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ABSTRACT
The abstract problem of using P failure-prone processors to cooperatively update

all locations of an N-element shared array is called Write-All. Solutions to Write-All

can be used iteratively to construct efficient simulations of pram algorithms on failure-
prone prams. Such use of Write-All in simulations is abstracted in terms of the iterative

Write-All problem. The efficiency of the algorithmic solutions for Write-All and iterative

Write-All is measured in terms of work complexity where all processing steps taken by
the processors are counted. This paper considers determinitic solutions for the Write-

All and iterative Write-All problems in the fail-stop synchronous crcw pram model
where memory access concurrency needs to be controlled. A deterministic algorithm
of Kanellakis, Michailidis, and Shvartsman [16] efficiently solves the Write-All problem
in this model, while controlling read and write memory access concurrency. However
it was not shown how the number of processor failures f affects the work efficiency of
the algorithm. The results herein give a new analysis of the algorithm [16] that obtain
failure-sensitive work bounds, while retaining the known memory access concurrency
bounds. Specifically, the new result expresses the work bound as a function of N , P

and f . Another contribution in this paper is the new failure-sensitive analysis for iterative

Write-All with controlled memory access concurrency. This result yields tighter bounds
on work (vs. [16]) for simulations of pram algorithms on fail-stop prams.

Keywords: Parallel algorithms, work complexity, fault-tolerance, algorithm simulations,
memory access concurrency.

1. Introduction

The Parallel Random Access Machine, or pram, has served as the target model
for numerous synchronous shared-memory parallel algorithms [8,19,15]. The pram

model provides a convenient abstraction that combines the simplicity of the ram

model with the power of parallelism — this makes the pram easy to “program”
using a high-level notation. There is ongoing research [1,28] developing hardware
platforms that can be used to efficiently execute algorithms expressed in pram-like
programming languages. However, pram makes assumptions that, given the cur-
rent state of technology, make it difficult for it to be implemented as a scalable
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parallel architecture. The model assumes that the processors are synchronous, that
shared memory can be concurrently accessed by arbitrary number of processors, and
that the processors are completely reliable. Several approaches have been developed
in an attempt to deal with this by providing a sufficiently high-level programming
model while weakening the pram assumptions or by using closely-related alternative
models (e.g, [23,11,18,6,22,25,27,10]). Some approaches provide algorithmic simu-
lations of pram algorithms on other platforms. It has been shown that solutions
for a particular problem, called Write-All, can be used as iteratively in constructing
such simulations (e.g., [7,22,26]). The Write-All problem [17] is defined as follows:
Given a N -element array and P processors, set each element of the array to 1.

Write-All captures the essence of the computational progress that can be natu-
rally accomplished in unit time by a pram where P = N . Here the storing of values
in the shared array models constant-time computation that can be performed by
the individual processors. The iterative use of Write-All in simulations of parallel
algorithms on “imperfect” platforms led to the formulation of the iterative Write-All

problem [13]: Given a sequence of r shared arrays of size N and P initial processors,
write the value 1 into all r · N locations, under the restriction that each location of
the ith array is set to 1 before any location of the (i + 1)st array is written.

Obtaining efficient solutions for Write-All and iterative Write-All becomes very
challenging in the presence of failures, or in the absence of synchrony, or without
concurrent memory access; e.g., [4,18,3,9,20,24,5]. The efficiency of Write-All algo-
rithm is assessed in terms of the work complexity that accounts for all steps taken
by the processors during the computation [17]. Optimal Write-All solutions have
work O(N) and optimal iterative Write-All solutions have work O(r · N) for r it-
erations, while solutions having polylogarithmic (in N) multiplicative overhead are
considered to be efficient.

Background. We consider deterministic synchronous systems, where processors
are subject to stop-failures, and where memory access concurrency must be either
controlled or eliminated. Note that for certain failure patterns with up to P − 1
failures, the work must be quadratic if processors are not allowed to access certain
memory cells concurrently; cf. the Write-One problem and the Ω(P 2) lower bound
for crew (concurrent-read, exclusive-write) machines [18]. Thus in the presence of
failures and in the absence of concurrency, parallel computation can be extremely
inefficient. This is not surprising: redundancy is necessary for achieving fault-
tolerance and concurrent memory access provides redundancy, e.g., when several
processors write a value to the same shared memory location then the value is
written correctly even if only one processor completes the write. If concurrency
must be allowed to achieve efficiency, then it is interesting to understand whether
concurrent memory access can be controlled in the presence of failures.

Consider a step of a parallel computation, where a particular location m is
written by p processors. Then p − 1 of these writes are potentially “redundant”,
because a single write suffices. When considering the common crcw pram model
where all writers write identical values when accessing the same memory location,
then a single write indeed suffices. Thus in this work we measure “concurrency” as
the number of redundant memory accesses, and we measure concurrency separately
for reads and writes. Note that the erew (exclusive-read, exclusive-write) model
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has memory access concurrency of 0, while a single step of a P -processor crcw

pram can have concurrency as high as P − 1.

It was shown by Kanellakis, Michailidis and Shvartsman in [16] that it is indeed
possible to construct efficient fault-tolerant algorithms such that when concurrency
is required to tolerate failures, the number of concurrent accesses to memory loca-
tions increases gracefully as the number f of stop-failures increases. In particular
it was shown that in these algorithms, at any time, at most one processor accesses
any particular shared memory cell in the absence of failures, i.e., such algorithms
can be executed on erew (exclusive-read, exclusive-write) machines without any
need for concurrent memory access when f = 0.

