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Abstract. We present a combinatorial framework for the study of a natural class of distributed
optimization problems that involve decision-making by a collection of n distributed agents in
the presence of incomplete information; such problems were originally considered in a load
balancing setting by Papadimitriou and Yannakakis (Proceedings of the 10th Annual ACM
Symposium on Principles of Distributed Computing, pp. 61-64, August 1991). Within our
framework, we are able to settle completely the case where no communication is allowed anong
the agents. For that case, for any given decision protocol, our framework allows to obtain
a combinatorial inclusion-exclusion expression for the probability that no “overflow” occurs,
called the winning probability, in terms of the volume of some simple combinatorial polytope.

Within our general framework, we offer a complete resolution to the special cases of oblivious
algorithms, for which agents do not “look at” their inputs, and non-oblivious algorithms, for
which they do, of the general optimization problem. In either case, we derive optimality
conditions in the form of combinatorial polynomial equations. For oblivious algorithms, we
explicitly solve these equations to show that the optimal algorithm is simple and wuniform,
in the sense that agents need not “know” n. Most interestingly, we show that optimal non-
oblivious algorithms must be non-uniform: we demonstrate that the optimality conditions
admit different solutions for particular, different “small” values of n; however, these solutions
improve in terms of the winning probability over the optimal, oblivious algorithm. Our results
demonstrate an interesting trade-off between the amount of knowledge used by agents and
uniformity for optimal, distributed decision-making with no communication.
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1 Introduction

In a distributed optimization problem, each of n distributed agents receives a private input,
communicates possibly with other agents to learn about their own inputs, and decides, based
on this possibly partial knowledge, on an output; the task is to maximize a common objective
function. Such problems were originally introduced by Papadimitriou and Yannakakis [11],
in an effort to understand the crucial economic value of information [1] as a computational
resource in a distributed system (see, also, [2, 5, 10, 12]). Intuitively, the more information
available to agents, the better decisions they make, but naturally the more expensive the
solution becomes due to the need for increased communication. Such natural trade-offs between
communication cost and the quality of decision-making have been studied in the contexts of
communication complezity [9] and concurrency control [8] as well.

Papadimitriou and Yannakakis [11] examined the special case of such distributed opti-
mization problems where there are just three agents. More specifically, Papadimitrion and
Yannakakis focused on a natural load balancing problem (see, e.g., [4, 7, 13], where each agent
is presented with an input, and must decide on a binary output, representing one of two avail-
able “bins,” each of capacity one; the input is assumed to be distributed uniformly in the unit
interval [0, 1]. The load balancing property is modeled by requiring that no “overflow” occurs,
namely that inputs dropped into each “bin” not exceed together its capacity. Papadimitriou
and Yannakakis [11] pursued a comprehensive study of how the best possible probability, over
the distribution of inputs, of “no overflow” depends on the amount of communication available
to the agents. For each possible communication pattern, Papadimitriou and Yannakakis [11]
discovered the corresponding optimal decision protocol to be unexpectedly sophisticated. The
proof techniques of Papadimitriou and Yannakakis [11] were surprisingly complex, even for
this seemingly simplest case, combining tools from nonlinear optimization with geometric and
combinatorial arguments; these techniques have not been hoped to be conveniently extendible
to instances of even this particular load balancing problem whose size exceeds three.

In this work, we introduce a novel combinatorial framework in order to enhance the study of
general instances of distributed optimization problems of the kind considered by Papadimitriou
and Yannakakis [11]. More specifically, we proceed to the general case of n agents, with
each still receiving an input uniformly distributed over [0, 1] and having to choose one out
of two “bins”; however, in order to render the problem interesting, we make the technical
assumption that the capacity of each “bin” is equal to ¢, for some real number é possibly
greater than one, so as to compensate for the increase in the number of players. Papadimitriou
and Yannakakis [11] focused on a specific kind of decision protocols by which each agent chooses
a “bin” by comparing a “weighted average” of the inputs it “sees” against some “threshold”
value; in contrast, our framework allows for the consideration of general decision protocols by
which each agent decides by using any (computable) function of the inputs it “sees”.

