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Abstract

The algebra of communicating shared resources (ACSR) is a timed process algebra which extends classical process algebras
with the notion of a resource. It takes the view that the timing behavior of a real-time system depends not only on delays due
to process synchronization, but also on the availability of shared resources. Thus, ACSR employs resources as a basic primitive
and it represents a real-time system as a collection of concurrent processes which may communicate with each other by means
of instantaneous events and compete for the usage of shared resources. Resources are used to model physical devices such as
processors, memory modules, communication links, or any other reusable resource of limited capacity. Additionally, they provide
a convenient abstraction mechanism for capturing a variety of aspects of system behavior.

In this paper we give an overview of ACSR and its probabilistic extension, PACSR, where resources can fail with associated
failure probabilities. We present associated analysis techniques for performing qualitative analysis (such as schedulability analysis)
and quantitative analysis (such as resource utilization analysis) of process-algebraic descriptions. We also discuss mappings between
probabilistic and non-probabilistic models, which allow us to use analysis techniques from one algebra on models from the other.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Modeling timing aspects of system behavior has a long history in process-algebraic formalisms. In this paper, we
advocate the use of resources in the modeling of real-time systems as a means of arriving at simpler and more faithful
models.

Process algebras, such as CCS [26], CSP [17], and ACP [6], have been developed to describe and analyze com-
municating, concurrently executing systems. They are based on the premises that the two most essential notions in
understanding complex dynamic systems are concurrency and communication [26]. The Algebra of Communicating
Shared Resources (ACSR [21]) introduced by Lee et al., is a timed process algebra which can be regarded as an
extension of CCS. The timing behavior of a real-time system depends not only on delays due to process synchronization,
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but also on the availability of shared resources. Most real-time process algebras adequately capture delays due to process
synchronization; however, they abstract out resource-specific details by assuming idealistic operating environments.
On the other hand, scheduling and resource-allocation algorithms used for real-time systems ignore the effect of
process synchronization except for simple precedence relations between processes. The ACSR algebra provides a
formal framework that combines the areas of process algebra and real-time scheduling and, thus, can help us to reason
about systems that are sensitive to deadlines, process interaction and resource availability.

The computation model of ACSR is based on the view that a real-time system consists of a set of communicating
processes that use shared resources for execution, and synchronize with one another. The notion of real time in ACSR
is quantitative and discrete, and is accommodated using the concept of timed actions. Executing a timed action requires
access to a set of serially reusable resources and takes one unit of time. Idling of a process is treated as a special
timed action that consumes no resources. The execution of a timed action is subject to the availability of the resources
used in it. The contention for resources is arbitrated according to the priorities of competing actions. To ensure the
uniform progression of time, processes execute timed actions synchronously. Similar to CCS, the execution of an event
is instantaneous and never consumes any resource. The notion of communication is modeled using events through
the execution of complementary events, which are then converted into an internal event. Processes execute events
asynchronously except when two processes synchronize through matching events. Priorities are also used to direct the
choice when several events are possible at the same time. Thus, the concurrency model of ACSR includes interleaving
semantics for events as well as lock-step parallelism for timed actions.

Naturally, the proposed framework inherits all the attractive features of process-algebraic approaches. To begin
with, it facilitates the modular and hierarchical specification of real-time systems. It provides a small set of operators
that can be used to build a large specification in a bottom-up fashion. It supports a number of constructs that are unique
to ACSR which provide the exception, timeout and interrupt features and abstraction mechanisms for resource-related
information. Furthermore, ACSR is accompanied by equivalence relations that are congruence relations. This feature
enables on one hand the hierarchical and stepwise development of large-scale systems and, on the other hand, the
verification of complex systems by reasoning about their parts.

The notion of a resource, which is already important in the specification of real-time systems, additionally provides a
convenient abstraction mechanism for probabilistic aspects of system behavior. A major source of behavioral variation
in a process is failure of physical devices, such as processors, memory units, and communication links. These are exactly
the type of objects that are captured as resources in ACSR specifications. Therefore, it is natural to use resources as a
means of exploring the impact of failures on a system’s performance. This direction of work was investigated in the
context of the process algebra PACSR [30], where the ACSR framework was extended with the possibility of resource
failures which happen with a given probability. Then, for each execution step that requires access to a set of resources,
we can compute the probability of being able to take the step. This approach allows us to reason quantitatively about a
system’s behavior. An interesting effect of associating probabilities with resources, is that the specification of a process
does not involve probabilities directly. Failure probabilities of individual resources are defined separately and are used
only during analysis. This makes specifications simpler and ensures a more systematic way of applying probabilistic
information. In addition, this approach allows one to explore the impact of changing probabilities of failures on the
overall behavior, without changing the specification.

In addition to PACSR, ACSR has been extended into a family of other process algebras. Extensions and variations
include GCSR [5] that allows the visual representation of ACSR processes, Dense-time ACSR [9] that includes a
more general notion of time, ACSR-VP [19] that includes a value-passing capability, and P2ACSR [35] that allows
to specify power-constrained systems. MCSR [23], an extension of ACSR with multicapacity resources, allows us to
consider memory constraints. The PARAGON toolset [34] provides tool support for modeling and analysis using these
formalisms.

In this paper we review some of the main results obtained in this line of work and we demonstrate the methodologies
obtained for the specification and analysis of real-time systems. In particular, we provide a comprehensive presentation
of ACSR and its probabilistic descendant PACSR from the perspective of modeling and reasoning about resource-
constrained real-time systems. In doing this, we highlight the design choices behind the main language features and
subtle interactions that exist between them which are important for system specification and verification. In the context
of ACSR, we discuss bisimulation-checking and we introduce an HML logic with until featuring regular expressions
over observables as parameters. Furthermore, we discuss a methodology for performing schedulability analysis of
real-time systems and we provide a compositional result which allows us to trace the source of undesirable deadlocks
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in system models. In the context of PACSR, we give emphasis on performing quantitative analysis of process-algebraic
descriptions by model-checking logical properties. Finally, we propose property-preserving mappings between ACSR
and PACSR. These mappings highlight the natural relationship between the two process algebras and allow us to
apply analysis techniques of one to the other. Interestingly, these mappings preserve bisimulation equivalence, which
implies that two probabilistic systems are equivalent if their non-probabilistic projections exhibit bisimilar behavior, and
vice versa.

Related work in the area of resource handling in embedded real-time systems falls into two categories. On the
one hand, the importance of the issue has been long realized by practitioners and a number of model-based, albeit
informal, approaches have been published. We mention [25,33,18,4,2] among many others. This modeling approach
is primarily concerned with high-level performance evaluations. Models in this category address concrete resources,
such as processors, communication channels and shared data. Modeling is done in terms of formulae that relate the
rate of resource use to the response time of a real-time task. The models are used either in a simulation environment to
predict quality-of-service properties of the real-time system or dynamically as part of access control mechanisms. For
example, the authors of [25] consider the system that coordinates the use of real-time communication channels with
the availability of processor resource.

By contrast, several formal approaches have emerged that aim at scheduling of sets of tasks under constraints.
Models in this category aim at a much more detailed behavioral representation of the system behavior, and are intended
to be analysed using state-space exploration techniques such as model checking. For the most part, these approaches
consider only timing constraints and do not introduce the notion of a resource, implicitly considering the processor
as the only shared resource in the system. For example, the authors of [15] propose a formalism that allows us to
model preemption in asynchronous real-time systems. In [7], the authors limit themselves to fixed-priority scheduling
approaches, which allow them not to consider preemption directly, accounting for it in the worst-case computation time.
The formalism of [10] provides a general scheme for handling preemption of processes due to resource contention, but
the scheduling rules have to be encoded by modifying transition rules in the formalism (effectively creating a custom
formalism for each scheduling policy). A different approach is taken in [1], where the authors view the scheduling
activity as control and use controller synthesis techniques to model scheduled real-time systems. Another approach
based on timed automata is presented in [3], where priorities are encoded using bounded integer variables. In all of these
approaches, adding other kinds of resources requires a major extension to the formalism. PAMR [28] and PARS [27]
are process algebras that, like the ACSR family, employ resources as language primitives. In [27], a dense-time process
algebra is defined for performing schedulability analysis of real-time systems where two separate theories are given for
specifying resource-consuming processes (e.g. tasks) and resource providers (schedulers). Compared to our approach,
the need to specify schedulers explicitly and encode process priorities into schedulers in PARS results in lower-level
models, which we expect will be harder to analyze. To the best of our knowledge, no tool support exists for PARS.
In a radically different approach, PAMR [28] does not consider the timing aspects of resource sharing. Instead, the
process algebra captures the utility that processes derive from resource use. Processes with different utility functions
can exchange resources with each other in order to maximize the overall utility of the system. The authors of [12]
approach sharing of consumable resources, such as power, from a game-theoretic perspective. The notion of a resource
interface captures resource consumption by a process and assumptions about resource consumption by the environment
of the process. Compatible interfaces can operate together without violating each other’s assumptions. In this case, as
well, timing of resource use is not explicitly considered.

The rest of the paper is organized as follows. Section 2 describes the basic computation model of ACSR and
overviews its syntax and semantics. It also describes a simple scheduling example. Section 3 explains PACSR and
extends the same scheduling example with probabilistic resource failure. Section 4 discusses mappings between ACSR
and PACSR, and, finally, Section 5 concludes the paper.

2. ACSR

In the ACSR algebra there are two types of actions: those which consume time and those which are instantaneous.
The time-consuming actions represent one “tick” of a global clock. These actions may also represent the consumption
of resources, e.g. CPUs, devices, memory, batteries in the system configuration. In contrast, the instantaneous actions
provide a synchronization mechanism between concurrent processes.
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Timed actions. We consider a system to be composed of a finite set of serially reusable resources, denoted by R. An
action that consumes one “tick” of time is drawn from the domain PP(R × N) with the restriction that each resource be
represented at most once. As an example, the singleton action {(r, p)} denotes the use of some resource r ∈ R running
at priority level p. The action ∅ represents idling for one time unit since no resource is consumed.

We use DR to denote the domain of timed actions, and we let A, B, C range over DR . We define ρ(A) to be the set
of resources used by the action A; e.g. ρ({(r1, p1), (r2, p2)}) = {r1, r2}.
Instantaneous events. Instantaneous actions, called events, provide the basic synchronization mechanism in the
process algebra. We assume a set of channels L. An event is denoted by a pair (a, p), where a is the label of the
event, and p ∈ N is its priority. Labels are drawn from the set L = {a?, a! | a ∈ L} ∪ {τ }. We say that a? and a! are
inverse labels. As in CCS, the special identity label τ arises when two events with inverse labels are executed in parallel.