The algorithms in [16] are quite involved and require a very careful analysis.
The authors performed a thorough analysis of the concurrency required by the
algorithms. However, the analysis of the work complexity is very conservative:
work is assessed for the worst case of stop-failures in the range 0 ≤ f < P , as a
function of P and N alone. That is, [16] did not show how the number of failures
f affects the upper bound on work of these algorithms.

An impossibility result [17] established that, when P = N , no optimal solu-
tion is possible for Write-All for f = ω(P/ log log P ). The main algorithm in [16]
achieves optimality when substantial processor “slackness” is assumed, i.e., when P
is substantially smaller than N . Note that since the analysis in [16] is not sensitive
to f , the optimal range of processors is necessarily conservative, because it is given
for the worst case of failures without identifying f .

Contributions. We derive the first failure-sensitive bounds on work for deter-
ministic Write-All and iterative Write-All algorithms in the natural setting where
memory access concurrency must be controlled . The target model of computation is
the crcw pram where processors are subject to arbitrary patterns of stop-failures.
We use our approach [13] for analyzing work-performing algorithms by separately
assessing the costs of tolerating failures and the costs of achieving perfect load
balancing. We give a new failure-sensitive analysis of algorithm KMSa from [16],
and we refine its range of optimality. We then use algorithm KMS to establish
new failure-sensitive bounds on work for the iterative Write-All problem, for syn-
chronous shared-memory systems, while simultaneously bounding memory access
concurrency. This result yields tighter bounds on work (vs. [16]) for simulations of
pram algorithms on fail-stop prams.

We let Write-All(N, P, f) stand for the Write-All problem for an array of size
N , P processors (P ≤ N), and up to f stop-failures (0 ≤ f < P ). We let r-Write-

All(N, P, f) be the iterative problem of using P processors to solve r instances of
N -size Write-All by “solving one instance at a time”. Note that if W is the work
of Write-All(N, P, f), then O(r · W ) gives an immediate upper bound for r-Write-

All(N, P, f), however we show that a much tighter upper bound can be derived.

Recall that by memory access concurrency we mean the total number of re-
dundant memory accesses. We let rc(N, P, f) stand for the worst case total read
concurrency, and wc(N, P, f) stand for the worst case total write concurrency, for
a terminating computation in the presence of f failures. We now state our results.

aKanellakis, Michailidis and Shvartsman call this algorithm W
opt
CR/W

in [16].
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1. The Write-All(N, P, f) problem can be solved with write concurrency
wc(N, P, f) ≤ f , and read concurrency rc(N, P, f) ≤ 7f log N [16]. We give a
failure-sensitive analysis and show that this can be done with work W1:

(a) W1 = O(N + P log2 N log2 P/ log log P ) when f > P/ logP,

(b) W1 = O(N + P log2 N log2 P/ log(P/f)) when f ≤ P/ logP.
(1)

We also show that algorithm KMS is optimal if P = O(N log log N/ log4 N),
when f > P/ logP , and if P = O(N log(N/f)/ log4 N), when f ≤ P/ log P . The
latter case improves the result in [16], where optimality is shown only for P =
O(N log log N/ log4 N).

2. We show that the iterative r-Write-All(N, P, f) problem can be solved with write
concurrency wc(N, P, f) ≤ f , and read concurrency rc(N, P, f) ≤ 7f log N . Our
failure-sensitive analysis shows that this can be done with work Wr :

(a) Wr = O(r · (N + P log2 N log2 P/ log log P )) when f > Pr/ log P,

(b) Wr = O(r · (N + P log2 N log2 P/ log(Pr/f))) when f ≤ Pr/ log P.
(2)

Note that our bounds for Wr in (2) are asymptotically better than those obtained
by computing the product of r and the (non-iterated) Write-All bounds W1 in (1).

3. Let A be any N -processor, r-time erew pram algorithm. We show that A can
be simulated on a P -processor crcw pram subject to up to f stop-failures with
write concurrency wc(N, P, f) ≤ f , read concurrency rc(N, P, f) ≤ 7f log N , and
with work Wr as in (2).

Finally we note that the constants hidden in the O(·) are not large, however the
precise analysis requires restating the analysis in [16] in substantial detail.

Related work. Write-All algorithms can be used iteratively to simulate parallel
algorithms formulated for synchronous failure-free processors, in deterministic and
probabilistic settings, e.g., [22,24,25,26]. This commonly requires that (i) the indi-
vidual processor steps are made idempotent (since they may have to be performed
multiple times), and that (ii) a linear-size (in P ) auxiliary memory is made avail-
able (to be used to store intermediate results). While the former can be solved
with the help of an automated tool, e.g., a compiler, the latter requires sophisti-
cated solutions because of the difficulty of (re)using the auxiliary memory due to
“late writers” (slow processors that unknowingly write stale values to memory).
Examples of randomized solutions addressing these problems include [23,2,20]. An-
other approach to simulations uses an optimistic approach, where the computation
proceeds for several steps assuming that all tasks assigned to active processors are
successfully completed, e.g., [21]. In some deterministic models optimal simulations
are possible (cf. [26]), however randomized solutions are able to achieve optimality
(with high probability) for broader ranges of models and algorithms. An example
of a practical implementation is discussed in [7].

