; p; enters an idle state when counter; is equal to 1+ (1] + 1)(s — 2).

We start by showing that in any execution of A3® there are at least s sessions. Consider an
arbitrary execution o of A3°. We partition « into execution fragments, @ = agaq ... a,_1, such
that: (i) ap consists only of the computation steps at time 0, and (i) for each k, 1 < k < s-2,
Qg ...y is the shortest prefix of a that includes a configuration in which, for some i € [n],

counter; = k(1] + 1). We have:
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Lemma 3.9 Foreach k, 1 <k < s —2, there is a session in ay.

Proof: Let p; be the first process to set counter; to k([1] 4+ 1) in a. By the definition of ay,
the steps at which counter; is equal to (k — 1)([1] +1) 4 j,for 1 <j < |1] +1, are included
in ap. Thus, there are at least L%J + 1 steps by p; in ap. These steps take time at least
e L%J +1) > c% = 1; thus, there exists a computation step by every process and, therefore, a

session in ay,. [ ]

In addition, there is a session in ag since every process takes a step at time 0.

There is also a session in a4_1, since, by the definition of a,_1, each process sets its counter
to 1+ (s—2)(|1] + 1) at its last non-idle step. Together with Lemma 3.9, this implies that

there are at least s sessions in any timed execution of A%5°.

Each process will enter an idle state no later than time 1+ (1] + 1)(s — 2), since for any
process the time between successive computation steps is at most 1. Thus, A3® solves the
s-session problem within time 14 (|1] 4+ 1)(s — 2). |

When d and diam(G) are known, it is possible to calculate in advance which of the algo-
rithms of Theorems 3.4 and 3.8 is faster, and run it. Furthermore, even if d and diam(G) are
not known, it is possible to run the algorithms of Theorems 3.4 and 3.8 “side by side,” halting

when the first of them does. In both cases we get:

Theorem 3.10 Let G be any graph. There exists a semi-synchronous algorithm, A®°, which
solves the s-session problem on G within time 1+ min{|1] 4+ 1, diam(G)D}(s — 2).

4 Lower Bounds

In all our lower bounds we use an infinite timed execution in which processes take steps in
round-robin order, starting with p;, with step time close to 1, and all messages are delivered

after exactly d delay. It is called a slow, synchronous timed execution.

4.1 The Asynchronous Model

We start by showing that for the asynchronous model, the algorithm presented in Theorem 3.1

is optimal. The proof of the following theorem is based on delaying information propagation
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and then perturbing an execution to obtain an execution of the algorithm which does not

include s sessions.

Theorem 4.1 Let G be any graph. There does not exist an asynchronous algorithm which

solves the s-session problem on G within time strictly less than diam(G)d(s —1).

Proof: Assume, by way of contradiction, that there exists an asynchronous algorithm, A,
which solves the s-session problem on G within time strictly less than diam(G)d(s —1). We

construct a timed execution of A which does not include s sessions.

The following is an informal outline of the proof. We start with a slow, synchronous timed
execution of A and partition it into s—1 execution fragments each of which is completed within
time < diam((G)d. Since communication is slow, there is no communication between any pair of
antipodal nodes during a fragment. By “retiming”, we will perturb each fragment to get a new
execution fragment in which there is a “fast” peripheral node which takes all of its steps before
a “slow” antipodal node takes any of its steps. Our construction will have the “slow” node of
each execution fragment be identical to the “fast” node of the next execution fragment. In each
execution fragment, a session can be completed as soon as the “slow” peripheral node takes its
first computation step; since the “fast” peripheral node does not take any more computation
steps, no more sessions can be completed in this execution fragment. This will guarantee that
at most one session is contained in each execution fragment; thus, the total number of sessions

in the “retimed” execution is at most s — 1, contradicting the correctness of A.
We now present the details of the formal proof.

Pick some ¢ such that 0 < ¢ < (diam(G)d(s— 1) + 1)~. Consider a slow, synchronous
timed execution v = aa’ of A, with step time 1 — ¢, where « is the shortest prefix of v such
that all processes are in an idle state in last(«) and o' is the remaining part of y. We perturb
a and o' to obtain timed sequences # and &', respectively, such that 34’ is a timed execution

that does not include s sessions.”