We use DE to denote the domain of events, and let e range over DE . We use l(e) to represent the label of the
event e. The entire domain of actions is Act = DR ∪ DE , and we let α and β range over Act.

2.1. Syntax and semantics

We let P , Q range over ACSR processes and we assume a set of process constants each with an associated definition

of the kind C
def= P . The following grammar describes the syntax of ACSR processes.

P ::= NIL | (a, n). P | A:P | P + P | P ‖P | P \F | [P ]I | P �a

t (P , P, P ) | b � P | C

We write Proc for the set of ACSR processes. The above operators are given precise meaning via a family of rules
that define the labeled transition relations on processes. The semantics is defined in two steps. First, we develop the
unconstrained transition system, where a transition is denoted as P

α−−−−→ P
′
. Within “→” no priority arbitration

is made between actions. We subsequently refine “→” to define the prioritized transition system, “→π ”. The non-
prioritized transition relation is given in Table 1. (Note that the symmetric rules of (Sum), (Par1) and (Par2) have been
omitted.)

We proceed to discuss each of the operators and their associated rules. The process NIL represents the inactive
process. It has no rules associated with it thus it cannot perform any steps. The process (a, n). P executes the
instantaneous event (a, n) and proceeds to P . The process A:P executes a resource-consuming action during the first
time unit and proceeds to P . The process P + Q represents a non-deterministic choice between the two summands. The
process P ‖Q describes the concurrent composition of P and Q: the component processes may proceed independently
or interact with one another while executing events, and they synchronize on timed actions. Specifically, rule (Par2)
represents event synchronization that transforms matching observable events into an internal event τ . Note that priorities
of both events are involved in computing the priority of the τ event. Different functions can be used to compute the
resulting priority. This function has to be symmetric in its arguments to reflect that synchronization is symmetric;
further, the function has to be monotonic in both arguments and satisfy f (m, n) � m, n. The function max(m, n) could
have been also used instead of addition. As stipulated by rule (Par3), for a timed action to take place, all concurrent
components must simultaneously engage in a timed action thereby ensuring the uniform passage of time. Note that
the side condition of the rule requires that at most one process may use a resource during any time step. In P \F ,
where F ⊆ L, the scope of channels in F is restricted to process P and, thus, components of P may use these labels
to interact with one another but not with P ’s environment.

The resource closure operator, [P ]I , I ⊆ R, describes a method for restricting the scope of resources in I , within
process P . Specifically, when a process P is embedded in a closed context such as [P ]I , we ensure that there is no
further sharing of the resources in I . For every time-consuming action A performed by P utilizing less than the full
resource set I , the action is augmented with (r, 0) pairs for each resource r ∈ I − ρ(A). Instantaneous events are not
affected. As we will discuss below the use of this operator in system models is important for the correct application

of the prioritized transition relation. As an example consider process P
def= ∅ : P1 + {(cpu, 1)} : P2, I = {cpu}.

Then:

[P ]I {(cpu,0)}−→ [P1]I , [P ]I {(cpu,1)}−→ [P2]I
The scope construct, P�a

t (Q, R, S), binds process P by a temporal scope and incorporates the notions of timeout
and interrupts. We call t the time bound, where t ∈ N ∪ {∞}, and require that P may execute for a maximum of t
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Table 1
The non-prioritized relation

(Act1) e.P
e−→ P (Act2) A : P

A−→ P

(Sum) P1
α−→ P

P1 + P2
α−→ P

(Par1)
P1

e−→ P ′
1

P1‖P2
e−→ P ′

1‖P2

(Par2)
P1

(a?,n)−→ P ′
1, P2

(a!,m)−→ P ′
2

P1‖P2
(τ,n+m)−→ P ′

1‖P ′
2

(Cond) P
α−→ P ′

true � P
α−→ P ′

(Par3)
P1

A1−→ P ′
1, P2

A2−→ P ′
2

P1‖P2
A1∪A2−→ P ′

1‖P ′
2

, ρ(A1) ∩ ρ(A2) = ∅

(Res1) P
e−→ P ′, l(e) �∈ F

P \F e−→ P ′\F
(Res2) P

A−→ P ′
P \F A−→ P ′\F

(Cl1) P
A1−→ P ′, A2 = {(r, 0) | r ∈ I − ρ(A1)}

[P ]I A1∪A2−→ [P ′]I
(Cl2) P

e−→ P ′
[P ]I e−→ [P ′]I

(Sc1) P
e−→ P ′, l(e) /= b!, t > 0

P �b

t (Q, R, S)
e−→ P ′ �b

t (Q, R, S)
(Sc2) P

(b!,n)−→ P ′, t > 0

P �b

t (Q, R, S)
(τ,n)−→ Q

(Sc3) P
A−→ P ′, t > 0

P �b

t (Q, R, S)
A−→ P ′ �b

t−1 (Q, R, S)

(Sc4) R
α−→ R′, t = 0

P �b

t (Q, R, S)
α−→ R′

(Sc5) S
α−→ S′, t > 0

P �b

t (Q, R, S)
α−→ S′ (Rec) P

α−→ P ′, C def= P

C
α−→ P ′

time units. The scope may be exited in one of three ways: First, if P terminates successfully within t time-units by
executing an event labeled a!, where a ∈ L, then control is delegated to Q, the success-handler. Else, if P fails to
terminate within time t then control proceeds to R. Finally, throughout execution of this process, P may be interrupted

by process S. As an example consider the task specification T
def= R �a

10 (SH, EH, IN) where

R
def= (in?, 1). (a!, 2). NIL + ∅ : R

SH
def= (ack!, 1). T

EH
def= (nack!, 1). T

IN
def= (kill?, 3). NIL

This task awaits for an input request to arrive for a 10 time-unit period. If such an event takes place the process signals
the arrival on channel a and, subsequently, the success handler process, SH , acknowledges the event. If the deadline
elapses without the appearance of the event, the task signals the lack of input on channel nack. Finally, at any point
during its computation, the task may receive a signal on channel kill and halt its computation. According to the rules
for scope, process R �a

10 (SH, EH, IN) may engage in the following actions:

R �a

10 (SH, EH, IN)
∅−→ R �a

9 (SH, EH, IN)
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R �a

10 (SH, EH, IN)
(in?,1)−→ ((a!, 2). NIL) �a

10 (SH, EH, IN)

R �a

10 (SH, EH, IN)
(kill?,3)−→ NIL

Furthermore, note that:

R �a

0 (SH, EH, IN)
(nack!,1)−→ T

((a!, 2).NIL) �a

10 (SH, EH, IN)
(τ,2)−→ SH

Process b � P represents the conditional process: it performs as P if boolean expression b evaluates to true and as

NIL otherwise. Process constant C with process definition C
def= P allows standard recursion.

As a syntactic convenience, we allow ACSR processes to be parameterized by a set of index variables. Each index
variable is given a fixed range of values. This restricted notion of parameterization allows us to represent collections
of similar processes concisely. For example, the parameterized process

Pt = t < 2 � (at , t). Pt+1, t ∈ {0. . .2}
is equivalent to the following three processes:

P0 = (a0, 0). P1, P1 = (a1, 1). P2, P2 = NIL

The prioritized transition system is based on preemption, which incorporates our treatment of priority. This is based
on a transitive, irreflexive, binary relation on actions, ≺, called the preemption relation. If α ≺ β, for two actions α

and β, we say that α is preempted by β. Then, in any process, if there is a choice between executing either α or β, β

will always be executed. We refer to [8] for the precise definition of ≺. Here, we briefly describe the three cases for
which α ≺ β is deemed to be true by the definition.
• The first case is for two timed actions α and β which compete for common resources. Here, it must be that the

preempting action β employs all of its resources at priority level at least the same as α. Also, β must use at least
one resource at a higher level. It is still permitted for α to contain resources not in β but all such resources must
be employed at priority level 0. Otherwise, the two timed actions are incomparable. Note that β cannot preempt an
action α consuming a strict subset of its resources at the same or lower level. This is necessary for preserving the
compositionality of the parallel operator. For instance, {(r1, 2), (r2, 0)} ≺ {(r1, 7)} but {(r1, 2), (r2, 1)} �≺ {(r1, 7)}
and {(r1, 2)} �≺ {(r1, 7), (r2, 1)}.

• The second case is for two events with the same label. Here, an event may be preempted by another event with the
same label but a higher priority. For example, (τ, 1) ≺ (τ, 2), (a, 2) ≺ (a, 5), and (a, 1) �≺ (b, 2) if a �= b.

• The third case is when an event and a timed action are comparable under “≺”. Here, if n > 0 in an event (τ, n),
we let the event preempt any timed action. For instance, {(r1, 2), (r2, 5)} ≺ (τ, 2), but {(r1, 2), (r2, 5)} �≺ (τ, 0).
This case ensures that interactions happen as soon as both parties are ready. The case of zero priority is treated as a
special case to enable the modeling of timing uncertainty.

We define the prioritized transition system “→π ”, which simply refines “→” to account for preemption.

Definition 1. The labeled transition system “→π ” is defined as follows: P
α−→π P ′ if and only if (1) P

α−→ P ′ is

an unprioritized transition, and (2) there is no unprioritized transition P
β−→ P ′′ such that α ≺ β.

We conclude this section by discussing some important characteristics of the language:
Concurrency semantics. Beginning with instantaneous events, we may see that ACSR adopts the CCS-style of
communication, that is, processes may execute such events asynchronously and independently with the exception of
two processes synchronizing on complementary events, leading to an internal event taking place. On the other hand,
to ensure the uniform progress of time, timed transitions are synchronous, that is, for a timed action to take place in
a composition of parallel processes, all components must simultaneously engage in a timed action (possibly idling).
This is made explicit in rule (Par3). Note that the side condition of the rule requires that at most one process may
use a resource during any time step. A consequence of this side condition is that whenever two, or more, concurrent
processes are competing for the use of the same resource and neither is willing to engage in alternative behaviour,
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then the system is deadlocked. This is because, by (Par3), no timed action is allowed to take place. This fact plays a
significant role in the algebra as it is exploited for performing schedulability analysis.

Deadlock vs successful termination. In timed process algebras it is often convenient to distinguish between a
completed process and a deadlocked process. The semantic difference between the two is that the completed process
cannot perform any actions but allows time to progress whereas the deadlocked process does not. The ACSR process

NIL corresponds to the deadlocked process, whereas the completed process can be defined as Idle
def= ∅ : Idle. By

using the deadlocked process NIL, it is possible to model abnormal conditions. Note that presence of the deadlocked
process as a component of a parallel composition causes a timelock in the system due to the synchronous nature of the
parallel composition with respect to time passing.