Document structure. The rest of the paper is structured as follows. In Section 2
we give models and definitions. In Section 3 we review algorithm KMS and in
Section 4 we present its new failure-sensitive analysis. We also show the new analysis
for iterative Write-All and the new improved analysis on pram simulations. We
conclude in Section 5. A preliminary version of this paper appeared as [14].
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2. Models and Definitions

In this section we define the model of computation, the Write-All problems, and
the efficiency measures of memory access concurrency and work.

Parallel setting. We use as the basis the crcw pram where all concurrently
writing processors write the same value (common crcw). There are P initial
processors with unique identifiers (PID) in the range 1, . . . , P . Each processor knows
its PID, P , and the input size N . Shared memory is accessible to all processors and
each memory access takes unit time. Each processor also has a constant size local
memory. Each memory cell can store Θ(log max{N, P}) bits. The input is stored
in N cells in shared memory and the rest of the shared memory is initially cleared
(contains zeros).

Model of failures. We extend the basic parallel model with a failure model. We
assume the fail-stop processor model, where a processor may stop at any moment
during the computation and once stopped it does not restart. Shared memory writes
are atomic with respect to failures: failures can occur before or after a write, but
not during the write. We let an omniscient adversary impose failures on the system,
and we use the term failure pattern to denote the set of the events, i.e., processor
stop-failures, caused by the adversary. The only restriction on the adversary is that
at least one processor must remain operational. For a failure pattern F , we define
the size f of the failure pattern as f = |F | (the number of failures). Our failure
model is the set of all failure patterns F , such that |F | < P .

Write-All problems. We define the Write-All problem as follows:

Write-All: Using P fail-stop processors write the value 1 into all loca-
tions of a shared array of size N .

We let Write-All(N, P, f) stand for the Write-All problem, for a shared array of size
N , P processors (P ≤ N), and any pattern F of stop-failures such that |F | ≤ f < P .
We define the iterative Write-All problem as follows:

Iterative Write-All: Given a sequence of r shared arrays of size N each,
write the value 1 into all r · N locations using P fail-stop processors,
under the restriction that each location of the ith array is set to 1 before
any location of the (i + 1)st array is written.

We let r-Write-All(N, P, f) denote the iterative Write-All problem, for a sequence
of r shared arrays of size N each, P processors (P ≤ N), and any fail-stop pattern
F such that |F | ≤ f < P .

Measures of efficiency. We are interested in studying the complexity of Write-

All algorithms measured as work (or available processor steps [18]), and their read
and write concurrency.

For a computation subject to a failure pattern F , denote by Pi(F ) the number
of processors completing an instruction in step i of the computation.

Definition 1 Given a problem and a P -processor algorithm that solves its instance
of size N for a failure pattern F , with |F | ≤ f , by time step τ(F ), then the work

complexity W of the algorithm is: W = WN,P,f = max|F |≤f

{

∑τ(F )
i=1 Pi(F )

}

.
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We now define the read and write concurrency measures [16] that assess the
worst case number of “redundant” reads and writes.

Definition 2 Given a problem and a P -processor algorithm that solves its instance
of size N for a failure pattern F , with |F | ≤ f , by time step τ(F ), if at time i
(1 ≤ i ≤ τ(F )), P r

i (F ) processors complete reads from N r
i (F ) distinct locations and

Pw
i (F ) processors complete writes to Nw

i (F ) distinct locations, then we define:

(i) read concurrency rc as: rc(N, P, f) = max
|F |≤f

{

∑τ(F )
i=1 (P r

i (F ) − N r
i (F ))

}

and

(ii) write concurrency wc as: wc(N, P, f) = max
|F |≤f

{

∑τ(F )
i=1 (Pw

i (F ) − Nw
i (F ))

}

.

3. Algorithm KMS

Algorithm KMS [16] solves the Write-All(N, P, f) problem, for any f < P . In this
section we give a description of the algorithm (to avoid a complete restatement, we
refer the reader to [16] for details). The algorithm consists of two layers, where the
top layer provides the overall control structure for solving Write-All and the bottom
layer is responsible for controlling memory access concurrency. The top layer control
structure is described in Section 3.1. The bottom layer provides specific access
routines for reading from, and writing to, the shared memory; this is presented,
following [16], in Sections 3.2 and 3.3.

Algorithm KMS uses several data structures represented as binary trees. (1) The
progress tree records the progress of the computation and it is used to balance
processor loads in a divide-and-conquer fashion. (2) The processor enumeration
tree is used to estimate the number of operational processors and to renumber the
processor compactly. (3) The processor priority tree coordinates access to memory
by determining which processors are allowed to read or write each shared location
that has to be accessed concurrently by more than one processor. (4) The broadcast
tree is used to disseminate values among readers and writers. The use of broadcast
trees in conjunction with priority trees serves to bound read and write concurrency.

The readers familiar with the algorithm can proceed to Section 4.

3.1. Top Layer Control Structure

The top level algorithm (Figure 1) consists of the main loop that iterates through
four phases until the Write-All problem is solved (this is based on algorithm W [17]).
The algorithm uses two complete binary trees: the processor enumeration tree with
P leaves, and the progress tree with H leaves (1 ≤ H ≤ N), where a cluster of N/H
elements of the Write-All array is associated with each leaf. The active processors
synchronously execute the four phases as follows:

Phase 1 , failure detection via processor enumeration. All processors traverse,
bottom-up, the processor enumeration tree starting with the leaves associated with
processor identifiers (PIDs) and finishing at the root. This parallel-prefix-like algo-
rithm enumerates active processors and yields an overestimate of the total.