We first show how to modify « to obtain 8. By assumption, ¢.,4() < diam(G)d(s — 1).
Write oo = agay .. .as_1, where ag = A and for each k, 1 <k <s—1, t.pq(ag) — tend(ag—1) <
diam(G)d(1 — €) < diam(G)d. (We adopt the convention that t.,q(cg) = 0.) For some
sequence 1g,...,ts_1 of peripheral nodes, we construct from each execution fragment oy an

execution fragment By = ppoy, such that:

(1) pr contains no computation step of p;, ., and
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(2) oy contains no computation step of p;, .

In this construction, 75 is the “fast” node which takes all of its steps in the execution
fragment py, before the “slow” node i;_; takes any of its steps. (All the steps of iy are in oy.)
Our construction uses peripheral nodes since they maximize the time to transfer information

to other nodes, which is, roughly, diam(G)d. In particular, ix_; will be antipodal to .

We now show, for each k, 1 < k < s — 1, how to construct Ji, by induction on k. For the

base case, let 79 be an arbitrary peripheral node of G, and take 3y to be the empty execution.

Assume we have picked g, ..., t;_1 and constructed Gg,...,8r_1. Let 75 be some node that
is antipodal to ij_q, i.e., dist(ix_1,1;) = diam(G); note that ¢y is also peripheral. We now
show how to construct .

For any node u, py includes all events at u that occur at time < ¢.,4(ag_1)+ dist(u,ix_1)d
in ay; ok includes all events at u that occur at time > ¢.,4(ag—1)+dist(u,ix—1)d in ai. Events
at each process occur in the same order as in ay and all occur at time 0, in both p; and oy.
In addition, ordering of events across different processes that occur at the same time in «y is

preserved within each of py and oy.

Since
tend(op—1) + dist(tg, ip—1)d = teng(0p_1) + diam(G)d > toq(ay) ,

and all events at iy occur at time < t.,4(ay) in ay, this implies that all events at i; will appear

in pg. On the other hand, since
tena(ap—1) + dist(ip—1, ig—1)d = teng(oh—1)

and all events at i5_1 in ay occur at time > t.,4(ak_1), all events at ix_1 in ay will appear in
ok. Thus, B = proy has properties (1) and (2) above.
Let 8 = Bof1...Bs-1-

By construction, events at each process p;, i € [n], occur in the same order in  as in
a. Hence, p; undergoes the same state changes in [ as in a and therefore, state;(last(5)) =

state;(last(a)).

We now modify o’ to obtain #’. The first computation step of any process in 4’ will occur
at time 1 and all later computation steps of it are 1 time unit apart. Any message delivery

event at a process will occur at time d after the corresponding message sending event.

We next establish that 53’ is a timed execution of A. We start by showing:
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Lemma 4.2 Fach receive event is after the corresponding send event in (3.

Proof: Consider the message send event 7 at node u; which occurs at time ¢; in aa’ and let
72 be the corresponding message receive event at node ug which occurs at time ¢5 in aa’. Note
that wy and wuy are neighboring processes, i.e., dist(uy,uz) = 1. Hence, dist(uy,ip—1)+ 1 >
dist(ug,ix—1). The only non-trivial case is when 71 and 73 occur in the same ay, for some k,

1 <k <s—1. We show that the ordering of m; and 73 is the same in f; as in ay.

The only case of interest is when 71 occurs in o, while 73 occurs in pg. In this case,
t1 > tend(ap—1) + dist(uy, ix—1)d, while ty < t.pq(0_1) 4 dist(ug,ix—1)d. Then,

ty = ti+d
> tend(op—1) + dist(uyg,ig—1)d 4+ d (since m; occurs in oy)
= tepd(ag—1) + (dist(uy,ip—1) + 1)d
> tend(ak—l) + diSt(Uz, ik—l)d ’
a contradiction. [ |

All events in § occur at time 0 and computation steps in (' occur with step time 1.
Since there are no lower bounds on either process step time or message delivery time in the

asynchronous model, we have:

Lemma 4.3 Lower and upper bounds on step time are preserved in 3(3'.

Lemma 4.4 Lower and upper bounds on message delay time are preserved in 3.

To derive a contradiction, we prove:

Lemma 4.5 There are at most s — 1 sessions in [3.

Proof: We show, by induction on k, that 8y ...0k_1pr does not contain k sessions, for 1 <
kE<s—1.

For the base case, note that, by construction, 8y = A and p; does not include a computation

step of p;,. Thus, Bpp1 cannot contain one session.