Time passage. An important observation to make about the semantic rules is that the only “source” of time progress
in the language is the action-prefix operator. That is, time progress has to be explicitly encoded into the model by the
designer. This feature forces the designer to think carefully about time progress and may result in fewer unexpected
behaviors in a complex model. For example, consider two tasks competing for the use of a resource cpu, and, suppose
that the first needs to urgently employ the resource (or else it misses its deadline) while the second is willing to wait
indefinitely until the resource becomes available. These two tasks can be modeled as follows:

T1
def= {(cpu, 1)} : Idle, T2

def= {(cpu, 1)} : Idle + ∅ : T2

and, by rule (Par3), T1‖T2
{(cpu,1)}−→ Idle‖T2. On the other hand, if both tasks were urgent in using the resource, then

the idling option ∅ : T2 would be absent from the definition of T2, and the composition of the two processes would be
a deadlocked system. This close correspondence between the presence of deadlocks and tasks missing their deadline
is taken advantage of for schedulability analysis of ACSR processes.

Maximal progress. It is often the case that a process has the option between idling indefinitely or performing some
other instantaneous or timed step. Although such idling behaviors may emerge in system models, they are generally
considered unrealistic and should be avoided. Most timed process algebras include some means of ensuring progress
in an execution. In ACSR, this is achieved by a combination of the closure operator and priority-based preemption
relation. In particular, we may see that by closing a system by the set of its resources we enforce progress to be
made.

For example, consider process T2 above. We may observe that this process can choose to idle indefinitely even if
resource cpu becomes available. This behavior, however, does not comply with our intention of defining a process
that may delay until resource cpu becomes available in which case it makes progress by consuming the resource.

If we consider the system Sys
def= [T1 ‖ T2]{cpu} we initially obtain the behavior Sys

(cpu,1)−−−−→π [Idle ‖ T2]{cpu}.
Subsequently, this process enables the transitions [Idle ‖ T2]{cpu}

(cpu,0)−→ [Idle ‖ T2]{cpu} and [Idle ‖ T2]{cpu}
(cpu,1)−→

[Idle ‖ Idle]{cpu}. In the prioritized transition system, the former transition is pruned by the preemption relation,
allowing only the latter progress-making transition.

2.2. Analysis of real-time systems in ACSR

ACSR models can be analyzed in several ways. Similar to other behavioral formalisms, equivalence checking and
model checking are common ways of establishing functional and timing correctness. In the former case, a detailed
model is checked for equivalence with a more abstract model that represents system requirements. In the latter case,
system requirements are expressed as formulae in a temporal logic and a model-checking algorithm is used to verify
that the model satisfies these formulae.

In addition, ACSR allows us to perform schedulability analysis of a real-time system model. Resource-sharing
execution of concurrent processes or threads in a real-time system is typically controlled by a scheduler that follows a
particular scheduling discipline, such as Rate Monotonic, RM, and Earliest Deadline First, EDF. Different properties
of scheduling algorithms may result in violations of timing constraints of a system under one scheduling discipline,
while another scheduling discipline may succeed. Schedulability analysis determines whether the set of processes in
a real-time system can be scheduled, by any scheduler, or with respect to a given scheduling discipline.
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2.2.1. Resource-sensitive process equivalences
Equivalence between ACSR processes is based on the concept of bisimulation [29,26] which compares the compu-

tation trees of two processes. Two processes are bisimilar if, for each step of one, there is a matching, possibly multiple,
step of the other, leading to bisimilar states. Below, we introduce three well-known such relations on which we base
our study. First, we recall some useful definitions. We say that Q is a derivative of P , if there are α1, . . . , αn ∈ Act,

n � 0, such that P
α1−→π · · · αn−→π Q, in which case we also write P

α1...αn−→ π Q. Moreover, given α ∈ Act we write

⇒π for the reflexive and transitive closure of
τ−→π ,

α⇒π for the composition ⇒π
α−→π⇒π , and

α̂⇒π for ⇒π if α = τ

and
α⇒π otherwise.

Definition 2
(1) Strong bisimilarity is the largest symmetric relation, denoted by ∼, such that, if P ∼ Q and P

α−→π P ′, there
exists Q′ such that Q

α−→π Q′ and P ′ ∼ Q′.
(2) Weak bisimilarity is the largest symmetric relation, denoted by ≈, such that, if P ≈ Q and P

α−→π P ′, there

exists Q′ such that Q
α̂⇒π Q′ and P ′ ≈ Q′.

(3) Branching bisimilarity is the largest symmetric relation, denoted by �, such that, if P � Q and P
α−→π P ′,

either (1) α = τ and P ′ � Q, or (2) there exist Q′, Q′′ such that Q ⇒π Q′′ α−→π Q′ and P � Q′′, P ′ � Q′.

Strong bisimilarity is an equivalence relation and a congruence with respect to the ACSR operators [8]. Weak
and branching bisimilarities are equivalence relations though not congruences for ACSR. We may obtain a weak
bisimulation congruence and a branching bisimulation congruence in the usual way by appropriately handling initial
actions of processes [26].

Algorithms for checking strong and weak bisimulation for finite-state ACSR processes have been implemented in
the VERSA toolset, thus allowing the verification of ACSR specifications. We refer the interested reader to [22] for
examples of using weak bisimulation for the verification of railroad-crossing systems.

2.2.2. Model checking of ACSR processes
We have defined a temporal logic for expressing properties of ACSR processes and a model-checking algorithm to

determine whether a finite-state ACSR process satisfies a given formula.
We use an extension of the Hennessy–Milner logic (HML) with until, which was proposed in [14]. The until operator

of [14] is parameterized by a single observable event. When one wants to express a complex temporal behavior that
involves a number of events, it is necessary to resort to multiple nested until operators, which makes the formula hard to
read. In order to improve the usability of the logic, we introduce an extended until operator that is parameterized by a reg-
ular expression. The regular expression represents the set of observable behaviors that are admissible along a path within
the scope of the until operator. Discussion in Section 3 revisits the design decisions made in the definition of this logic and
provides additional justification for the regular expressions in the until operator. We point out that the introduced logic,
similarly to the logic of [14], characterizes branching bisimulation. However, we do not go into the details in this paper.

Observables. Formulae of the logic will be interpreted over labeled transition systems generated by ACSR processes.
Formulae, therefore, will refer to the labels of the transition systems, that is, events and actions. However, events and
actions carry with them the values of their dynamic attributes, which are not meaningful in the logical context. Therefore,
primitive constructs used in the logical formulae are event labels, and sets of resources, as action labels. Given an event
e, we write obs(e) = �(e) and, given a timed action A = {(r1, p1), . . . , (rn, pn)}, we write obs(A) = {r1, . . . , rn}.
Regular expressions. We use the standard definition of regular expressions using the following grammar:

� ::= l | V | �� | � + � | �∗,
where l ∈ L, V ⊆ R. As usual, we understand a regular expression as a set of strings in the alphabet of event and
action labels. Operators are concatenation, union, and Kleene star. A derivative of � is a regular expression �′ such
that whenever a string σ ′ ∈ �′, there exists a string σ such that σσ ′ ∈ �.

The logic. The syntax of the logic LHMLu is given by the following grammar.

f ::= t t | ¬f | f ∧ f ′ | f 〈�〉f ′ | f 〈�〉t f ′.
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The atomic proposition t t represents a trivial property that is always true. Logical connectives have the classical
interpretations. The logic introduces two kinds of until operators which are used to specify properties of a path through
a transition system. Both operators are parameterized with a regular expression that specifies the observable behavior
expected along the path. In addition, the second until operator introduces a time bound on the length of the path to
enable us to specify quantitative timing properties of the system.

The semantics for LHMLu is given with respect to a given labeled transition system T = (S, Act,−→π , s0). In
order to define the semantic function, we introduce the following definitions. A computation in T is a sequence
c = s0 α1 s1 . . . αn sn, such that si ∈ S, αi+1 ∈ Act and (si, αi+1, si+1) ∈−→π , for all 0 � i < n. We define trace (c) =
obs(α1) . . . obs(αn)|̀ (L ∪ 2R − {τ }), states (c) = {s0, . . . sn}, time (c) = #(α1 . . . αn |̀ DR), first (c) = s0, init (c) =
s0 . . . sn−1, and last (c) = sn. The operator w|̀ W denotes a projection of the sequence w that retains only those elements
of w that belong to the set W . Thus, trace (c) is the observable content of a path, states (c) are the states traversed
by c, time (c) is the duration of the path, that is, the number of timed actions along the path, and init (c) is the path
truncated by the last transition.

The semantic function |= ⊆ S × LHMLu is defined inductively as follows:

s |= t t always
s |= ¬f iff s �|= f
s |= f ∧ f ′ iff s |= f and s |= f ′
s |= f 〈�〉f ′ iff there is a path c such that trace (c) ∈ �, first (c) = s, ∀s′ ∈

states (init (c)) |= f , and last (c) |= f ′
s |= f 〈�〉t f ′ iff there is a path c such that trace (c) ∈ �, first (c) = s, ∀s′ ∈

states (init (c)) |= f , last (c) |= f ′ and time (c) � t

We have developed a model-checking algorithm that determines whether a finite-state ACSR process P satisfies a
given LHMLu formula f . The algorithm follows the approach of [13] for CTL model checking. We label the states of P

with the values of each syntactic subformula of f according to the semantic function for the logic. The only non-trivial
case is the until operator f1〈�〉f2, which, effectively, computes the product of P with the regular expression � and
explores it in a depth-first manner, traversing nodes (P ′, �′) where P ′ is already labeled with f2, and �′ is a derivative
of �. Traversal of a path terminates when a node (P ′′, �′′) is reached, such that P ′′ is labeled with f2 and �′′ accepts
the empty string.

Compared to the original definition of HML with until [14], parameterized until operators can express a property of
an execution that contains a series of events, rather than only one event. We believe that this extension makes the logic
easier to use. As an example, consider a process that receives messages from a communication channel, processes
them for one time unit, and sends acknowledgements back to the sender. The nominal execution pattern, then, is
�nom = (recv?{cpu}ack!∅∗)∗. In addition, the process would have to be concerned with exceptional conditions
such as timeouts, preemptions from higher-priority processes, etc. Reasoning about the nominal behavior of such
process would involve formulas of the form f 〈recv?{cpu}ack!〉f ′. Such a formula can of course be rewritten to use
single-event until operators by nesting: f 〈recv?〉(f 〈{cpu}〉(f 〈recv?〉f ′), which is significantly harder to comprehend
visually.

Furthermore, the use of Kleene star in regular expressions allows us to increase the expressive power of the logic.
The formula f 〈�nom〉f ′ reasons about continuous nominal behavior, and cannot be expressed using a finite formula
in the original HML with until.

At the same time, the number of derivatives of � that need to be explored during model checking is, in the worst
case, exponential in the size of �, whereas checking the original HML with until is linear in the size of the formula.
We note, however, that a LHMLu formula can be exponentially smaller than the equivalent formula with single-event
nested until operators.