Phase 2 , processor allocation. The processors traverse, top-down, the progress tree
using a divide-and-conquer approach (based on processor enumeration and progress
measurement) to allocate themselves to the unvisited leaves of the progress tree.
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01 forall processors PID=1..P parbegin

02 Phase 3 : Visit the leaves based on PID to perform work on the input data
03 Phase 4 : Traverse the progress tree bottom up to measure progress
04 while the root of the progress tree is not H do

05 Phase 1 : Traverse the enumeration tree bottom up to enumerate processors
06 Phase 2 : Traverse the progress tree top down to reschedule work
07 Phase 3 : Perform rescheduled work on the input data
08 Phase 4 : Traverse the progress tree bottom up to measure progress
09 od

10 parend

Fig. 1. Top level control structure of algorithm KMS.

Phase 3 , work phase. The processors work at the leaves they reached in Phase 2 ,
where they write to the appropriate N/H elements of the input array.

Phase 4 , progress measurement. The processors traverse, bottom-up, the progress
tree and compute an underestimate of the progress for each subtree. They start
from the leaves where they were at the end of Phase 3 . Here the underestimate is
computed using a version of the common logarithmic-time summation algorithm.

The bottom layer of algorithm KMS controls the concurrency of access to shared
memory. We first describe the main data structure, then the algorithms.

3.2. Processor Priority Trees

Algorithm KMS controls read and write concurrency by organizing processors into
a processor priority tree (PPT). This is a binary tree whose nodes are associated
with processors based on a processor numbering. Say there are p ≤ P processors,
numbered from 1 to p, that intend to write to a location T at the same time. The
PPT has p nodes that are also numbered from 1 to p in a breadth-first left-to-right
fashion. The processor i is associated with the node i. Thus all levels of the tree,
except possibly for the last, are full and the leaves of the last level are packed as left
as possible. Priorities are assigned to the processors according to the tree levels:
the root has the highest priority and priorities decrease with each successive level.

Priorities determine when a processor can write to the memory location T . The
processors with the same priority attempt to write to T concurrently but only if
higher priority processors have failed to do so. So, if the value of T is changed by
processors at a certain priority level, then no lower priority processors will write to
T . To ensure this, processors at all priority levels need to decide whether the value
of T is “new” or “old”. If read concurrency were of no concern then all processors
can simply read the value. In algorithm KMS, a broadcast routine is used to control
read concurrency by propagating the value of T within each level of PPT.

The top layer of algorithm KMS has processors traversing the progress and enu-
meration trees in a bottom-up fashion. Here at each intermediate node of a tree two
PPTs are combined into one as the processors that come up from the children of the
node “meet” at the parent. This involves compacting and merging the PPTs. PPTs
are compacted to eliminate “certifiably” faulty processors. Such processors are de-
fined to be the processors of the higher priority than the processors that effected
the write. The algorithm ensures that all processors in a PPT know the priority
level of the successful writers, which allows the survivors to renumber themselves
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by subtracting from their indices the number of certifiably faulty processors. Then
the two PPTs are merged: the processors of the left PPT are appended to the tree
formed by the processors of the right one. This is done by adding the number of
the processors in the right PPT to the processor numbers of the left PPT.

3.3. Dealing with Individual Reads and Writes

We now describe three algorithms used to control memory access concurrency for
individual reads and writes.

Algorithm CR/W. The most general algorithm, called CR/W (Concurrent
Read/Write), implements broadcast for processors within different levels of a PPT
and allows processors to write to a shared location T only if processors at higher
levels have not done so.

Communication between processors in a PPT takes place through a shared array,
call it B, where the processors communicate based on their positions in the PPT.
B[k] stores values read by the kth processor of the PPT. Each processor on levels
0, . . . , i−1 is associated with exactly one processor on each of the levels i and lower.
Specifically, the jth processor of the PPT broadcasts to the jth processor of each
level below its own (in a left-to-right numbering within each level). The algorithm
makes ⌊log p⌋+ 1 iterations that correspond to the PPT levels. At iteration i, each
processor of level i reads its B location. If this location has not been updated, then
the processor reads T directly. Since each full PPT level has one more processor
than all the levels above it combined (PPT is a binary tree), there may be at least
one processor on each level that reads T directly since no processor at a higher level
is assigned to it (for a full level, this processor is the rightmost one, or the root
itself for level 0). In the absence of failures this is the only access to T . Concurrent
accesses can occur only in the presence of failures, in which case the processors on
the same level that fail to receive values from processors at higher levels concurrently
read T . A processor reading T checks whether it contains the value to be written,
then writes to it if it does not. Whenever processors update T they write the new
value for T as well as the index of the level that effected the write. If a processor k
accesses T and determines that T has the correct value, and if the failed processor ℓ
that should have broadcast to k is at or below the level that effected the write, then
k assumes the position of processor ℓ in the PPT. This “moves” failed processors
toward the leaves. Failed processors are moved downwards only if they are not
above the level that effects the write – processors above this level are eliminated by
PPT compaction that takes place at the end of each run of CR/W.