Our starting point is a combinatorial result that provides an explicit inclusion-exclusion
formula [17, Section 2.1] for calculating the volume of any particular geometric polytope, in any
given dimension, of some speficic form (Proposition 2.2). Roughly speaking, such polytopes



are the intersection of a simplex in the positive quadrant with an orthogonal parallelepiped.
An immediate implication of this result are inclusion-exclusion formulas for calculating the
(conditional) probability of “no overflow” for a single “bin,” as a function of the capacity 6
and the number of inputs that are dropped into the “bin” (Lemmas 2.4 and 2.7).

In this work, we focus on the case where there is no communication among the agents,
which we completely settle for the case of general n. Since communication comes at a cost,
which it would be desirable to avoid, it is both natural and interesting to choose the case of no
communication as an initial “testbed”. We consider both oblivious algorithms, where players
do not “look” at their inputs, and non-oblivious algorithms, where they do. For each case, we
are interested in optimal algorithms.

We first consider oblivious algorithms. Our first major result is a combinatorial expression
in the form of an inclusion-exclusion formula for the probability that “no overflow” occurs for
either of the “bins” (Theorem 4.1). This formula incorporates a suitable inclusion-exclusion
summation, over all possible input vectors, of the probabilities, induced by any particular deci-
sion algorithm, on the space of all possible decision vectors, as a function of the corresponding
input vector. The coefficients of these probabilities in the summation are independent of any
specific parameters of the algorithm, while they do depend on the input vector. A first impli-
cation of this expression is the reduction of the general problem of computing the probability
that “no overflow” occurs to the problem of computing, given a particular decision algorithm,
the probability distribution of the binary output vectors it yields. Most significantly, this ex-
pression contributes a methodology for the design of optimal decision algorithms “compatible”
with any specific pattern of communication, and not just for the case of no communication that
we particularly examine: one simply renders only those parameters of the decision algorithm
that correspond to the possible communications, and computes values for these parameters
that maximize the combinatorial expression as a function of these parameters. This is done
by solving a certain system of optimality conditions (Corollary 4.2).

We demonstrate that our methodology for designing optimal algorithms for distributed
decision-making is both effective and useful by applying it to the special case of no communica-
tion that we consider. We manage to settle down completely this case for oblivious algorithms.
We exploit the underlying “symmetry” with respect to different agents in order to simplify the
optimality conditions (by observing that all parameters satisfying them must be equal). This
simplification reveals a beautiful combinatorial structure; more specifically, we discover that
each optimality condition eventually amounts to zeroing a particular “symmetric” polynomial
of a single variable. In turn, we explicitly solve these conditions to show that the best possible
oblivious algorithm for the case of no communication is the very simple one by which each agent
uses 1/2 as its “threshold” value; given that the optimal (non-oblivious) algorithms presented
by Papadimitriou and Yannakakis for the special case where n = 3 are somehow unexpectedly
sophisticated, it is perhaps surprising that such simple oblivious algorithm is indeed optimal
for all values of n.

We next turn to non-oblivious algorithms, still for the case of no communication. In
that case, we demonstrate that the optimality conditions do not admit a “constant” solution.



Through a more sophisticated analysis, we are able to compute more complex expressions for
the optimality conditions, which still allow exploitation of “symmetry”. We consider the partic-
ular instances of the optimality conditions where n = 3 and § = 1 (considered by Papadimitriou
and Yannakakis [11]), and n = 4 and é = 4/3. We discover that the optimal algorithms are
different in each of these cases. However, they achieve larger winning probabilities than their
oblivious counterparts. This shows that the improved performance of non-oblivious algorithms
comes at the cost of sacrificing uniformity.

We believe that our work opens up the way for the design and analysis of algorithms for
general instances of the problem of distributed decision-making in the presence of incomplete
information. We envision that algorithms that are more complex, general communication
patterns, and more realistic assumptions on the distribution of inputs, can all be treated in
our combinatorial framework to yield optimal algorithms for distributed decision-making for
these cases as well.