2.3. Example: EDF scheduling

In the sequel, we will use a simple example from the area of schedulability analysis. The example describes a set of
periodic tasks scheduled according to the Earliest-Deadline-First [24] scheduling policy. This policy assigns dynamic
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priorities to the tasks according to the proximity of their deadlines. We assume here that the deadline of each task is
equal to its period. That is, once a task is dispatched, it needs to complete its execution before it is dispatched again.
The ACSR representation of the EDF scheduling algorithm was first presented in [11].

An instance of the scheduling problem contains a set of tasks ti , with period pi and worst-case execution time
ei . The task set is modeled as a collection of processes Task1, . . . , Taskn, one for each periodic task in the set.
The process Taski contains two concurrent subprocesses: Ti and Dispatchi . The auxiliary process Dispatchi handles
periodic invocations of the task ti and detects missed deadlines. The process Ti captures the state of the task ti ,
which can be awaiting the next invocation, be executing on the processor resource, or be preempted by a higher
priority task. Both tasks share the same processor, modeled by the resource cpu. No other tasks use the proces-
sor.

The process Ti idles until it is awakened by the starti event and then starts competing for the processor. At each
time unit, the task may either get access to the processor or, if it is preempted by a higher-priority task, it idles until
the next time unit. Once the necessary amount (i.e., ei) of execution time is accumulated, the task returns to the initial
state and waits for the next period. The process Dispatchi sends the starti event to Ti every pi time units. If Ti has
not completed its execution by then, meaning that the deadline is missed, it cannot accept the starti event and the
dispatcher deadlocks.

The complete specification is shown in Fig. 1, where, for simplicity, we employ the notation An : P for the
process that makes n consecutive executions of action A before proceeding to process P . In the specification of a
task, i is the task number and j the accumulated execution time. The priority of task i after having accumulated j

units of execution time is dmax − (pi − j), where dmax = max1�i�n (pi). Note that closure of the resource cpu is
applied. This is for ensuring progress in the model, as discussed in the context of the ACSR prioritized transition
system.

Let us make some important observations regarding this specification. We begin by noting that process System is
composed of a number of sequential processes Ti and Dispatchi. Process Ti can be considered to be a patient process,
in that all its derivatives enable an idling action, thus are willing to allow time to pass, if necessary. On the other hand,
process Dispatchi is patient in all its derivatives, expect the initial state which is urgent to perform event (start!i, i), that
is, to dispatch an instance of the task every pi time units. If process Ti is in its initial state, then the task dispatch will
successfully take place, otherwise, process Ti is still executing a previous task invocation and the system will deadlock
signifying that the deadline of an invocation has been missed. In other words, the model of the system is constructed
so that a missed deadline induces a deadlock. This is achieved by associating an urgent event at the time of each task
deadline. This approach can be applied in a variety of contexts for the purpose of performing schedulability analysis.

ACSR analysis techniques allow us to verify the schedulability of a system of tasks for fixed values of parameters
ei and pi . According to the philosophy of ACSR modeling, the correctness criterion for a system to be schedulable is
that the corresponding process executes forever, in other words, it does not deadlock. The following result pinpoints
the source of deadlocks in a special class of systems, including process System above. Specifically, it states that, given
a parallel composition of a set of sequential processes, some of which being patient in their execution while others
occasionally wishing to fire urgent events, a deadlock occurs exactly when an urgent event cannot be executed due to
a participating process being unable to engage in it. This result can be applied to the ACSR models of a wide range of
real-time systems, since it captures the essence of the ACSR design and verification methodology and, in particular,
the association of schedulability analysis with deadlock detection.

Fig. 1. ACSR specification of an EDF scheduling problem.
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First, let us introduce some useful notation. In the sequel, we will write P
α−→π if there is some process P ′

such that P
α−→π P ′ and P � α−→π if there is no process P ′ such that P

α−→π P ′. Finally, we write 
i∈IPi , where
I = {i1, . . . , in}, for Pi1‖ . . . ‖Pin .

Theorem 3. Consider a process P such that P
def= [(
i∈IPi)\F ]U for F ⊆ L, U ⊆ R and where, for all i, Pi

contains no parallel composition operator, and I = I1 ∪ I2 where,

• for all i ∈ I1 and for all derivatives Qi of Pi, Qi
∅−→π or Qi

α−→π , α ∈ DE, �(α) �∈ F, and

• for all i ∈ I2 and for all derivatives Qi of Pi, either (1) Qi
∅−→π or (2) Qi

αi−→π , �(αi) ∈ F, and Qi � β−→π for
all β ∈ Act − {αi}.

Then, for all derivatives Q of P, if Q �−→π then Q = [(
i∈IQi)\F ]U and Qi
αi−→π for some i ∈ I2.

Proof. Consider a process P
def= [(
i∈IPi)\F ]U satisfying the conditions of the theorem. We will prove that any

derivative Q of P is such that Q = [(
i∈IQi)\F ]U , where no Qi contains a parallel composition operator, and I can
be partitioned into sets I1 and I2 satisfying the conditions of the theorem. The proof will be carried out by induction
on the length, n, of the transition P

w−→π Q, w ∈ Act∗.
Clearly, the claim holds for n = 0. Suppose that it holds for n = k − 1 and that P

w−→π Q′ α−→π Q is a transition
of size n. By the induction hypothesis, Q′ = [(
i∈IQ

′
i )\F ]U satisfies the conditions of the theorem. Consider the

transition Q′ α−→π Q. Three cases exist:

• α ∈ DR . This implies that, for all i ∈ I , Q′
i

Ai−→π Qi , for some Qi , Q = [(
i∈IQi)\F ]U and α = ⋃
i∈I Ai . It is

straightforward to see that no Qi contains a parallel composition operator and that, since each Qi is a derivative of
Q′

i , the conditions of the theorem are satisfied.

• α = τ . This implies that there exist j, k ∈ I , such that Q′
j

αj−→π Qj and Q′
k

αk−→π Qk , where �(αj ) and �(αk) are
inverse labels, and

Q = [(
i∈I−{j,k}Q′
i ‖ Qj ‖ Qk)\F ]U .

It is straightforward to see that no Q′
i , Qi , contains a parallel composition operator and to check that conditions of

the theorem are satisfied.
• α ∈ DE . This implies that there exists j ∈ I , such that Q′

j

αj−→π Qj , Q = [(
i∈I−{j}Q′
i ‖ Qj)\F ]U and the proof

follows easily.
So consider an arbitrary derivative Q of P and suppose that Q �−→π . Since Q = [(
i∈IQi)\F ]U satisfies the condi-

tions of the theorem, and Q � α−→π , α ∈ Act, it must be that some Qi � ∅−→π , i ∈ I2. This implies that Qi
αi−→π and the

result follows. �

We now return to the schedulability of system System above. The main step in reaching the desired result is to
associate the source of deadlocks, as characterized by the previous theorem, to the violation of task deadlines.

Proposition 4. System is schedulable if and only if it contains no deadlocks.

Proof. First, we observe that if System contains no deadlocks then the associated real-time system is schedulable: task
activations take place as planned and no deadlines are missed.

To prove the opposite direction, we show that if the system contains a deadlock then System is not schedulable.
Consider system System. Note that, although in its current form this process does not satisfy the conditions of Theorem 3,
by using the ACSR axiom system [8], we may easily rewrite this process to an equivalent process which does, that is,

System = [ (
i=1...n (Ti ‖ Dispatchi )) \ F ]{cpu}
where F = {starti | 1 � i � n}.

It is straightforward to verify that the above process satisfies the conditions of Theorem 3, and, further, I2 contains
all processes Dispatchi, with αi = (starti , i). Consequently, by the same theorem, if a deadlock arises in System, the
event starti is enabled in some process Dispatchi but not in the respective Ti process. This implies that the task has not
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yet accumulated the required execution time while its deadline has elapsed. Thus, the system is not schedulable which
completes the proof. �

Consequently, the presented model can be instantiated to a specific task set, and its schedulability can be checked
by performing reachability analysis on the state space of the process to search for deadlock states.

As a concrete instance of this problem, we consider a set of three tasks with p1 = 8, p2 = 10, p3 = 14, e1 = 3,

e2 = 3, e3 = 1. Theoretical results from [24] show that a set of tasks is schedulable if the utilization of the task set,
Ui = �i∈{1...n}ei/pi does not exceed 1. The task set from our example satisfies this criterion and, by checking the
resulting process for the absence of deadlocks, we can indeed verify that all deadlines are met. On the other hand, the
set e1 = 2, p1 = 3, e2 = 1, p2 = 2 has a deadlock and thus is not schedulable.

The same type for analysis can be applied for any task model no matter the scheduling discipline or the presence
of offsets, task dependencies and other behavioral variations, including scenaria for which no schedulability tests
exist. Once the model is faithfully captured as an ACSR process, schedulability analysis can be automatically decided
by searching for deadlocks within the system. For example, consider a set of periodic tasks as introduced in Fig. 1,
extended with data dependencies. When a task T1 supplies data for T2, an instance of T2 cannot begin its execution
until a preceding instance of T1 completes its execution, producing fresh data. To the best of our knowledge, there is
no exact schedulability test for this task model. Encoding of this task model into ACSR has been introduced in [31]. It
satisfies the conditions of Theorem 3, and all results of this section are immediately applicable for the schedulability
analysis of such task sets.

Schedulability analysis of systems such as the one above can be alternatively carried out by bisimulation checking or
model checking. For bisimulation checking, one needs to construct the specification of the system as an ACSR process.

In the example above, the requirement being that the process executes forever, we would write Spec
def= ∅ : Spec

and check that System ≈ Spec. Of course, compared to deadlock-detection this approach is inefficient. Nonetheless,
the general approach is viable in the context of value-passing ACSR, where bisimulation plays a central role for
performing schedulability analysis: system models may contain a number of unspecified parameters, and the purpose
of the analysis performed is to specify values for these parameters that make the system schedulable. To achieve this,
symbolic bisimulation is employed between the parameterized system and the process that idles forever, and, with the
aid of integer programming, appropriate ranges for the parameters that make the system schedulable are computed [19].

On the other hand, model checking the schedulability of a system can be carried out by the inclusion of special
actions in the model that signify missed deadlines. Consequently, one may check whether these actions may eventually
take place, and, if so, conclude that the system is not schedulable. In the example above, this would involve rewriting
the dispatcher process as follows:

Dispatchi
def= (starti !, i).∅pi : Dispatchi

+ (τ, 0).(miss!, i).NIL i = {1. . .n}
The new summand involves an internal action taking place at priority 0. As specified by the preemption relation, this
action may take place only if no other action is enabled within the system. That is, if the deadline of process Ti is
missed and the starti even cannot be accepted, this second summand is enabled and the miss event is fired. Thus, the
correctness requirement in the new system is the property ¬(tt〈{cpu}∗ miss!〉t t).