For the induction step, assume that the claim holds for k£ — 1, i.e., Bg...08k_2pr—1 does

not contain k& — 1 sessions, for 1 < k£ < s. Hence, the kth session does not start within
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Bo...Br—2pk—1. Since neither o,_; nor p; contains a computation step of p;, _,, or_1pp does

not contain a session. Thus, By ...0k_1pr does not contain k sessions.

To complete the proof, note that o,_1 does not contain a session since, by construction, it

does not contain a computation step of p; _,. [ |

Thus, there are strictly less than s sessions in 3; however, in 3’ no process takes a non-idle

step, so there cannot be an additional session in 3’. A contradiction. [ |

We remark that the general outline of this lower bound proof follows [1, 6]. However, while
the proofs in [1, 6] use causality arguments to reorder the events in the execution, our proof
presents an explicit reordering and retiming of the events. We do so because this provides a
basis for the retiming arguments used in the proof of the lower bound for the semi-synchronous
model. OQur improvement over [6] is achieved by carefully choosing only peripheral nodes in

the construction of 5.

4.2 The Semi-Synchronous Model

In Section 3.2, we have seen two algorithms that solve the s-session problem in the semi-
synchronous model. The first of them, .47, solves the s-session problem on ¢ within time
14 diam(G)D(s — 2). Designed for the asynchronous model, A§* has the interesting property
that processes do not use any timing information. Loosely speaking, the lower bound proved
in Theorem 4.1 says that if processes have no timing information, then diam(G)d(s—1)is a

lower bound for any asynchronous algorithm which solves the s-session problem on G.

Recall, also, that A5° uses no communication, but relies only on timing information to
achieve an upper bound of 14 (1] 4+ 1)(s — 2). We first show that this upper bound is close

to optimal in the absence of communication:

Theorem 4.6 Let G be any graph. There does not exist a semi-synchronous algorithm which
solves the s-session problem on G within time strictly less than |1(s — 2)| and uses no com-

munication.

Proof: Assume, by way of contradiction, that there exists a semi-synchronous algorithm, A,
which solves the s-session problem on G within time strictly less than |1(s —2)], and uses no

communication. We construct a timed execution of A which does not include s sessions.
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Let « be a slow, synchronous timed execution of A with step time 1. Assume, without loss
of generality, that p, is the last process to enter an idle state in a. Let a = agpa’, where ag
includes events at time 0, while o’ is the remaining part of @. Let m be the number of non-idle
steps taken by any process in o’. It must be that m < L%(s — 2)|, since A solves the s-session
problem within time < [1(s —2)], and « is slow.

Now modify o’ to get a new timed execution fragment # in which all processes except p,,

operate with fastest step time, i.e., ¢. This can be done since there are no receive events in a.

In 3, each process but p,, enters an idle state at some time < em < ¢|1(s—2)] < cl(s-2) =
s — 2. Thus, in 8 p, performs strictly less than s — 2 steps when all other processes are not in
an idle state. Therefore, at most s — 2 sessions can be completed in 3; hence, at most s — 1

sessions can be completed in agB. A contradiction. [ |

We show next that communication and timing information cannot be combined to get an
upper bound that is significantly better than the upper bound achieved in Theorem 3.10. We

prove:

Theorem 4.7 Let G be any graph and assume that d > min{Ll/Qchdiam(G)d} + 2. There does
not exist a semi-synchronous algorithm which solves the s-session problem on G within time
strictly less than 1 4+ min{| 5|, diam(G)d}(s — 2).

Proof: Assume, by way of contradiction, that there exists a semi-synchronous algorithm, A,
which solves the s-session problem on G within time strictly less than 14min{| |, diam(G)d}(s—

2). We construct a timed execution of A which does not include s sessions.

The general structure of our lower bound proof closely follows that of Theorem 4.1, though
there are several complications: First, the early events of the execution, happening at time < 1
and including processes’ steps occurring at time 0, are handled separately (unlike the proof
of Theorem 4.1). Second, the additional timing requirements placed in the semi-synchronous

model require more careful arguing to show the correctness of the construction.