The rest of this paper is organized as follows. Section 2 presents a framework for distributed
decision-making. Formal definitions for the model and the problem are included in Section 3.
Oblivious and non-oblivious algorithms are treated in Sections 4 and 5, respectively. We
conclude, in Section 6, with a discussion of our results and some open problems.

2 Combinatorial Framework

In this section, we introduce a combinatorial framework for our study of distributed decision-
making. Section 2.1 offers some geometrical preliminaries; built on their top are two proba-
bilistic lemmas presented in Section 2.2. Finally, Section 2.3 summarizes some notation.

2.1 Geometrical Preliminaries

Throughout, we use ®% to denote the set of non-negative real numbers. A polyhedron is the
solution set of a finite system of linear inequalities (cf. [3, Section 6.2]). A polyhedron is
bounded if it contains no infinite half-line. A polyhedron of this type is called a polytope. We
will be interested in computing volumes of polytopes that have some specific form. For any
polytope II, denote Vol(II) the volume of II.

Fix any integer m > 2. Consider any pair of (real) vectors @ = (0, 09,...,0,)", and
T = (71,79, Tm) ', where for any [, 1 <1 < m, 0 < 07,7 < oc. These define the m-
dimensional, orthogonal simplex

2@ = {(enen..en) R | Y L),
=1 !
with orthogonal sides 01,03, ..., 0., and the m-dimensional orthogonal parallelepiped
o™(T) = [0,7q] X [0,73] % ... % [0, 7],



with orthogonal sides 71,73, ..., T, respectively.

Both E(m)(ﬁ) and H(m)(ﬁ) are polytopes. The following lemma recalls simple expressions
for the volumes of (™) (%) and 1) (7).

Lemma 2.1 (Volumes of X(")(7) and II™(7)) 1. Vol(Z")(7)) = L, [T72; ou;
2. Vol(TI™ (7)) = [T, 7.
A cornerstone for our analysis is a particular polytope that has some specific form. Define
the m-dimensional polytope
™ (7,7 = TU(FE) NI (T);

thus, SII(™)(7,7) is the intersection of the m-dimensional orthogonal simplex X(™)(7) and
the m-dimensional orthogonal parallelepiped H(m)(f), so that

m

SO @ET) = (21,22, 2m) " €[0,m] X [0,7m2] x ... x [0,7m,] | Y= <1}

We provide an explicit inclusion-exclusion formula (see, e.g., [14], or [15, Chapter III] for
a textbook discussion) for the volume of ST (7, 7).

Proposition 2.2 (Volume of II1") (7, 7))

Vol( ST (7, 7)) = % ﬁa, -i(—w’ 3 (1 _ Zﬂ)
7m}7

=t =0 TC{1,2,... ez 7!
7] =1,
Proof: C(learly,

Vol(=I1™)(7, 7))

= Vol({{z1,22,....2m)T €[0,m1] x [0, 73] X ... % [0,7m] | Zg <1})
=1 !

(by definition of ZII(™) (7, 7))

= Vol({(z1,25,...,a,)T € RT | S < 1))
=1 !
S Vol({(a1, 2,y a,) € R | YD ? <1land z; € [0,7]})
=1 =1 *

oo



+ 3 Vol({{z1, 2. z)T € RY Z—<1and N\ @ €10,m]})

1<i<y<m =17
H(=1)™Vol({(x1, 22, ..., xm)T € RT | Z— <1 and /\ z; € [0,7]})
1<i<m

(by the principle of inclusion-exclusion)
1 m
tl=1

—ZVOI({<$1,x2,..., m)leRT | Z— <1anda; ¢[0,m]})

=1

+ 3 Vol({(z1, 29,y 2p) T 3%+|Z—<1and N\ @ €10,m]})

1<i<y<m =17
H(=1)™Vol({(x1, 22, ..., xm)T € RT | Z— <1 and /\ z; € [0,7]})
1<i<m

(by Lemma 2.1(2))

JR +
= W H led} _|_ Z(_

=1 =1
Z Vol({(21, 22, ..., 2m)T € RT | Z—<1and /\$1€07T[}).