3. Probabilistic ACSR

PACSR (Probabilistic ACSR) extends the process algebra ACSR by associating each resource with a probability.
This probability captures the rate at which the resource may fail. Instantaneous events in PACSR are identical to those
of ACSR; timed actions can now account for resource failure, as discussed below.

Timed actions. As in ACSR, we assume that a system contains a finite set of serially reusable resources drawn from
the set R. We also consider set R that contains, for each r ∈ R, an element r representing the failed resource r . We
write R for R ∪ R. Actions are constructed as in ACSR, but now can contain both normal and failed resources. So, in
PACSR, the action {(r, p)}, r ∈ R, cannot happen if r has failed. On the other hand, action {(r, q)} takes place with
priority q given that resource r has failed. This construct is useful for specifying recovery from failures.
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Resource probabilities. In PACSR we associate each resource with a probability at which the resource may fail.
In particular, for all r ∈ R we denote by p(r) ∈ [0, 1] the probability of resource r being up, while p(r) = 1 − p(r)

denotes the probability of r failing. Thus, the behavior of a resource-consuming process has certain probabilistic aspects
to it which are reflected in the operational semantics of PACSR. For example, consider the process {(cpu, 1)}:NIL,
where resource cpu has probability of failure 1/3, i.e., p(cpu) = 1/3. Then, with probability 2/3, resource cpu is
available and thus the process may consume it and become inactive, while with probability 1/3 the resource fails and
the process deadlocks.

Probabilistic processes. The syntax of PACSR processes is the same as that of ACSR. The only extension concerns
the appearance of failed resources in timed actions. Thus, it is possible on one hand to assign failure probabilities to
resources of existing ACSR specifications and perform probabilistic analysis on them, and, on the other hand, to ignore
failure probabilities and apply non-probabilistic analysis of PACSR specifications.

Before we present the semantics we have some useful definitions. The function imr(P ), defined inductively below,
associates each PACSR process with the set of resources on which its behavior immediately depends:

imr(NIL) = ∅ imr(P1 + P2) = imr(P1) ∪ imr(P2)

imr(a. P ) = ∅ imr(P1‖P2) = imr(P1) ∪ imr(P2)

imr(A:P) = ρ(A) imr(C) = imr(P ), if C
def= P

imr(P \F) = imr(P ) imr([P ]I ) = imr(P ) ∪ I

imr(P �a

t (Q, R, S)) =
{

imr(P + S), if t > 0
imr(R), if t = 0

Definition 5. Let Z = {r1, . . . , rn} ⊆ R. We write
• Z = {r | r ∈ Z},
• p(Z) = 
1�i�np(ri),
• W(Z) = {Z′ ⊆ Z ∪ Z | r ∈ Z′ iff r �∈ Z′}, and
• res(Z) = {r ∈ R | r ∈ Z or r ∈ Z}.

We say that W(Z) contains the set of all possible worlds involving the set of resources Z, that is, the set of all
combinations of the resources in Z being up or down. For example, W({r1, r2}) = {{r1, r2}, {r1, r2}, {r1, r2}, {r1, r2}}.
Note that p(∅) = 1 and W(∅) = {∅}.
3.1. Operational semantics

As with ACSR, the semantics of PACSR processes is given in two steps. At the first level, a transition system captures
the non-deterministic and probabilistic behavior of processes, ignoring the presence of priorities. Subsequently, this is
refined via a second transition system which takes action priorities into account.

We begin with the unprioritized semantics. A configuration is a pair of the form (P, W), representing a PACSR
process P in world W . We write S for the set of configurations. The semantics is given in terms of a labeled transition
system whose states are configurations and whose transitions are either probabilistic or non-deterministic. The intuition
for the semantics is as follows: for a PACSR process P , we begin with the configuration (P,∅). As computation
proceeds, probabilistic transitions are performed to determine the status of resources which are immediately relevant
for execution (as specified by imr(P )) but for which there is no knowledge in the configuration’s world. Once the status
of a resource is determined by some probabilistic transition, it cannot change until the next timed action occurs. Timed
actions erase all previous knowledge of the configuration’s world (see law (PAct2)). Non-deterministic transitions may
be performed from configurations that contain all necessary knowledge regarding the state of resources. With this view
of computation in mind, we partition S as follows:

Sn = {(P, W) ∈ S | res(imr(P )) − res(W) = ∅}, the set of non-deterministic configurations, and
Sp = {(P, W) ∈ S | res(imr(P )) − res(W) /= ∅}, the set of probabilistic configurations.

Let −�p⊂ Sp × [0, 1] × Sn be the probabilistic transition relation. A triple in −�p, written (P, W)
π−�p (P ′, W ′),

denotes that process P in world W may become P ′ and enter world W ′ with probability π . Furthermore, let −�n⊂
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Sn × Act × S be the non-deterministic transition relation. A triple in−�n is written as (P, W)
α−�n (P ′, W ′), capturing

that process P in world W may non-deterministically perform α and become (P ′, W ′).
The probabilistic transition relation is given by the following rule:

(PROB)
(P, W) ∈ Sp, Z1 = res(imr(P )) − res(W), Z2 ∈ W(Z1)

(P, W)
p(Z2)−� p (P, W ∪ Z2)

Thus, given a probabilistic configuration (P, W), with Z1 the immediate resources of P for which the state is not yet
determined in W , and Z2 ∈ W(Z1), P enters the world extended by Z2 with probability p(Z2). Note that configuration
(P, W) evolves into (P, W ∪ Z2) which is, by definition, a non-deterministic configuration.

For example, given resources r1 and r2 such that p(r1) = 1/2 and p(r2) = 1/3, P
def= {(r1, 2), (r2, 3)}:Q has

exactly the following transitions:

(P,∅)
1/6−�p (P, {r1, r2}) (P,∅)

1/6−�p (P, {r1, r2})
(P,∅)

1/3−�p (P, {r1, r2}) (P,∅)
1/3−�p (P, {r1, r2})

Lemma 6. For all s ∈ Sp, �{|p | (s, p, s′) ∈−�p |} = 1, where {| and |} are multiset brackets and the summation over
the empty multiset is 1.

The non-deterministic transition relation for PACSR is given similarly to ACSR. Note, however, that states in the
transition system are now configurations, that is, pairs of processes and associated worlds, and not simple processes.
In Table 2, we present some representative rules. (PAct1) and (PAct2) contain the essence of the semantics extension
specifying the usage of failed and non-failed resources and the treatment of resource worlds. In (PAct1) we may see
that instantaneous events preserve the world of a configuration, while (PAct2) specifies that timed actions re-initialize
the world to ∅. Further, for an action to take place, all its resources must be available in the configuration’s world. Thus,

by rule (PAct2), in the example above we have (P, {r1, r2})
{(r1,2),(r2,3)}−�n (Q,∅), whereas (P, {r1, r2}), (P, {r1, r2}),

and (P, {r1, r2}) have no transitions. The remaining rules can be obtained from those of ACSR by simply assigning
worlds to processes in the style of rules (PSum1) and (PPar1). Finally, the prioritized non-deterministic relation of
PACSR, −�π , is derived by application of the preemption relation ≺ as for ACSR.

Note that the probabilistic resource failure mechanism implemented in PACSR can be used to describe a number
of probabilistic phenomena. For example, we may model persistent failure of a resource using modes as shown in

the process P
def= {(r, 1)}:P ′ + {(r, 1)}:Q, where, upon the failure of resource r , the process enters mode Q where

resource r is replaced by a failed resource. It is also straightforward to model delays following the geometric distribution,
with the aid of a single resource, and event arrival following the binomial distribution, with the aid of n resources,
where n is the size of the support of the distribution. However, it is much more complicated to model/simulate other

Table 2
PACSR non-deterministic relation

(PAct1) (e.P , W)
e−�n (P, W)

(PAct2) (A:P, W)
A−�n (P,∅) if ρ(A) ⊆ W

(PSum1) (P1, W)
α−�n (P, W ′)

(P1 + P2, W)
α−�n (P, W ′)

(PPar1)
(P1, W)

e−�n (P ′
1, W ′)

(P1‖P2, W)
e−�n (P ′

1‖P2, W ′)
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discrete distributions such as the Poisson distribution. This is due to the fact that the only available tool for producing
probabilistic behavior are the Bernoulli distributions associated with resources, the two possible outcomes being
alive and failed. A dense-time PACSR variant, where we may be able to introduce more complicated probability
distributions directly, is a promising direction of future research.

3.2. Probabilistic analysis techniques

In this section we discuss possible analysis that can be performed on PACSR specifications. We begin by presenting
the formal model underlying PACSR processes which is that of labeled concurrent Markov chains [36].

Definition 7. A labeled concurrent Markov chain (LCMC) is a tuple 〈Sn, Sp, Act,−�π ,−�p, s0〉, where Sn is the set
of non-deterministic states, Sp is the set of probabilistic states, Act is the set of labels, −�π⊂ Sn × Act × (Sn ∪ Sp)
is the non-deterministic transition relation, −�p⊂ Sp × (0, 1] × Sn is the probabilistic transition relation, satisfying
�(s,p,t)∈−�p

p = 1 for all s ∈ Sp, and s0 ∈ Sn ∪ Sp is the initial state.

We may see that the operational semantics of PACSR yields transition systems that are LCMCs. Analysis of PACSR
processes is carried out on the underlying LCMC. In what follows, we let � range over Act ∪ [0, 1] and write S for
Sn ∪ Sp.

A computation in T = 〈Sn, Sp, Act,−�π ,−�p, s0〉 is either a finite sequence c = s0 �1 s1 . . . �k sk , or an infinite
sequence c = s0 �1 s1 . . . �k sk . . ., such that si ∈ Sn ∪ Sp, �i+1 ∈ Act ∪ [0, 1] and (si, �i+1, si+1) ∈ −�p ∪ −�π , for

all 0 � i. Given a computation c = s0 �1 s1 . . . �k sk , we write s0
w−� sk , where w = �1 . . . �k .

To define probability measures on computations of an LCMC the non-determinism present must be resolved. To
achieve this, the notion of a scheduler has been employed [36,16]. A scheduler σ is an entity that, given a computation
ending in a non-deterministic state, chooses the next transition to be executed. This gives rise to computation trees
that can be viewed as labeled Markov chains. Each path through a computation tree is a scheduled computation of the
LCMC and can be assigned a probability by taking a product of the probabilistic labels along the path. See [30] for the
details.

3.2.1. Equivalence checking
Equivalence between PACSR is based on the concept of probabilistic bisimulation [20,16]. First, we introduce a

useful notation.