Algorithms CR1 and CR2. Algorithm CR/W combines a read with a write.
However, when the processors of a PPT need to read a common location but no write
is involved, two simpler algorithms are used. Algorithm CR1 is similar to CR/W
but includes no write step; it is simpler than CR/W in that the processors that are
found to have failed are pushed toward the bottom of the PPT independent of their
level. This is used for bottom-up traversals. Algorithm CR2 uses a simple top-down
broadcast through the PPT. Starting with the root each processor broadcasts to
its two children; if a processor fails then its two children read T directly. Thus the
processors of level i broadcast only to processors of level i + 1. Unlike CR1, no
processor movement takes place. This is used for top-down traversals.
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From the description of algorithms CR/W, CR1, and CR2 it follows that each
takes time O(log P ).

Using CR/W, CR1, and CR2 in algorithm KMS. We now describe how
algorithm KMS integrates algorithms CR/W, CR1, CR2, and PPT merging and
compaction within its four phases.

Phase 1 : Processors begin this phase by forming single-processor PPTs. The objec-
tive is to write to each internal node of the enumeration tree the sum of the values
stored at its two children. Algorithm CR/W is used to store the new value, the size
of the PPT and the index of the level that completed the write. Then all PPTs are
compacted. In order to merge PPTs the processors use algorithm CR1 to read the
data stored at the enumeration tree node that is the sibling of the node they just
updated. Then PPTs are merged. At this point the processors of the merged PPTs
know the value they need to write at the next level of the enumeration tree. This
value is the sum of the value written by CR/W and the value read by CR1. Hence
one call to each of CR/W and CR1 is needed for each level of the enumeration tree.

Phase 2 : This phase involves no concurrent writes. Processors traverse top-down
the progress tree to allocate themselves to the unvisited leaves. The only global
information needed at each level is the values stored at the two children of the
current node of the progress tree. Two calls to CR2 are used to read these values,
one for each child. Using this information the processors of a PPT compute locally
whether they need to go left or right based on their identifiers. Here each PPT
must be split in two. If a PPT has k processors of which k′ need to go left and the
remaining k − k′ need to go right, then by convention the first k′ processors of the
PPT form the PPT of the left child and the remaining k − k′ processors form the
PPT of the right child. No compaction or merging is done in this phase.

Phase 3 : Processors form PPTs based on the information they gathered during
Phase 2 and proceed to write 1 to the N/H locations that correspond to the leaf
they reached. At this point, processors decide whether they need to use algorithm
CR/W, followed by compaction for each of these writes. This is done locally by each
processor: at the beginning of this phase, the processors have consistent information
on the number of unvisited leaves, call it u, and the number of available processors,
call it a (this is the information they used to allocate themselves at the leaves they
reached by the end of Phase 2 ). When u > a, it is guaranteed (see [16]) that
there is at most one processor per leaf, and therefore the processors do not use
CR/W and compaction. Instead the processors go sequentially through the cluster
of N/H elements at the leaf they reached and simply write to each element. When
u ≤ a, several processors may be allocated to the same leaf and the processors use
algorithm CR/W followed by compaction to perform each write in the cluster. In
any case, no merging is involved.

Phase 4 : This phase initially uses the PPTs that resulted at the end of Phase 3 .
The task to be performed is similar to that of Phase 1 . As before, algorithm
CR/W is used for writing followed by compaction and one call to algorithm CR1,
after which the PPTs are merged.

We now state previously known results [16] for algorithm KMS and for simulations
using this algorithm.
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Theorem 1 [16] Algorithm KMS solves the Write-All(N, P, f) problem with work
W = O(N + P log2 N log2 P/ log log N), write concurrency wc ≤ f , and read con-
currency rc ≤ 7 f log N .

Theorem 2 [16] Any N -processor, r-time erew pram algorithm can be sim-
ulated on a fail-stop P -processor crcw pram with work W = O(r · (N +
P log2 P log2 N/ log log N)), with write concurrency wc ≤ f , and the read concur-
rency rc ≤ 7f log N , where f is the number processor stop-failures.

These prior results do not show how the work depends on the number of pro-
cessor stop-failures.

4. Analysis

We now give a new, failure-sensitive, analysis of algorithm KMS, and we obtain
new failure-sensitive bounds on work of pram simulations with controlled memory
access concurrency.

In the analysis we use the parameterized version of algorithm KMS with P ≤ N
and where the progress tree has H = max{P, N/ logN log P} leaves. The array
elements are associated with the leaves of this tree, with N/H array elements per
leaf. Henceforth we use KMS to denote this parameterized algorithm.

For algorithm KMS, we define Ui to be the number of unvisited leaves of the
progress tree (Ui ≤ H), and Pi to be the number of non-faulty processors (Pi ≤ P ),
at the start of the i-th iteration of the main loop. We define σ1 to be the time
required for a processor to complete one iteration of the main loop when Pi < Ui.
We define σ2 to be the time required for a processor to complete one iteration of
the main loop when Pi ≥ Ui. We define a block-step to be the execution by one
processor of the body of the main loop.

Lemma 1 The work required by algorithm KMS to solve the Write-All(N, P, f)
problem is W = O(σ1 · H + σ2 ·

P log P
log log P ).

Proof : We consider two cases.

Case 1: Consider all iterations i in which Pi < Ui. In this case the number of
block-steps is O(H) since no more than one processor is assigned to each leaf of the
progress tree. Then, using the definition of σ1, the work of algorithm KMS in this
case is O(σ1 · H).