T C{l1,2,...,m}, 1€

7] =
We continue to calculate the polytope volumes involved in the last summation.

Lemma 2.3 For any non-empty set T C {1,2,...,m}

Vol({(z1,22,...,2,)T € RT | Z—<1“”d Nz €10, m]})

e

1 2 s "
EH‘”'(l_Z?j) ’

if 1 >3 er /oy, and 0 otherwise.

Proof: Clearly, the hyperplanes 3, r2;/0; = 1 and 2; = 7, [ € 7, intersect if and only if
> ier mi/or = 1. Since the polytope

{(z1,29,...,2,)T € RT | Z—<1and /\xlg [0, 7]}

e



is the intersection of the half-spaces " ez 21/0r < 1,2, > mforl € Z and 2; > 0 for 1 <1 <m,
it follows that this polytope is non-null if and only if 7, 7 m;/0; < 1.

In that case, this polytope is an orthogonal simplex; its orthonormal faces lie on the hy-
perplanes 2; = m; for [ € 7 and 2; = 0 for | ¢ 7, while its non-orthonormal one lies on the
hyperplane }~,c72;/0; = 1. Thus, this polytope is similar to the original orthogonal simplex

m
7
{{z1, 22, ..y zm) T €RT | Z;l <1},
=1
and the similarity ratio is equal to (1 — > 7 ﬂlal_l)m. Thus,

Vol({{z1, 2, ...,2) " € RT | Zi—j <land A ¢[0,m]})
=1 el

- (1_Zﬂ) Vol(X(™) (7))

ler 71
-1 ﬁal 1= -t
m! =1 leT ot
(by Lemma 2.1(1)),
as needed. -
Thus, by Lemma 2.3,
Vol(ST1™) (7, 7))
| om m i R ™
= — [lo+2 (-1 2 o Lo {1=23
it i=1 ICA{1,2,...,m}, T =1 leT
7=,
Zle]’ 7T[/O'l < 1
e L o Sy -
= Lot Lo X -2y
by Y i=1 TC{1,2,...,m}, lIeT
7=
Yiermi/or <1

S0 ICHEED VE IR G—Z%)
=t =t TC{1,2,....,m}, ez
Z] =4,
Yermfor <1

10



1 & “ ; il m
= EHUJ'Z(—U' Z (1_2;1) ’
=1 1=0 I g {1727”‘77’)’1/}7 leT
7] = ¢,
Zle]’ﬂ-l/o-l < 1
as needed. -

2.2 Probabilistic Tools

In this section, we present two consequences of Proposition 2.2. Each of these two claims
determines the probability that a certain sum of independent, uniformly distributed random
variables does not exceed a given threshold value; the probability is a function of the threshold
value and the distribution intervals of the random variables. The proofs of these claims exploit
the reduction of probability to a volume ratio that is possible for uniform random variables
and appeal to Proposition 2.2. (Both of these claims will be used in our later proofs.)

We first recall some basic notions from probability theory (see, e.g., [15, 16]). For a (con-
tinuous) random variable z, denote F,(t) the cumulative distribution function of x; that is,
Fo(t) = P(z < t) is the probability of the event x < ¢t. The density function of the random
variable X is given by f,(¢) = dF.(t)/dt.