Definition 8. For s ∈ S and M ⊆ S, we define

μ(s, M)=
⎧⎨
⎩

�s′∈M{|p | (s, p, s′) ∈ −�p |}, if s ∈ Sp

1, if s = s′, s ∈ Sn

0, otherwise.

Thus, μ(s, M) denotes the cumulative probability of state s probabilistically reaching states in M, taken to be 1 if s

is a non-deterministic state in M.
Strong probabilistic bisimulation is then defined as follows:

Definition 9. Probabilistic strong bisimulation is the largest symmetric relation denoted by ∼p, such that, whenever
s ∼p t ,

(1) for all α ∈ Act, if s, t ∈ Sn and s
α−�π s′ then t

α−�π t ′ and s′ ∼p t ′;
(2) for all M ∈ S/ ∼p, μ(s, M) = μ(t, M), where S/ ∼p is the set of equivalence classes of S over ∼p.

Thus, two states are strongly bisimilar to each other if they can reach all equivalence classes of strong bisimilarity
with the same probability and they can simulate each other’s behavior. The above definition is almost identical to the
one proposed in [16], where an alternating model is considered, However, with a slight reformulation of the definition
of μ(s, M), Definition 9 allows for pairs of probabilistic and non-deterministic systems to be considered bisimulation
equivalent.
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It can be shown that ∼ is a congruence with respect to the PACSR operators.
We have also defined a probabilistic weak bisimulation [32] and a probabilistic branching bisimulation for the

model, which allows us to compare observable behaviors of PACSR processes similarly to the case of ACSR. In
addition, probabilistic information embedded in the probabilistic transitions allows us to perform quantitative analysis
of PACSR specifications. In particular, we can compute the probability of reaching a given state or a deadlocked
state.

3.2.2. Model checking of PACSR processes
We are also interested in being able to specify and verify high-level requirements for a PACSR specification. Temporal

logics are commonly used to express such high-level requirements. In the probabilistic setting, the requirements usually
include probabilistic criteria that apply to large fragments of the system’s execution. We define a probabilistic version
of the logic LHMLu defined in Section 2.2. The two until operators are extended with probabilistic conditions, thus
providing for quantitative analysis of a PACSR specification. The condition takes the form of � p or � p for a
constant p. Thus, until expresses a property of an execution of the system, which we expect to hold with a probability
satisfying the condition of the operator.

The addition of probabilistic constraints is in fact the source of the need to parameterize the until operators with
regular expressions, which we have introduced in LHMLu. Compared to the original definition of HML with until
defined in [14], parameterized until operators can express a property of an execution that contains a series of events,
rather than only one event. Unlike the non-probabilistic setting, where one can often express the same property by
using several nested until operators, in the probabilistic setting such extension appears to be necessary. Nesting of
until operators would preclude us from associating a single probabilistic condition with the whole execution. For
example, consider a communication protocol in which a sender inquires about the readiness of a receiver, obtains
an acknowledgement, and sends data. A reasonable requirement for the system would be that this exchange happens
with a certain probability. To express this property, one usually needs two nested temporal until operators. Since
probabilistic constraints are associated with temporal operators, the single constraint has to be artificially split in
two to apply to each of the operators. With the proposed extension, we need only one temporal operator, and
the property is expressed naturally. It can be shown that the resulting logic characterizes probabilistic branching
bisimulation.

PACSR observables are taken to range over the observable content of PACSR events and timed actions, and regular
expressions are then defined in the expected manner. The syntax of Lpr

HMLu is defined by the following grammar,
where f, f ′ range over Lpr

HMLu-formulae, � is a regular expression over the set of PACSR observables, and ��∈
{�, �}:

f ::= t t | ¬f | f ∧ f ′ | f 〈�〉��pf ′ | f 〈�〉t��pf ′

Lpr
HMLu-formulae are interpreted over states of LCMCs. Informally, formulae of the form f 〈�〉f ′ state that there is

some execution and some integer l such that f holds for the first l − 1 steps and f ′ becomes true in the lth step and
the observable behavior of the l-step execution involves some behavior from �. The subscript �� p denotes that the
probability of paths fulfilling the formula is �� p and the use of superscript t denotes that the paths of interest are
only those that achieve the goal in at most t time units. For instance, formula t t〈(L ∪ 2R)∗〉4

�1f expresses that there
is some execution of the system for which f becomes true within the first four time units, with probability 1.

In order to present the semantics of the two until operators, we need to compute the probabilities that certain
behaviors occur. Consider for example the formula f 〈�〉t��pf ′. Given two sets of states A and B of an LCMC
T and a scheduler σ we consider the following set of computations of T . The computations are scheduled by
σ and lead to a state in B via a trace with observable content in �, with intermediate states in A, and take at
most time t . It can be shown that this set of computations is measurable in the probability space of T . We de-
note its probability PrA(T , �, B, t, σ ). Similarly, we define PrA(T , �, B, σ ) as the probability measure of com-
putations scheduled by scheduler σ that lead to a state in B via intermediate states in A and observable content
in �. Both of these probabilities can be computed as the solution of a set of linear equations. See [30] for the
details.

The satisfaction relation |= ⊆ (Sn ∪ Sp) × Lpr
HMLu, stating when an LCMC state s satisfies a given formula, is

defined inductively as follows, where we write Sched(s) for the set of schedulers of the LCMC s.
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Fig. 2. EDF scheduling problem with processor failures.

s |= t t always
s |= ¬f iff s �|= f

s |= f ∧ f ′ iff s |= f and s |= f ′
s |= f 〈�〉��pf ′ iff there is σ ∈ Sched(s) such that PrA(s, �, B, σ, s)

�� p, where A = {s′ | s′ |= f }, B = {s′ | s′ |= f ′}
s |= f 〈�〉t��pf ′ iff there is σ ∈ Sched(s) such that PrA(s, �, B, t, σ, s)

�� p, where A = {s′ | s′ |= f }, B = {s′ | s′ |= f ′}

A model-checking algorithm for Lpr
HMLu, suitable for finite-state PACSR specifications, was proposed in [30]. It

follows the outline of the algorithm for LHMLu, with the exception that labeling for the until operators requires us to
solve a linear programming problem. We refer the reader to the same paper for an application of the model-checking
technique to a telecommunications application.

3.3. Example

We illustrate the utility of PACSR in the analysis of fault-tolerance properties by slightly extending the example of
Section 2.3. Note that we employ the version of the dispatchers that emit special actions to flash missed deadlines with
the intention of exploiting these messages for model checking the system. We consider the same set of tasks running on
a processor with an intermittent fault. At any time unit, the processor may be running, in which case the higher-priority
task executes normally, or it may be down, in which case none of the tasks execute. We modify the specification of a
task by extending it with a failure-recovery mechanism (shown in bold) which specifies that whenever resource cpu

has a failure the execution time of the task is not increased (Fig. 2).
We apply the probabilistic analysis to the task set with: e1 = 2, p1 = 5, e2 = 1, p2 = 2. Even though the task set

is schedulable under perfect conditions, in the presence of failures the tasks may still miss their deadlines. Given the
probability of a processor failure, we can compute the probability that a deadline is missed. The properties we check
have the form ¬(true〈{cpu}∗ miss!〉�αtrue). The following list of pairs show results of the experiments we ran. The
first element of each pair is the cpu failure probability and the second is the greatest value of the probability α for which
the property holds, which corresponds to the probability that a deadline is missed: {(0, 0), (0.1, 0.003), (0.2, 0.130),
(0.25, 0.339), (0.3, 0.585)}.

4. Mappings between ACSR and PACSR

In this section we study the relation between the two process algebras by providing mappings between them. These
mappings confirm the natural relationship between the process algebras and allow us to isolate properties preserved
between the two. They are defined by structural induction at both the process level and the logic level of the languages
and they are shown to preserve bisimulation between the two formalisms.
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4.1. From PACSR to ACSR

In this section, we study a mapping from the PACSR to the ACSR formalism. This mapping allows us to conclude
the type of ACSR analysis techniques that can be applied on PACSR models and move between the two frameworks to
check both probabilistic requirements as well as requirements expressed in terms of ACSR. For example, we observe
how schedulability analysis techniques originating from ACSR can be applied to PACSR specifications. Furthermore,
we establish mappings between formulae of LHMLu and Lpr

HMLu and we conclude how properties expressed in the
former can be checked on PACSR processes.

We begin by defining a mapping between PACSR and ACSR processes. This mappings acts on the set of PACSR
configurations and makes use of different functions for probabilistic and non-deterministic configurations.

Definition 10. We define �� · �� : S �→ Proc by

�� (P, W) �� =
{�� (P, W) ��p, if (P, W) ∈ Sp

�� (P, W) ��n, if (P, W) ∈ Sn

where �� · ��p : Sp �→ Proc is defined by

�� (P, W) ��p =
∑

W ′∈W(imr(P )−res(W))

τ. �� (P, W ∪ W ′) ��n

and �� · ��n : Sn �→ Proc is defined inductively as follows:

�� (NIL, W) ��n=NIL

�� ((a, n).P , W) ��n=(a, n).�� (P, W) ��
�� (A:P, W) ��n=

{
A : �� (P,∅) ��, if ρ(A) ⊆ W

NIL, otherwise

�� (P + Q, W) ��n=�� (P, W) ��n + �� (Q, W) ��n

�� (P ‖Q, W) ��n=�� (P, W) ��n‖�� (Q, W) ��n

�� (P \F, W) ��n=�� (P, W) ��n\F
�� ([P ]I , W) ��n=[�� (P, W) ��n]I

�� (P �a

t (Q, R, S), W) ��n=�� (P, W) ��n

�a

t (�� (Q, W) ��n, �� (R, W) ��n, �� (S), W ��n)

�� (b � P, W) ��n=b � �� (P, W) ��n

�� (C, W) ��n=�� (P, W) ��n, where C
def= P

Thus, mapping �� · �� maps PACSR configurations into ACSR processes as follows: Function �� · ��p abstracts away the
probabilistic behavior of a probabilistic process by replacing probabilistic transitions of a probabilistic configurations
by internal actions, while �� · ��n preserves non-deterministic actions. This is made precise by the following proposition.

Proposition 11
(1) If (P, W) ∈ Sp, then

• If (P, W)
p−�p (P ′, W ′) then �� (P, W) ��p

τ−→π �� (P ′, W ′) ��n, and

• If �� (P, W) ��p
α−→π Q, then α = τ and there exists W ′ such that (P, W)

p−�p (P, W ′), where
�� (P, W ′) ��n = Q.