We start with a slow, synchronous timed execution of A and partition it into an execution
fragment containing the events at time 0 and s — 2 execution fragments each of which is
completed within time < min{|3|,diam(G)d}. Since communication is slow, there is no
communication between any pair of antipodal nodes during a fragment. Furthermore, since
the execution is slow, a process takes, roughly, at most % steps, so it is possible to have these

all steps occur at the same time another process takes only one step. By “retiming”, we will
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perturb each fragment to get a new execution fragment in which there is a “fast” peripheral
node which takes all of its steps before a “slow” antipodal node takes any of its steps. The part
of the proof that shows that the “retimed” execution preserves the timing constraints of the
semi-synchronous model requires substantially more careful arguments than the corresponding
part in the proof of Theorem 4.1. In particular, we need to choose the execution fragments
to take time < L%J, so that it will be possible for a process not to have a computation step
during a large part of the execution fragment. Our construction will have the “slow” node
of each execution fragment be identical to the “fast” node of the next execution fragment.
Arguing as in Theorem 4.1, this will guarantee that at most one session is contained in each
execution fragment. Thus, the total number of sessions in the “retimed” execution is at most

s — 2, contradicting the correctness of A.

We now present the details of the formal proof.
Denote b = min{| -], diam(G)d}.

If b < 1, then the lower bound we are trying to proveis < 1+ 1(s —2) = s — 1. Since s
steps of each process are necessary if s sessions are to occur and they can occur 1 time unit
apart, it follows that s — 1 is a lower bound. Thus, we assume, without loss of generality, that
b > 1. It follows that ¢ < % Note that, by assumption, d > % +2,ie.,d> % Since b > 1,
it follows that d > 1.

Let v be a slow, synchronous timed execution of A with step time 1. Assume v = Gpaa!/,
where g contains only events that occur at time < 1, and fpa is the shortest prefix of v
such that all processes are in an idle state in last(fpa), and ' is the remaining part of 5.
Denote T" = t,,4(foa). Since 7 is slow and s steps of each process are necessary to guarantee
s sessions, T > s — 1. Since A solves the s-session problem within time strictly less than
14 b(s — 2), it follows that 7' < 1+ b(s — 2). Note that, by construction, ¢,(a) = 1. Thus,
tena(@) = tsgare(a) = T =1 < b(s—2), and hence [132] < (s—2). Denote s’ = [L1]; it follows
that s < (s—2).

We write @ = ajay ... ay, where:

o Loreach k, 1 <k < &, aj contains all events that occur at time ¢, where 1 4+ (k — 1)b <
t <1+ kb, and

e «ay contains all events occurring at time ¢, where 14 (s’ — 1)b <t < T.

That is, we partition « into execution fragments, each taking time < b.
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Figure 1 should appear here.

Figure 1: The timed execution foaa’

Figure 1 depicts the timed execution fBpaa’. Fach horizontal line represents events hap-
pening at one process. We use the symbol e to mark non-idle process steps; similarly, we use
the symbol x to mark idle process steps. Arrows show typical message delay times between

pairs of processes; dashed vertical lines mark time points that are used in the proof.

We reorder and retime events in a to obtain a timed sequence 3 and reorder and retime
events in o’ to obtain a timed sequence 3, such that 83503 is a timed execution of A that does

not include s sessions.

We first show how to modify a to obtain an execution fragment 3 = (183...03s that
includes at most s’ < s — 2 sessions. For some sequence 7g,...,1y of peripheral nodes, we

construct from each execution fragment oy an execution fragment 8y = proy, such that:

(1) pr contains no computation step of p;, ., and

(2) oy contains no computation step of p;, .

Like in the proof of Theorem 4.1, in this construction, ¢;_4 is the “fast” node which takes
all its steps in the execution fragment py, before the “slow” node iy, takes any of its steps. (All
the steps of i are in 0x.) Our construction uses peripheral nodes since they maximize the
time to transfer information to other nodes, which is, roughly, diam(G)d. In particular, igx_q

will be antipodal to .

For each k, 1 < k < &', we show how to construct 35 inductively. For the base case, let ig

be an arbitrary peripheral node of G.

Assume we have picked ig,...,7_1 and constructed f,...,0:r_1. Let iz be some node
that is antipodal to ix_1, i.e., dist(ix_1,1;) = diam(G); note that i is also peripheral. We
now show how to construct F;. For any node u, p includes all events at « that occur at
time < 14 (k — 1)b + dist(u,ix—1)d in ap; oy includes all events at u that occur at time
> 14 (k—1)b+ dist(u,ir—1)d in ay. Events at each process occur in the same order as in ay
and all occur at step time of ¢, in both pr and o;. In addition, ordering of events that occur

at the same time, in different processes, in ay is preserved within each of py and o;. Since

L+ (k—1)b+dist(ig,ig—1)d =1+ (k—1)b+diam(G)d > 1+ (k—1)b+b=1+kb > t.pq(ag),
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Figure 2 should appear here.