Lemma 2.4 Assume that for each i, 1 < i < m, x; is uniformly distributed over [0, 7;]. Then,
for any parameter t > 0,

1 i i "
Foor wlt) = o 2 (1) > t=Y ml|
=1 mHlZl T ._
=0 I g {1727"'7m}7 leI
Z] =1,
Zlefﬂ-l <t

Proof: Since each random variable z;, 1 < i < m, is uniformly distributed over [0, ;], the
probability P(3°7, #; < t) is the ratio of the volume of the polytope (actually, its portion
falling in the product domain) corresponding to the inequality Y./, 2; < ¢ to the volume of
the product domain [0, 7] x [0, 73] X ... x [0,7,,] of the variables x1,2s,...,2,,. Thus,

lewil xl(t) = P(i z; < t)
=1
Vol({{(x1, 29, ..., xm) T €[0,71] X [0,72] X ... X [0,70] | oy 2y < t})
Vol({(z1, 22, ..., %m) € [0,m1] X [0,72] X ... X [0,7,,,]})

Vol(=II(™ (1 T 7))
Vol(IL0") (7))

11



(by definitions of ZII™)(7,7) and 10 (7, 7))
1

S 1 (D SURNS S (R k)
- = I g {1727"'7m}7
Z| = ¢,
Yierm/t <1
(by Lemma 2.1(2) and Lemma 2.2)

1 o 1 "
R e R DAt NP %'(t_zm)

ZZO I g {1727" '7m}7 leI
17| = 1,
Zlefﬂ-l <t
1 i i
Ry 'Z(_l) ' 2 =2 m|
B ZZO I g {1727' "7m}7 leI
17| = 1,
Zlefﬂ-l <t
as needed. []

Lemma 2.4 allows for the computation of the density function of m independent, uniformly
distributed random variables.

Lemma 2.5 Assume that for each i, 1 < i < m, x; is uniformly distributed over [0, 7;]. Then,
for any parameter t > 0,

m—1
1 i
fzrz ) = — .Z(—l) . Z t—Zm .
m (m - = 7C{1,2,....,m} et
7=,
t> ZleI ™
Proof: Clearly,
dFs~m (1)
fem (1) = e
Zi:l T dt
d 1 (1) m
A SIS PO
me =1 T D) ICA{L,2,...,m} et
7=,
_ t > ZleI T -

12



1 mo "
RIS S - m(t_zﬂ’)

=0 TC{L,2,... lex
7| =4,
t> Zlefﬂ-l
m—1
1 e .
= . —1)- t—
(m—l)'H?;1 ™ Z_:O( ) Z ( lz;ﬂ'l) ’
= Ig{]‘?Q?"'?m}? e
7| =4,
t> Zlefﬂ-l
as needed. []

Lemma 2.5 is of independent interest since it provides an answer to a Research Problem of
Rota [16, Research Problem 10, p. xviii & 4/15/98.14, p. 314]:

“Find a nice formula for the density of n independent, uniformly distributed random
variables.”

We continue with an immediate implication of Lemma 2.4 that concerns the special case
where for each 7, 1 <1 <n, m; = 1.

Corollary 2.6 Assume that for each i, 1 < i < m, x; is uniformly distributed over [0,1].
Then, for any parameter t > 0,

Proof: By Lemma 2.4,

=0 TC{1,2,... =
7] = ¢,
Yuerl <t
D DV EED DI (B 2/
=0 TC{1,2,...,m},
7] = ¢,
|Z] <t

13



ZZO I g {1727 7m}7
17| = 1,
1< 1
1 7 m m
SRS D SRR L [T
0<i<m
1< 1
as needed. []

We continue to show:

Lemma 2.7 Assume that for each i, 1 < i < m, x; is uniformly distributed over [r;,1]. Then,
for any parameter t > 0,

Fsm (1)
1 = i "
= - m! T2 (1 =) P 0(_1) ' Z ) (m—t—|z|+zﬂl) :

= TC{1,2,... le1
7] =1,
|I| < m—t-l—zlez'ﬂ'l

Proof: Clearly, for each i, 1 < i < n, the random variable 2% = 1—2; is uniformly distributed
over [0,1 — m;]. Thus,

FZ?; T (t)
P(i z; < t)
=1

= P(m—inZm—t)
=1

= P(E(l—xi) >m—1)

= 1—P(Z(1—wi)§m—t)

=1

14



1 < : :
- 1_ _ . —1)t- m—1-— 1—m7
m iz (1= ) ;( ) zg{l,Q,Z..:.,m}, ( %;( l))
|Z] = i,
Yier(l—m) <m—t
(by Lemma 2.2)