Case 2: We now account for all iterations in which Pi ≥ Ui. In this case the number
of block-steps is O(P log P

log log P ). Given the load-balancing properties of algorithm

KMS, this follows directly from the case analysis of Theorem 3.1 [12], where Case 2
considers the work of perfect load-balancing iterative algorithms when Pi > Ui.
(The simpler subcase of Pi = Ui is dealt similarly.) Then, using the definition of
σ2, the work of algorithm KMS in this case is O(σ2 · P

log P
log log P ).

Combining the two cases yields the result. 2

Note that in the above lemma, work is not expressed as a function of f , the
number of processor stop-failures. In the next lemma, we give work as a function
of f , for f ≤ P/ log P .

Lemma 2 The work required by algorithm KMS to solve the Write-All(N, P, f)
problem when f ≤ P

log P is W = O(σ1 · (H + P ) + σ2 ·
P log H
log(P/f) ).
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Proof : Let U be the number of unvisited leaves of the progress tree (recall that
the tree has H leaves with N/H array elements assigned to each leaf). Let ∆f
denote the number of processor stop-failures within a particular iteration of the
algorithm. ∆f is, in general, different for each iteration, though the sum of these
for all iterations cannot exceed f . We set b = b(P, f) = P/(2f), and we define
W (U, P, f), where U ≤ H , to be the work required to solve Write-All(U ·N/H, P, f).
We show that for all U , P and f , W (U, P, f) is no more than σ1(P + U) + 3σ2P +
σ2P logP/(2f) U (= O(σ1 · (U + P ) + σ2 · P logP/f U)). The proof proceeds by
induction on U (following our approach in [13]).

Base Case: Observe that when U = 1 and P ≥ 1 (hence P ≥ U), W (U, P, f) ≤
σ2P ≤ σ1(P + U) + 3σ2P + σ2P logb U , for all P and f , as desired.

Inductive Hypothesis: Assume that we have proved the result for all U < Û and all
P and f .

Inductive Step: Consider U = Û . We investigate two cases:

Case 1: P < Û . In this case each processor is assigned to a unique unvisited leaf
(this follows from the load-balancing properties of algorithm KMS), hence

W (Û , P, f) ≤ σ1P + max
0≤∆f≤f

W (Û − P + ∆f, P − ∆f, f − ∆f).

As P − ∆f > 0, Û − P + ∆f < Û and, by the induction hypothesis,

W (Û , P, f) ≤ σ1P + max
0≤∆f≤f

[σ1(P − ∆f + Û − P + ∆f ) + 3σ2(P − ∆f)

+ σ2(P − ∆f) logb(P−∆f,f−∆f)(Û − P + ∆f)].

Now, b(P − ∆f, f − ∆f) ≥ b(P, f), so that

W (Û , P, f) ≤ σ1(P + Û) + 3σ2P + σ2P logb(P,f) Û ,

as desired.

Case 2: P ≥ Û . In this case, by assumption we have

W (Û , P, f) ≤ σ2P + max
0≤∆f≤f

W (γÛ , P − ∆f, f − ∆f),

where γ = γ(Û , P, ∆f) is the ratio of the number of the remaining unvisited leaves
to Û (0 ≤ γ < 1).

Let φ = ∆f/P ≤ f/P < 1, the fraction of processors which fail during this iteration;
then φ/2 < γ < 2φ.
(

To see this, observe that φP

⌈P/Û⌉Û
= φP/⌈P/Û⌉

Û
≤ γ ≤ φP/⌊P/Û⌋

Û
= φP

⌊P/Û⌋Û
. Let

P = cÛ , c > 1. Then c
⌈c⌉φ = φcÛ

⌈c⌉Û
≤ γ ≤ φcÛ

⌊c⌋Û
= c

⌊c⌋φ. Now observe that

1 ≤ c
⌊c⌋ < 2 and 1/2 < c

⌈c⌉ ≤ 1, ∀c > 1, and hence, φ/2 < γ < 2φ, as desired.
)

Then,
W (Û , P, f) ≤ σ2P + max

φ∈[0,f/P ]
W (γÛ , (1 − φ)P, f − φP ).

As γÛ < Û , we may apply the induction hypothesis:

W (Û , P, f) ≤ σ2P + max
φ∈[0,f/P ]

[

σ1(γÛ + (1 − φ)P ) + 3σ2(1 − φ)P

+ σ2(1 − φ)P logb′(γÛ)
]

,
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where b′ = b(P − φP, f − φP ). As above, b′ ≥ b(P, f), so that

W (Û , P, f) ≤ σ2P + max
φ∈[0,f/P ]

[

σ1(γÛ + (1 − φ)P ) + 3σ2(1 − φ)P

+ σ2(1 − φ)P logb(P,f)(γÛ)
]

.

To complete the proof, it suffices to show that for all φ ∈ [0, f/P ],

σ1φP +2σ2P +σ2P logb(P,f) Û−(1−φ)σ2P logb(P,f)(γÛ) ≥ 3σ2(1−φ)P−σ1Û(1−γ).

Upper bounding 3σ2(1−φ)P − σ1Û(1− γ) with 3σ2(1−φ)P , removing σ1φP from
the left hand side, and dividing through by σ2P , it is sufficient to show that

2 + logb(P,f) Û − (1 − φ) logb(P,f)(γÛ) ≥ 3(1 − φ),

or, equivalently,

logb(P,f) Û − (1 − φ) logb(P,f)(γÛ) ≥ 1 − 3φ.