Figure 2: The timed execution Gy33’

and all events at iy occur at time < t.,4(ay) in ay, this implies that all events at i; will appear

in pg. On the other hand, since
14+ (k= 1)b+ dist(ig—1,tp—1)d =1+ (k — 1)b < tsur(ag) .

and all events at i1 in ay occur at time > t4,.¢(ay), all events at 751 in ay will appear in

ok. Thus, B = proy has properties (1) and (2) above.

To complete our construction, we assign times to events in Gg. Let tsui(p1) = ¢. The
first and last computation steps of i in pp occur at times ts4m(pr) = tena(or—1) + ¢ and
tend(pr), respectively. Similarly, the first and last computation steps of i5_q in oy occur at
times ts4p(0k) = tena(pr) and t.,q(0), respectively. Steps are taken ¢ time units apart. For
each process p;, we schedule each computation step 7; of p; in pj to occur simultaneously
with a computation step, 7;,, of ¢, which is such that 7; and 7;, occurred at the same time in
ay. Similarly, for each process p;, we schedule each computation step 7; of p; in o) to occur
simultaneously with a computation step, 7;, _,, of 41,1 which is such that =; and m;, _, occurred
at the same time in ap. Any message delivery event at a process will occur right after and at
exactly the same time as the computation step of the process which immediately precedes the
delivery event in aj. We shall shortly show that assigning times in this manner is consistent

with the requirements from a timed execution.

We now modify o’ to obtain #’. The first computation step of any process in 4’ will occur
at time ¢ after its last computation step in 4 and all later computation steps of it will occur
at ¢ time units apart in #’. Any message delivery event at a process will occur at time d after

the corresponding message send event.
Figure 2 depicts the timed execution Gg33" using the same conventions as in Figure 1.

We remark that what allowed us to “separate” the steps at ¢x_1 ;from those at i) in each
of the execution fragments was the assumption that the length of each execution fragment is
less than diam(G)d which is the time needed for a communication between an antipodal pair
of nodes to be established.

We first show that G934’ is a timed execution of A. By Lemma 4.5, since s’ < s — 2 and

[bg contains exactly one session, we derive a contradiction.
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By the same arguments as in Lemma 4.2, we prove:
Lemma 4.8 Fach receive event is after the corresponding send event in $o30'.

Before showing that the timing constraints are preserved in (§33’, we prove the following

simple fact:

Claim 4.9 (1) Forany k, 1 <k <5 —1, tona(pis1) — tena(pr) < 1—c.
(2) For any k; 1 S k S 8/; tend(ﬁk) - tend(ﬁk—l) S 1—ec.

Proof: We first show that for any k, 1 <k <" — 1, tena(prs1) — tend(Br) < %, and for any
k? 1 S k S 8/7 tend(ﬁk) - tend(pk) S % — C.

Fix some k, 1 < k < s'. By construction,
tstam‘(ak) > 1+ (k - 1)b7

while
tena(ar) < 14 kb.
Thus )
tend(ak) - tsmﬁ(ak) < 1 —|— k‘b - 1 - (k‘ - 1)b = b S L%J

Let m be the maximum number of steps over all processes that some process takes within ay.

If both ¢4 () and tenq(ay) are integral, topa(ag) — tsiar(ag) < L%J —1; then, since a is

a slow execution,

1
m S tend(ak) - tstam‘(ak) +1 S L%J <5

If at least one of t44.¢ (k) and tenq( ) is not integral, then, since a is a slow execution,
1 1 1

m < Ttena(@n) — tuare(a)] < [15)1 = [5-] <

Thus, in any case, m < % Let nj be the number of computation steps of process p;, _, in

o) and njyy be the number of computation steps of process p;, ., in apr1. (Recall that, by
construction, in Bk, p;,_, will have all its steps in oy, while in Sgy1, pi,,, will have all its steps
in pry1.) Thus

¢= 3

1
tend(pk—l—l) - tend(ﬁk) = Ng41€ <mce < %
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Also, since p;, _, takes ny steps in oy with the first occurring at time ¢54,4(0%) = tend(pr) and

the last occurring at time t.,q(0%) = tend(Sk), we have

1 1
tend(Br) — tend(pp) = (g — e < (m —1)e < (% —1e= 3 c.
Now, we have
1 1
tend(pk—l—l) - tend(pk) = tend(pk—l—l) - tend(ﬁk) + tend(ﬁk) - tend(pk) < 5 + 5 —c=1- ¢,
which proves (1). Also,
1 1
tend(ﬁk) - tend(ﬁk—l) = tend(ﬁk) - tend(pk) + tend(pk) - tend(ﬁk—l) S 5 —c+ 5 =1- ¢,
which proves (2). |