1 " ' "
= - —— > (=1) > m—t-Y 1+> m
R =" TC{1,2,...,m)
7] =,
Yuerl = Yerm <m—t

1 — ' m
= o Y ) motmlE )
m! T2 (1 -m) = TC{1,2,...,m} et

7=
IZ| <m—t4+ 3 erm

as needed. []

2.3 Notation

Throughout, for any bit b € {0,1} and real number a € [0, 1], denote b the complement of b,
and a® to be aif b=1, and 1 — o if b = 0. For any binary vector b, denote |b| the number
of entries of b that are 1.

3 Model

Our model is based on the one of Papadimitriou and Yannakakis [11].

3.1 Distributed Decision-Making

We consider a collection of n distributed entities Py, Ps,..., P,, called players, where n > 2;
n is the size of the distributed system. Each player P; receives an input x;, which is the value
of a random variable distributed uniformly over [0, 1]; denote x = (21, 22,...,2,)" the input
vector. Associated with each player P; is a (local) decision-making algorithm A;, that may be
either deterministic or randomized, and “maps” the input z; of player P; and the inputs of
other players that are “known” to player P; to P;’s output y;. (A player P;’s input z;, j # ¢, is
not “known” to player P; if A; is independent of z;.) A distributed decision-making algorithm
is a collection A = (A1, A, ..., A,) of (local) decision algorithms, one for each player.

15



Formally, a deterministic decision-making algorithm is a function A; : [0,1]" — {0, 1}, that
maps the input vector x to P;’s (boolean) output y; = A;(x); denote

YAX) = (Ai(z1),Ax(2), .., Anlen))

the output vector of A on input vector x. A randomized decision-making algorithm is a function
A; which assigns, for each input vector x, a probability distribution on {0,1}. We consider
that A;(x) is the probability that player P; decides on 0.

For each b € {0, 1}, define
Syo= Y, @
i:A,‘(X):b
thus, Xj is the sum of the inputs of the players that decide on b. Thus, X is a random variable
induced by the distribution of the inputs (and the coin tosses of the algorithm if the algorithm

is randomized). For each parameter ¢ > 0, we are interested in the event that neither ¥y nor
31 exceeds t; denote

PA(t) = P(EO S t and 21 S t)

the probability of this event, taken over all input vectors x (and coin tosses of the algorithm
A in case A is randomized). Call Pp(t) the winning probability of algorithm A. We wish to
maximize P (%) over all algorithms A; any maximizing algorithm will be called an optimal
algorithm.

A set of algorithms is optimally uniform, or uniform for short, if it includes a particular
algorithm that is optimal for all values of the size n.

3.2 The No Communication Case

We focus on the case where there is no communication among the players. We model this
by assuming that for each 7, 1 < ¢ < n, A; = A;(2;); thus, A; does not depend on the input
of any player other than P;. From this point on, all of our discussion will refer to the no
communication case.

We distinguish between oblivious and non-oblivious, distributed decision-making algo-
rithms. A distributed decision-making algorithm is oblivious if for each player P;, A; does not
depend on P;’s input @;. Thus, an oblivious algorithm is a collection (A1, A, ..., A,) of proba-
bility distributions on {0, 1}. We identify an oblivious algorithm A with a probability vector @

such that for each i, a; = P(y; = 0). Thus, for any vector b € {0,1}", P(yp = b) = [1i1, agbi).

A distributed decision-making algorithm is non-oblivious if it is not oblivious. A (determin-
istic) non-oblivious algorithm is single-threshold if for each player P;, A; is a single-threshold

function; that is,
0, x; <a
A — ) [
i) { 1, ;>a; °

where 0 < a; < co.

16



4 Oblivious Algorithms

In this section, we present our results for oblivious algorithms. A combinatorial expression for
the winning probability of any oblivious algorithm and corresponding optimality conditions
are provided in Section 4.1; Section 4.2 uses these conditions to derive the optimal oblivious
algorithm.