We now focus on the left hand side of the above equation:

logb(P,f) Û − (1−φ)
[

logb(P,f) γ + logb(P,f) Û
]

= φ logb(P,f) Û +(1−φ) logb(P,f) γ−1.

Since f ≤ P/ log P , for any P ≥ 16 we have that P/(2f) > 2. Observe that,

φ logb(P,f) Û + (1 − φ) logb(P,f) γ−1 ≥ (1 − φ) logb(P,f) γ−1

since Û ≥ P/f > P/(2f). (Note that if Û < P/f , then all leaves are visited in this
iteration.) Recall that γ−1 ≥ (2φ)−1 and φ < f/P . Therefore,

(1 − φ) logb(P,f) γ−1 ≥ (1 − φ) logb(P,f)(2φ)−1 ≥ 1 − 3φ.

Evidently,

W = O

(

σ1 · (U + P ) + σ2 ·
P log U

log(P/f)

)

= O

(

σ1 · (H + P ) + σ2 ·
P log H

log(P/f)

)

,

as desired. 2

We define the quantity Λr,P,f , that we use to simplify the presentation of the
results in this section.

Λr,P,f =

{

log(Pr
f ) when f ≤ Pr

log P

log log P when f > Pr
log P

Lemma 3 Algorithm KMS solves the Write-All(N, P, f) problem for any stop-
failure pattern using work W = O(σ1 · (H + P ) + σ2 · P log N/Λ1,P,f).

Proof : We first record that H < H + P , log P ≤ log N and log H ≤ log N . Then
the result follows by combining Lemmas 1 and 2 with the definition of Λ1,P,f (it is
log(P/f) when f ≤ P/ logP and log log P when f > P/ log P ). 2

Lemma 4 For algorithm KMS, σ1 = O(log N log P ) and σ2 = O(log N log2 P ).

Proof : We consider the following two cases.

Case 1: P < N
log N log P . Here the number of leaves in the progress tree is H =

N/ logN log P and in Phase 3 each processor writes to N/H = log N log P array
elements. The time required to traverse the enumeration and progress trees is
O(log N log P ) and the execution of CR/W takes O(log P ) time.
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For the iteration i when Ui ≥ Pi, algorithm CR/W is not used in Phase 3 and
therefore the time to update a leaf is O(log N log P ) (the number of elements).
Therefore, σ1 = O(log N log P ) + O(log N log P ) = O(log N log P ) (the time to
reach a leaf plus the time to update a leaf).

For the iteration i when Ui < Pi, algorithm CR/W is used in Phase 3 . In the
worst case, all processors could be allocated to the same leaf (e.g., when there is
only one unvisited leaf left) and hence, log P time must be spent at each element
of the leaf. Since there are log N log P elements per leaf the worst case time to
update a leaf is O(log N log2 P ). Hence, σ2 = O(log N log P ) + O(log N log2 P ) =
O(log N log2 P ).

Case 2:
N

log N log P ≤ P ≤ N. Here the number of leaves in the progress tree is

H = P and in Phase 3 each processor writes to N/P = O(log N log P ) array
elements. Then the bounds on σ1 and σ2 are obtained similarly to Case 1. 2

We now state and prove our main result for algorithm KMS.

Theorem 3 Algorithm KMS solves the Write-All(N, P, f) problem with write con-
currency wc ≤ f , read concurrency rc ≤ 7 f log N and work W = O(N +
P log2 N log2 P/Λ1,P,f).

Proof : The bounds on wc and rc are obtained from Theorem 1 (see [16]). We now
show the bounds on W , by considering the following two cases:

Case 1: P < N
log N log P . Here the number of leaves in the progress tree is

H = N/ logN log P . Combining Lemmas 3 and 4 we get W = O(σ1 · (H +
P ) + σ2 · P log N/Λ1,P,f) = O((log N log P ) · N/(log N log P ) + (log N log2 P ) ·
P log N/Λ1,P,f) = O(N + P log2 N log2 P/Λ1,P,f).

Case 2:
N

log N log P ≤ P ≤ N. Here the number of leaves in the progress tree is H = P .

Combining Lemmas 3 and 4 we have W = O(σ1 · (H + P ) + σ2 · P log N/Λ1,P,f) =
O((log N log P ) · P + (log N log2 P ) · P log N/Λ1,P,f) = O(P log2 N log2 P/Λ1,P,f).

The result is obtained by combining Case 1 and Case 2. 2

This analysis establishes the following processor ranges for which algorithm KMS
becomes optimal.

Corollary 1 Algorithms KMS is work-optimal if P = O(N log(N/f)/ log4 N),
when f ≤ P/ log P , and if P = O(N log log N/ log4 N)), when f > P/ log P .

Theorem 1 teaches that algorithm KMS becomes optimal if P =
O(N log log N/ log4 N), for all f < P . Corollary 1 shows that our failure-sensitive
analysis extends the range of optimality of the algorithm when f ≤ P/ logP .

We now obtain new failure-sensitive bounds for the iterative Write-All problem
with controlled read and write memory access concurrency.

Theorem 4 The r-Write-All(N, P, f) problem can be solved on P fail-stop pro-
cessors with write concurrency wc ≤ f , read concurrency rc ≤ f log N and work
W = O(r · (N + P log2 N log2 P/Λr,P,f)).