We next show:
Lemma 4.10 Lower and upper bounds on step time are preserved in 39535

Proof: By construction, no two computation steps are closer than ¢ in G933’'; so, the lower
bound on step time is preserved. Note also that the difference between consecutive computation
steps of a process is maximized when the process is a peripheral node, 7, for some k such that
1 <k < s —1, that has no computation steps in either o or pry1. By Claim 4.9(1), this is

less than or equal to 1. [ |

To complete the proof that S35’ is a timed execution we show:

Lemma 4.11 The time between a send event and the corresponding receive event in Bo33 is

at most d.

Proof: Let 7y be a computation event at node u; which occurs at time #; in Ggac’, in which
a message is sent; let mo be the corresponding delivery event at node ug, occurring at time i

in . Assume 7y is scheduled to occur at time | and 73 occur at time ¢, in G35’

If 2 occurs in o' then, by construction, ¢, — ] = d, in o3’. So assume 71 and 73 occur
in Gga. We first consider the case where both 7y and 75 occur in a. Assume 7y appears in

ag, and my appears in ay,, where 1 < ky < kg < s'. Clearly, in 3, m; appears in 35, and 72

1
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appears in fi,. Note that, by construction, d = t3 —t1 > (kg — 1)b— k1b = (ks — k1 — 1)b, i.e.,
ky — ki — 1 < 4. Tt follows that

t/2 - tll S tend(ﬁkg) - tstam‘(ﬁkl) S tend(ﬁkg) - tend(ﬁkl—l)

ko
= Z (tend(ﬁj) —tend (ﬁ]—l))
J=k1
< (kg —Fky+1) (by Claim 4.9(2))
< % +2<d (by assumption) ,

as needed.

Finally, we consider the case where my occurs in Gy, i.e., 1 = 0. Assume that 7 occurs
in ag,. By construction, d = t; —t; = t3 > (kg — 1)b, ie., k2 — 1 < %. Reasoning as in the
previous case, we get:

ko
d
t/2 - tll S tend(ﬁkg) = Z(tend(ﬁ]) - tend(ﬁj—l)) S k? < g +1< d )

J=1

as needed. []

Lemma 4.5 implies that [ contains at most s’ < s — 2 sessions; also, g contains exactly
one session. Therefore, there are at most s — 1 sessions in (g. Since in ' no process takes
a non-idle step, there is no additional session in #'. Thus, there are at most s — 1 sessions in
Bof3'. A contradiction. [

5 The Non-Uniform Case

In this section we consider the case problem where delays on communication links are not
uniform. Specifically, we assume that for each (¢,7) € F, the delay of any message along (7, 7)
is in the interval [0, d(¢, 7)] for some d(3, j) such that 0 < d(¢,7) < oo.

We first develop some notation that is necessary for stating our results. Let p be a path
from node vy to node vy in G, i.e., a sequence of nodes vy, v1,...,vr such that for each i,
1 <@ <k, (vi,viqy1) € E. Denote by I(p) the length, k, of p. We define the delay on p, d(p), to
be the sum of the delay on its edges, i.e.,



We define the delay from node i to node j, del(i, j), to be the minimum of d(p) over all paths
p between i and j. Naturally, the delay on G, J(G), is the maximum of the delay from one
node of GG to another, over all pairs of nodes in G, i.e.,
d(G) = del(i, 7).
(G) = max del(i. j)

Intuitively, d(G) is the worst-case delay that a message between a pair of nodes may incur
along a “shortest-delay” path from ¢ to j in G. However, because of local processing time a
message that is sent along a path p can effectively incur a delay of up to d(p)+I(p), since each
process in the path can incur a local processing delay of at most 1 and postpone forwarding

the message until its next computation step. Thus, we define the effective delay on G to be
D(G) = max min d(p)+1(p)) .
(&) €V p a path from 7 to ]( () +1(r))

Clearly, in the uniform case, when all delays are equal to d, J(G) and ﬁ(G) are equal to
diam(G)d and diam(G)D, respectively. Also,

d(G) < D(G) < d(G) + diam(G) .