4.1 The Winning Probability and Optimality Conditions

We show:

Theorem 4.1 Assume that A is any oblivious algorithm. Then,

PA(t)
Zbe{o,l}n ﬁ : Z (_1)i . (|IZ)|) (t _ i)|b| .
0<i<|bl
1< 1
___j;___, 1)L n-—|b| —-in_“ﬂ.
(=Dl _ <Z (=1) ( i )(t )
<i<n—|b|
1< 1

Proof: C(learly,

PA(t) = P(EO S t and 21 S t)

Z P(Xo <tand ¥1 <t | yp(x)=b) -Pp(ya(x)=Db)
be{o,1}n
(by the Conditional Law of Alternatives).

Since A is a randomized oblivious algorithm, y p(x) does not depend on x, so that Pa(ya(x) =
b)=Pa(ypa=b) =11, agbi). Thus,

Pa(t) = > P(Sg<tand¥; <t | ya=b) -Pr(ya=Db)
be{o,1}n
= Z P(Zbixigtand Zgzngt) -PA(yA:b).
be{o}» =1 i=1
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Notice that the sums S, b;z; and S_™, b;x; are independent random variables since the
random variables z;, 1 <4 < n are independent and none of them appears in both >~ b,

and Y™, b;z;. Thus,

n n

P(Z b;z; <t and ZEZ$Z < t) = P(Z by < t) . P(ZEwZ < t)
=1 =1

so that

PA(t) = Z PwaZSt bezgt)-PA(yA:b).

be{o}» =1 i=1

Since all variables z;, 1 < 7 < n, are identically distributed, for any vector b, the sums
n— | |

S by and Y% by, are identically distributed with the sums Z —1%; and Y .|, Te-
spectively. It follows that

Pa(t)
bl n—|bl
= 2_befo,1}n sz <t) Z 2; <t) -Pa(yp=b)
1 i (bl [b
= 2befo1}n Bl Z (—1)"- ( ; ) (t— z)' I
0<i<|b|
<t
1 i [n—Ibl - n—[bl
(n— bt 2 (‘1)'( i )(t") '
0<i<n-—|b|
<t

(by Corollary 2.6),

as needed. []

Notice that the winning probability is a function of the probability vector a of an algorithm
A. Thus, an optimal algorithm corresponds to a probability vector that maximizes the winning
probability. Clearly, all partial derivatives with respect to the vector’s entries must vanish
at an extreme point (maximum or minimum) of winning probability. Hence, Theorem 4.1
immediately implies necessary conditions for any optimal protocol.

18



Corollary 4.2 (Optimality conditions for oblivious algorithms) Assume that A is an
optimal, randomized oblivious algorithm. Then, for any index k, 1 < k < n,

0
1 : b
- Thepnr it 2 (—1)2-('2.')@—@')")'-
0<i<|bl
1<
1 i (n—1Ibl| An=bl
CETTP S ()
<i<n—|b|
1<

We remark that the (necessary) conditions for optimal oblivious algorithms determined in
Corollary 4.2 amount to a system of n multilinear equations in the probability vector @&. In
Section 4.2, we will explicitly solve this system and show that the solution indeed determines

an optimal algorithm.

4.2 Uniformity

We show that the optimal winning probability is achieved by the very simple uniform algorithm
by which each player preassigns equal probability (1/2) to each of its choices.