(2) If (P, W) ∈ Sn, then

• If (P, W)
α−�π (P ′, W ′) then �� (P, W) ��n

α−→π �� (P ′, W ′) ��, and

• If �� (P, W) ��n
α−→π Q, then there exists (P ′, W ′) such that (P, W)

α−�π (P ′, W ′), where
�� (P ′, W ′) �� = Q.



116 I. Lee et al. / Journal of Logic and Algebraic Programming 72 (2007) 98–122

Proof. The first clause follows straightforwardly from the definition of �� · ��p. Note that, if �� (P, W) ��p
τ−→π P ′,

then it must be that P ′ = �� (P, W ∪ W ′) ��p for some W ′ ∈ W(imr(P ) − res(W)) and, by the PACSR semantics,

(P, W)
p−�p (P, W ∪ W ′), where p = pr(W ′).

The proof of the second clause follows by structural induction of P . Clearly, for P = (a, n).Q and P = A : Q, the
base cases, the result follows. The most interesting of the remaining cases is the one concerning the parallel composition

operator which we now consider. To begin with, suppose (P ‖Q, W)
α−�π (R, W ′). Three cases exist:

• α ∈ DE and (P, W)
α−�π (P ′, W). By the induction hypothesis, �� (P, W) ��n

α−→π �� (P ′, W) ��n and, since
�� (P ‖Q, W) ��n = �� (P, W) ��n‖�� (Q, W) ��n, we conclude that

�� (P ‖Q, W) ��n
α−→π �� (P ′, W) ��n‖�� (Q, W) ��n = �� (P ′‖Q, W) ��n.

• α ∈ DR and (P, W)
A1−�π (P ′,∅), (Q, W)

A2−�π (Q′,∅), α = A1 ∪ A2. By the induction hypothesis,

�� (P, W) ��n
A1−→π �� (P ′,∅) ��n, �� (Q, W) ��n

A2−→π �� (Q′,∅) ��n and, thus, since �� (P ‖Q, W) ��n =
�� (P, W) ��n‖�� (Q, W) ��n,

�� (P ‖Q, W) ��n
α−→π �� (P ′,∅) ��n‖�� (Q′,∅) ��n = �� (P ′‖Q′,∅) ��n.

• α = τ and (P, W)
(a?,m)−�π (P ′, W), (Q, W)

(a!,n)−�π (Q′, W). By the induction hypothesis,�� (P, W) ��n
(a?,m)−→ π

�� (P ′, W) ��n, �� (Q, W) ��n
(a!,n)−→π �� (Q′, W) ��n and, thus, since �� (P ‖Q, W) ��n = �� (P, W) ��n‖�� (Q, W) ��n

�� (P ‖Q, W) ��n
τ−→π �� (P ′, W) ��n‖�� (Q′, W) ��n = �� (P ′‖Q′, W) ��n.

The proof of the other direction uses similar arguments. �

A corollary of the above proposition follows:

Corollary 12. If (P, W) ∈ S then

(P, W)
w−� (P ′, W ′) if and only if �� (P, W) �� w′−→π �� (P ′, W ′) ��

where w′ is obtained from w by replacing all probabilistic labels with τ actions.

As a consequence of this result, we may conclude that a PACSR process deadlocks if and only if its ACSR mapping
does so. Therefore, the ACSR methodology for performing schedulability analysis, including Theorem 3, can be also
carried out in the PACSR setting.

We now answer the question of which properties of a PACSR process P are preserved by ��P ��. Let us write
Lp

HMLu for the fragment of Lpr
HMLu that contains neither negation nor a subscript of the form � p. We begin by

defining correspondences between logics Lpr
HMLu and LHMLu. Specifically, for f ∈ Lpr

HMLu let �� f �� be the formula
g which is identical to f but with all probabilistic conditions removed. Further, for f ∈ LHMLu let ‖f ‖ be the formula
g which is identical to f but with every until operator decorated by the probabilistic condition > 0. We have the
following result:

Proposition 13. For any PACSR process P and f ∈ Lp
HMLu, if P |= f then ��P �� |= �� f ��.

Proof. Consider a PACSR process P . The proof is carried out by induction on the structure of the formula.
• f = t t . Clearly, P |= t t and ��P �� |= �� f ��.
• f = f1 ∧ f2. By the induction hypothesis,

P |= f ⇒P |= f1 ∧ P |= f2

⇒��P �� |= �� f1 �� ∧ ��P �� |= �� f2 ��
⇒��P �� |= �� f1 ∧ f2 ��

as required.
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• f = f1〈�〉�pf2. Suppose that P |= f . Then there exists σ ∈ Sched(P ) such that PrA(P, �, B, σ, P ) � p, where
A = {s′ | s′ |= f } and B = {s′ | s′ |= f ′}. This implies that there exists computation c such that trace (c) ∈ �,
first (c) = (P,∅), and for all s′ ∈ states (init (c)), s′ |= f , and last (c) |= f ′. By the induction hypothesis and
Corollary 12, we may conclude that ��P �� |= �� f ��.

• f = f1〈�〉t�pf2. The proof follows similarly to the previous case. �

Note that this result fails to hold for formulae containing negation as exhibited by the following counter-example.
Consider formula f = t t〈a〉�0.5t t which expresses that label a occurs with probability at least 0.5. Suppose that
P |= ¬f and that P can perform a with probability 0.4, that is, there exist computations that may perform a but their
probability measure does not add up to 0.5. Nonetheless, it is not the case that ��P �� |= ��¬f ��, since this would
entail that P is incapable of performing a, which is clearly not true.

The following proposition is particularly important for the analysis of PACSR properties, since it allows us to
perform analysis of a PACSR process P with respect to a non-probabilistic logical specification.

Proposition 14. For any PACSR process P and g ∈ LHMLu, P |= ‖g‖ if and only if ��P �� |= g.

Proof. Consider a PACSR process P and a LHMLu property g. The proof is carried out by induction on the structure
of g.
• g = t t . Clearly, P |= ‖t t‖ and ��P �� |= t t .
• g = ¬f . Since P |= g, it is not the case that P |= f and, by the induction hypothesis, ��P �� |= g.
• g = g1 ∧ g2. By the induction hypothesis,

P |= g⇔P |= ‖g1‖ ∧ P |= ‖g2‖
⇔��P �� |= g1 ∧ ��P �� |= g2

⇔��P �� |= g1 ∧ g2

as required.
• g = g1〈�〉g2,‖g‖ = ‖g1‖〈�〉>0‖g2‖. IfP |= ‖g‖, then there existsσ ∈ Sched(P ) such that PrA(P, �, B, σ, P ) >

0, where A = {s′ | s′ |= ‖g1‖} and B = {s′ | s′ |= ‖g2‖}. This is equivalent to the existence of a computation c

such that trace (c) ∈ �, first (c) = (P,∅), and for all s′ ∈ states (init (c)), s′ |= ‖g1‖, and last (c) |= ‖g2‖. By the
induction hypothesis and Corollary 12, this is equivalent to ��P �� |= g.

• g = g1〈�〉t g2, ‖g‖ = ‖g1‖〈�〉t>0‖g2‖. This is similar to the previous case. �

We will next prove that �� · �� preserves bisimilarity of processes. Specifically, we will show that for any two
PACSR processes P and Q, (P, W) ∼p (Q, W) if and only if �� (P, W) �� ∼ �� (Q, W) ��. An important observation
in achieving the result is that, if P ∼ Q then imr(P ) = imr(Q). This is due to the fact that, if r ∈ imr(P ), then

P
A−→π P ′ for some process P ′ and some action A with r ∈ ρ(A) (this can be verified by a trivial structural induction

on P ). Thus, if P and Q are bisimilar, Q
A−→π and r ∈ imr(Q). A symmetric result holds for strong probabilistic

bisimulation, i.e., if (P, W) ∼p (Q, W), then imr(P ) = imr(Q).

Theorem 15. For every pair of PACSR processes P and Q, (P, W) ∼p (Q, W) if and only if �� (P, W) �� ∼
�� (Q, W) ��.

Proof. Suppose that (P, W) ∼p (Q, W) and consider the relation

R = {(�� (P, W) ��, �� (Q, W) ��) | (P, W) ∼p (Q, W)}.
Two cases exist:
• Suppose (P, W) ∈ Sn. Then, if �� (P, W) �� α−→π R, by Proposition 11, (P, W)

α−�π (P ′, W ′), where

R = �� (P ′, W ′) ��. Then, since (P, W) ∼p (Q, W), (Q, W)
α−�π (Q′, W ′), where (P ′, W ′) ∼p (Q′, W ′). By,

Proposition 11, �� (Q, W) �� α−→π �� (Q′, W ′) �� with (�� (P ′, W ′) ��, �� (Q′, W ′) �� ∈ R as required.
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• Suppose (P, W) ∈ Sp. Then, if �� (P, W) �� τ−→π R, by Proposition 11, (P, W)
p−�p (P, W ′), where

R = �� (P, W ′) ��. Then, since (P, W) ∼p (Q, W), (Q, W)
p′
−�p (Q, W ′), where (P, W ′) ∼p (Q, W ′), and, again

by Proposition 11, �� (Q, W) �� τ−→π �� (Q, W ′) �� and (�� (P, W ′) ��, �� (Q, W ′) ��) ∈ R as required.
Consequently, R is a strong bisimulation as required.

For the other way round suppose that �� (P, W) �� ∼ �� (Q, W) �� and consider the relation:

R = {((P, W), (Q, W)) | �� (P, W) �� ∼ �� (Q, W) ��}.

Two cases exist:
• Suppose (P, W) ∈ Sn. Then, if (P, W)

α−�π (P ′, W ′), by Proposition 11, �� (P, W) �� α−→π �� (P ′, W ′) ��.
Since �� (P, W) �� ∼ �� (Q, W) �� we have that �� (Q, W) �� α−→π R and �� (P ′, W ′) �� ∼ R. Application of

Proposition 11 yields (Q, W ′)
α−�π (Q′, W ′), where �� (Q′, W ′) �� = R. Thus, ((P ′, W ′), (Q′, W ′)) ∈ R as

required.

• Suppose (P, W) ∈ Sp and suppose M is an equivalence class of R. Then, if (P, W)
p−�p (P, W ′) ∈ M, by Proposi-

tion 11, �� (P, W) �� τ−→π �� (P, W ′) ��. Since �� (P, W) �� ∼ �� (Q, W) ��, �� (Q, W) �� τ−→π �� (Q, W ′) ��, and by

Proposition 11, (P, W)
p−�p (P, W ′). Since this holds for every member of M, we conclude that μ((P, W), M) =

μ((Q, W), M), as required.
Consequently, R is a probabilistic strong bisimulation which completes the proof. �
This result is especially interesting for the following reasons. First, it justifies our choice of mapping from PACSR

to ACSR and it highlights the natural relationship between the two. Further, it implies the rather surprising result
that, two probabilistic systems are equivalent if and only if their non-probabilistic projections exhibit bisimilar
behavior. This can be interpreted as follows: two PACSR processes are bisimilar irrespectively of the probability
of failure of the resources on which they operate given, of course, that they operate in the same resource environ-
ment.