Denote diin = ming; j)ep d(i, 7).

To obtain bounds for the non-uniform case, we observe that ﬁ(G) naturally replaces
diam(G)D in the upper bounds for the uniform analogs, while d(G') naturally replaces diam(G)d

in the corresponding lower bounds.

Also, for the lower bounds for the semi-synchronous model, let 4" = min{| -], d(G)} and
assume, as in the proof of Theorem 4.7, that b’ > 1. Note that if the condition d > % + 2 holds
with dmin for d, then it also holds with d(s, 7), for any (7,j) € F, for d. This implies that the
non-uniform analog of the condition d > % + 218 dpin > drg}“ + 2. We next state our upper
and lower bound results for the non-uniform case. Their proofs exactly follow those of their

uniform analogs and are omitted.

Theorem 5.1 Let GG be any graph. There exists an asynchronous algorithm AL’ which solves

the s-session problem on G within time D(G)(s —1).

Theorem 5.2 Let GG be any graph. There exists a semi-synchronous algorithm A3 which
solves the s-session problem on G within time 1+ min{[1] + 1, D(G)}(s—2).
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Figure 3 should appear here.

Figure 3: Summary of the results

Theorem 5.3 Let GG be any graph. There does not exist an asynchronous algorithm which

solves the s-session problem on G within time strictly less than d(G)(s —1).

. dmin
Theorem 5.4 Let G be any graph and assume that dpyin > i {[1/20] diam(@)AG)] + 2. There
does not exist a semi-synchronous algorithm which solves the s-session problem on G within

time strictly less than 1 4+ min{| %], d(G)}(s —2).

6 Discussion and Directions for Future Research

Assuming that 1 < d, i.e., that D & d, we have almost matching upper and lower bounds
of diam(G)D(s — 1) for the asynchronous model. For the semi-synchronous model, we have
proved an upper bound of 1+ min{|1] + 1,diam(G)D}(s — 2) and a lower bound of 1 +
min{| 5], diam(G)d}(s — 2). The proof of the last lower bound relies on the assumption

d > min{l_l/?cﬁdiam(G)d} + 2. We remark that this condition holds for large enough values of
% and d. Neglecting roundoffs, the upper bound is within a factor of 2 of the lower bound.
Similar results were proved for the cases where message delays are not uniform. We summarize
our main results in Figure 3. The case where processes do not start simultaneously is studied

elsewhere ([9]), where our techniques are extended to yield similar results for this case.

The work presented in this paper continues the study of time bounds in the presence of tim-
ing uncertainty within the framework of the semi-synchronous model ([2, 3]). Our results give
a time separation between semi-synchronous (in particular, synchronous) and asynchronous
networks. Unlike previous separation results ([1, 6]), our results do not rely on the ability to

schedule several steps by the same process at the same real time.

The results presented in this paper have been extended to the model where processes
communicate via shared memory ([8, 12]). Rhee and Welch also studied the session problem

in two intermediate timing models—the sporadic model and the periodic model ([12]).

Our work leaves open several interesting problems. An obvious open problem is to close

the gap between the lower and the upper bounds for the semi-synchronous case. It will be

interesting to relax the assumption d > T Ll/?cﬁdiam(G)d} + 2 used to prove the lower bound
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for the semi-synchronous model. The definition of a session does not require processes to be

“aware” of a session’s end; how do the bounds change if this requirement is imposed?

Our results show that there are some synchronous algorithms that cannot be simulated by
asynchronous algorithms without significant time overhead (e.g., algorithms for the s-session
problem). In contrast, the results of Awerbuch ([4]) indicate that there are some synchronous
algorithms which can be simulated by asynchronous algorithms with only constant time over-
head. Perhaps the most interesting extension of our research is to characterize the synchronous
algorithms which can (respectively, cannot) be efficiently simulated by asynchronous algo-

rithms.
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H Step time range ‘ Upper bound ‘ Lower bound

[0,1] diam(G)D(s — 1) diam(G)d(s — 1)
(0,1] 14 diam(G)D(s — 2) 1+ diam(G)d(s — 2)
L%(S B Q)Jv
if no communication is used
[c, 1] 1+ min{|1] 4+ 1,diam(G)D}(s — 2)
(0<e<) 1+ min{|5-], diam(G)d}(s — 2),

: d
ifd> min{ L diam(G)d) 2

Figure 3.