Proof : We solve r-Write-All(N, P, f) by running algorithm KMS r times, once for
each Write-All instance. We enumerate the r instances of Write-All using numbers
1, . . . , r, and we refer to instance i as the round i. For round i, let Pi be the number
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of active processors at the beginning of the round and fi be the number of crashes
during the round. Note that P1 = P , and that Pi ≤ P .

We first establish the bounds on the memory access concurrency. Let wci and rci

be the write and read memory access concurrency accrued in round i, respectively.
Then, wc =

∑r
i=1 wci and rc =

∑r
i=1 rci. Using Theorem 3 for each round, we

have that wci ≤ fi and rci ≤ fi log N . Therefore, wc =
∑r

i=1 wci ≤
∑r

i=1 fi =
f, and rc =

∑r
i=1 rci ≤ log N

∑r
i=1 fi = f log N, as desired.

Observe that the choice of each fi does not affect the bounds on the memory ac-
cess concurrency. However, in order to establish the bounds on work we need to de-
termine the values of the fis that maximize the overall work of r-Write-All(N, P, f).
We consider two cases:

Case 1: f > Pr
log P . Consider round i. From Theorem 3 we have that the work

for this round is O(N + Pi log2 N log2 Pi/ log(Pi/fi)) when fi ≤ Pi/ logPi and
O

(

N + Pi log2 N log2 Pi/ log log Pi)
)

otherwise. However in this case, we can have
fi = Θ (P/ logP ) for all rounds without “running out” of processors. Thus,

W = O
(

r ·
(

N + P log2 N log2 P/ log log P
))

.

Case 2: f ≤ Pr
log P . First observe that any reasonable adversary would not

fail-stop more that Pi/ logPi processors in round i, since it would not cause
more work than O(N + Pi log2 N log2 Pi/ log log Pi) (which is achieved when fi ≥
Pi/ logPi). Therefore, we consider fi ≤ Pi/ logPi for all rounds. Hence, the
work in every round i (per Theorem 3) is O

(

N + Pi log2 N log2 Pi/ log(Pi/fi)
)

=

O
(

N + P log2 N log2 P/ log(P/fi)
)

.

Let W (N, P, f) be this one-round upper bound. As f =
∑

fi, an upper bound
on r-Write-All(N, P, f) can be given by maximizing

∑

i W (N, Pi, fi) over all such
failure patterns. As W (·, ·, ·) is monotone in P , we may assume that Pi = P for
the purposes of the upper bound. We show that this maximum is attained at
f1 = f2 = . . . = fr. For simplicity, treat fi as a continuous parameter and consider
the factor in the single round work expression (given above) that depends on fi:
k/ log( P

fi

). (Here k is the constant hidden by the O(·) notation.)

The first derivative over fi is d
dfi

(

k/log
(

P
fi

))

= k/fi(log P − log fi)
2, and its sec-

ond derivative is d2

df2

i

(

k/log
(

P
fi

))

= 2k/f2
i (log P − log fi)

3−k/f2
i (log P − log fi)

2.

Observe that the second derivative is negative in the domain considered (assuming
P > 16). Hence the first derivative is decreasing (with fi). In this case, given any
two fi, fj where fi > fj , the failure pattern obtained by replacing fi with fi − ǫ
and fj by fj + ǫ (where ǫ < (fi −fj)/2) results in increased work. This implies that
the sum maximized when all fis are equal, specifically when fi = f/r.

As the above upper bound on the sum
∑

i W (N, Pi, fi) is valid over all fi in this
range, it holds in particular for the choices made by the adversary which must, of
course, cause an integer number of faults in each round. Therefore,

W = O
(

r ·
(

N + P log2 N log2 P/ log(Pr/f)
))

.

The bound on work W follows by the two cases and the definition of Λr,P,f . 2

Theorem 4 enables us to obtain a tighter bound on work when algorithm KMS is
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iteratively used to obtain efficient pram simulations on fail-stop prams (as opposed
to the bound of Theorem 2).

Theorem 5 Any N processor, r parallel time erew pram algorithm can be
simulated on a fail-stop P -processor crcw pram with work W = O(r · (N +
P log2 N log2 P/Λr,P,f )) so that the write concurrency of the simulation is wc ≤ f
and the read concurrency is rc ≤ 7f log N , f being the number of processor failures.

Proof : The complexity of simulating a single parallel step of N ideal processors
on P failure-prone processors does not exceed the complexity of solving a single
Write-All(N, P, f) instance [22,26]. The result then follows from Theorem 4. 2

Note that this last result can be extended to other pram variants, such as crew

and crcw, however in these cases the read and write concurrency of the simulation
depends on the actual read and write concurrency of the specific algorithms.

5. Conclusion

In this paper we derive the first failure-sensitive bounds on work for the Write-All

and iterative Write-All problems in the fail-stop synchronous crcw pram model
where memory access concurrency needs to be controlled. The failure-sensitive
solution for the iterative Write-All problem also leads to a new and tighter bound
on the work of pram simulations on fail-stop prams. We obtain our results by
giving a new analysis of the deterministic algorithm KMS [16]. Our future work in
this area targets bounds on work and memory access concurrency in other models,
such as prams with stop-failures and restarts. Another promising direction includes
the use of randomization that proved to be very effective in this general area, cf. the
work of Kontogiannis et al. [23].
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