4.2. From ACSR to PACSR

For completeness, we also consider the reverse mapping that transforms ACSR processes into PACSR processes.
We define [[·]] : Proc �→ S by mapping each ACSR process P to the PACSR configuration (P,∅) and assigning to
each resource of P probability of failure equal to 0. That is, none of the resources in the resulting PACSR process
ever fails. Interestingly, the set of logical formulae preserved by the new mapping is quite different compared to the
mapping considered in Section 4.1.

The following proposition shows that the proposed mapping preserves the basic branching of an ACSR process but
introduces a single probabilistic action with probability label 1 before each state featuring a timed action.

Proposition 16
(1) If imr(P ) = ∅, then

• if P
α−→π Q then [[P ]] α−�π [[Q]], and

• if [[P ]] α−�π (R, W), then P
α−→π Q with (R, W) = [[Q]].

(2) If imr(P ) /= ∅, then

• if P
α−→π Q then [[P ]] 1−�p

α−�π [[Q]], and

• if [[P ]] p−�p (Q, W), then p = 1, and (Q, W)
α−�π (Q′, W ′) if and only if P

α−→π P ′ with (Q′, W ′) = [[P ′]].

Proof. The proof follows directly from the mapping and the PACSR semantics. �
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A corollary of the above proposition follows:

Corollary 17

• If P
w−→π Q then [[P ]] w′

−�π [[Q]], where w′ is obtained from w by adding a probabilistic label with value 1 before
every timed action.

• If [[P ]] w−�π [[Q]] then P
w′−→π Q, where w′ is obtained from w by removing all probabilistic labels.

We now turn to deciding which properties of an ACSR process P are preserved by [[P ]]. We define correspondences
between logics Lpr

HMLu and LHMLu. Specifically, for f ∈ LHMLu, let [[f ]] be the formula g which is identical to
f but with every until operator decorated by the probabilistic transition � 1. Further, for f ∈ Lpr

HMLu, we define
�� f   as the LHMLu formula obtained from f by replacing (1) each subformula g = g1〈�〉�pg2 by t t if p = 1 and
by ¬(�� g1   〈�〉�� g2   ) otherwise, and (2) each subformula g = g1〈�〉�pg2 by t t , if p = 0 and �� g1   〈�〉�� g2   ,
otherwise. We have the following results:

Proposition 18. For any ACSR process P and f ∈ LHMLu, P |= f if and only if [[P ]] |= [[f ]].

Proof. Consider an ACSR process P . The proof is carried out by induction on the structure of the formula.
• The cases g = t t , g = ¬f and g = g1 ∧ g2 follow trivially.
• f = f1〈�〉f2, [[f ]] = [[f1]]〈�〉�1[[f2]]. If P |= f , then there exists computation c such that trace (c) ∈ �,

first (c) = P , and for all s′ ∈ states (init (c)), s′ |= f , and last (c) |= f ′. By Corollary 17 we may conclude that
a similar computation with probability measure equal to 1 exists for [[P ]]. Then, by the induction hypothesis, we
have that [[P ]] |= [[f ]]. The opposite direction similarly holds.

• f = f1〈�〉t f2. The proof is similar to that of the previous case. �

Thus, any LHMLu property satisfied by an ACSR process P is also satisfied by its PACSR mapping with probability
1. This is intuitive, since all computations of P survive in P with probability of occurrence equal to 1.

On the other hand, an Lpr
HMLu property f satisfied by the mapping of P is abstracted into LHMLu as follows: any

subformula f ′ of f with probabilistic condition < 1 is in fact satisfied neither by process P nor by its abstraction, since,
as we have seen above, all properties are either satisfied, with probability 1, or not satisfied. Finally, if a subformula
has a probabilistic condition � p, p /= 0, then it is satisfied in both processes. We prove this below.

Proposition 19. For any ACSR process P and g ∈ Lpr
HMLu, P |= �� g   if and only if [[P ]] |= g.

Proof. Consider an ACSR process P and a Lpr
HMLu property g. The proof is carried out by induction on the structure

of g.
• The cases g = t t , g = ¬f and g = g1 ∧ g2 follow trivially.
• g = g1〈�〉�pg2, p /= 0. If [[P ]] |= g, then there exists computation c such that trace (c) ∈ �, first (c) = (P,∅),

and for all s′ ∈ states (init (c)), s′ |= f , and last (c) |= f ′. By the nature of the mapping, all probabilistic labels
on this transition are equal to 1. Thus, the probability measure of the computation is equal to 1 and in fact we may
conclude that [[P ]] |= g1〈�〉�1g2. By Corollary 17 above we may conclude that a similar computation, but with
all probabilistic labels removed, exists for P . Then, by the induction hypothesis, we have that [[P ]] |= [[f ]]. The
opposite direction similarly holds.

• g = g1〈�〉�pg2, p /= 1. Suppose that [[P ]] |= g and that there exists computation c such that trace (c) ∈ �,
first (c) = (P,∅), and for all s′ ∈ states (init (c)), s′ |= f , and last (c) |= f ′. By the nature of the mapping,
all probabilistic labels on this transition are equal to 1. Thus, the probability measure of the computation is
equal to 1 and we obtain a contradiction to the assumption that [[P ]] |= g. By Corollary 17 and the induction
hypothesis, we may conclude that there exists no computation c from P such that trace (c) ∈ �, first (c) = P , and
for all s′ ∈ states (init (c)), s′ |= f , and last (c) |= f ′. Therefore, P |= ¬�� g   , as required. The opposite direction
similarly holds.

• The cases g = g1〈�〉t�pg2 and g = g1〈�〉t<pg2 follow similarly to the two previous cases. �
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We will next prove that [[·]] preserves bisimilarity of processes. Specifically, we will show that for any two ACSR
processes P and Q, P ∼ Q if and only if [[P ]] ∼p [[Q]].

Proposition 20. For every pair of ACSR processes P and Q, P ∼ Q if and only if [[P ]] ∼p [[Q]].

Proof. Suppose that P ∼ Q and consider the relation

R = {((P, W), (Q, W)) | P ∼ Q}.
Two cases exist:
• Suppose (P, W) ∈ Sn. Then, if (P, W)

α−�π (P ′, W ′), it also holds that P
α−→π P ′ and, since P ∼ Q, Q

α−→π Q′,
where P ′ ∼ Q′, yielding (Q, W)

α−�π (Q′, W ′) with ((P ′, W ′), (Q′, W ′)) ∈ R as required.

• Suppose (P, W) ∈ Sp. Then, since all resources in P have probability of failure 0, (P, W)
1−�p (P, W ∪ W ′), where

W ′ = imr(P ) − res(W). Since P ∼ Q, imr(P ) = imr(Q) and, thus, (Q, W)
1−�p (Q, W ∪ W ′) and ((P, W ∪

W ′), (Q,∪W ′)) ∈ R as required.
Consequently, R is a probabilistic strong bisimulation and since [[P ]] = (P,∅) [[Q]] = (Q,∅) the result follows.

Now, consider the other way round and suppose that [[P ]] ∼p [[Q]]. Consider the relation:

R = {(P, Q) | [[P ]] ∼p [[Q]]}.
Two cases exist:
• Suppose imr(P ) = ∅. Then, if P

α−→π P ′, by Proposition 16, [[P ]] α−�π [[P ′]]. Since [[P ]] ∼p [[Q]], [[Q]] α−�π R
and [[P ′]] ∼p R, and again, by Proposition 16, Q

α−→π Q′, where [[Q′]] = R. Thus, (P ′, Q′) ∈ R as required.

• Suppose imr(P ) /= ∅. Then, if P
α−→π P ′, by Proposition 16, [[P ]] 1−�p R′ α−�π R. Since [[P ]] ∼p [[Q]], [[Q]] 1−�p

S′ and R′ ∼p S′ and S′ α−�π S ∼p R. Then, by Proposition 16, Q
α−→π Q′, where [[Q′]] = S. Thus, (P ′, Q′) ∈ R

as required.

Consequently, R is a strong bisimulation which completes the proof. �

This time the bisimulation preservation of the mapping is not surprising since the translation given by the mapping
neither introduces nor abstracts away information of an ACSR process.

5. Conclusions

We have presented two resource-bound real-time process algebras from the ACSR family: the basic algebra ACSR
and its probabilistic extension PACSR. ACSR was developed to handle schedulability analysis in a process-algebraic
setting by introducing the notion of a shared resource into the formalism. PACSR extends ACSR by elaborating on the
nature of resources to support the notion of probabilistic resource failures. We have shown that, in ACSR, schedulability
analysis can be applied by recasting the problem of whether a system is schedulable into deadlock detection. On the
other hand, PACSR modeling is primarily concerned with quantitative evaluation of system specifications. For example,
one might like to compute the probability that a system remains schedulable in the presence of resource failures. The
analysis techniques we have proposed are capable of performing such analysis.

In our presentation we have focused on illustrating the basic features of the two formalisms and highlighting the
intentions behind various design choices as well as subtle interactions between constructs that play a crucial role for
specifying and verifying systems. We have also introduced a compositional result for tracing the source of undesirable
deadlocks in system models and, in the context of ACSR, we have introduced an HML logic with until, featuring
regular expressions over observables as parameters. Finally, we have proposed property-preserving mappings between
ACSR and PACSR which highlight the natural relationship between the two and allow us to apply analysis techniques
of one to the other.

As mentioned in Section 1, the family of resource-bound real-time process algebras includes several more for-
malisms. There is a formalism for visual specification of ACSR and a version of ACSR for the dense-time domain.
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P2ACSR introduces additional resource attributes to reason about power consumption. MCSR extends ACSR to handle
multicapacity resources, allowing us to handle systems with memory constraints. Finally, ACSR-VP extends ACSR
with a value-passing capability during communication and parameterized process definitions. In the ACSR-VP setting,
bisimulation plays a central role for performing schedulability analysis: System specifications may contain a number
of unspecified parameters, and the purpose of the analysis performed is to specify values for these parameters that
make the system schedulable. To achieve this, symbolic bisimulation is employed between the parameterized system
and the process that idles forever, and, with the aid of integer programming, appropriate ranges for the parameters that
make the system schedulable are computed.

In future work we aim to identify additional classes of resources and develop means of incorporating them into a
unified formalism, as well as to provide flexible tool support for model development in the formalism. An interesting
extension to the current work is to go beyond serially reusable resources to consumable resources, which can be used
only a fixed amount of times during a computation and can be possibly replenished after a certain amount of time.
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