Theorem 4.3 Assume that A is an optimal oblivious algorithm. Then, a = (1/2,1/2,...,1/2)"
and

P (1)
1 1 ; b .
2 befo,1}" [ > (—1)-('i')(t—z)'b'-
0<i< bl
1<t
m. 3 (=1)i- (n _¢|b|) (t— iyl
0<i<n—|bl
1<t

Proof: Take any optimal algorithm A. Fix any index j, 1 < j < n. By Corollary 4.2,

0
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- Thewnr X (D -('i') (1— i
0<i<|[b
1<t
1 7 n_|b| \n—|b
ORI (‘”'( j )“—” -
0<i<n-—|b|
1<t
SR CONE & SN ()
T 00T el
Do 7 g

Clearly, 8a;bj)/8aj =1ifb; =1 and —1if b; = 0. It follows that

S oa(b) II - S e I o = o,
b c {0,1}" 1<i<n b ¢ {0,1}" 1<i<nm
b]‘ =1 7 ;éj b]‘ =0 7 ;éj

where for any vector b € {0,1}" and (real) parameter ¢ > 0,

olbh = i X (—1)2’-(";7')@—@')")'-
0<i<|bl
1<

1 - [(n—|b| ~n—|b]
S ~1)i t— el
(n — |b])! Z (=1) ( i )( i)
0<i<n-—|b|
1<t
By definition of ¢(|b]), it immediately follows:
Lemma 4.4 For any vector b € {0,1}" and (real) parameter t > 0, ¢:(|b|) = ¢¢(n — |b]).
We continue to show:

Lemma 4.5 o1 =as=...= a,

Proof: Take any arbitrary indices j and k, 1 < j, k < n and j # k. Clearly,

S oabh) II ™= S s I o™ = o0
b c {0,1}" 1<i<n b c {0,1}" 1<i<n
bj =1 7 ;éj bj =0 7 ;éj

20



and

b
S oabh) II ™= S s I o™ = 0.
b€ {0,1}" 1<i<nm bec{0,1}" 1<i<n
b, =1 7 b,=0 7
The first equation implies that
S aedb) I M+ S aweb) [ o
be{0,1}" 1<i<n b€ {0,1}" 1<i<n
by =1 i# gk b; =1 i# gk
by =1 b, =0
— Y b)) I o= amedp) [ e
be{0,1}" 1<i<n b€ {0,1}" 1<i<n
by =0 i# gk b =0 i# gk
bp=1 b, =0
= 0.
or
o - DL R | R S R (1 )R | L
b€ {0,1}" 1<i<nm be{0,1}" 1<i<n
by =1 i# gk b; =0 i# gk
b, =1 bp=1
L S5 e I M- Y sy I o
b€ {0,1}" 1<i<nm b€ {0,1}" 1<i<n
by =1 i# 5,k b; =0 i# gk
b, =0 b, =0

21




Similarly, the second equation implies that

a; DRT(L ) N S LD W (1 DR | I
be{0,1}" 1<i<n b€ {0,1}" 1<i<n
b =1 ik, j br =0 i+ k,j
bj =1 bj =1

e - >ooaph I o >ooaph) I o
b€ {0,1}" 1<i<nm b€ {0,1}" 1<i<n
by =1 . j by = ik, j
b]' =0 b]‘ =0

= 0.

There is a one-to-one correspondence between vectors b € {0,1}" with b; = 0 and by =1
and vectors b € {0,1}" with by = 0 and b; = 1: two such vectors b and b’ correspond to each
other if they have all other entries identical. Then, clearly, |b| = |b’| and for each index ¢,

i £ 5, k, aﬁb") = agbg). This implies that

S a(b)  JI o = S a(b) JI o
b c {0,1}" 1<i<n b ¢ {0,1}" 1<i<n
b; =0 i# ],k b =0 i kg
by =1 b; =1

It follows that oy and «a; satisfy identical linear equations (each involving the remaining
variables a;, i # j, k, as parameters) and, therefore, they are equal. Since the indices j and k
were chosen arbitrarily, it follows that oy = a3 = ... = a,,, as needed. [ |

Denote a the common value of the variables aq,aq, ..., a,. It follows that

> adph II - X aqen  II " =0,
b € {0,1}" 1<i<n b € {0,1}" 1<i<n
b; =1 t£ ] b; =0 t#£

For any vector b with b; = 1, there are |b| — 1 indices 4, ¢ # j, with b; = 1 and n — |b]
indices ¢ with b; = 0. Similarly, for any vector b with b; = 0, there are |b| indices ¢ with b; = 1
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and n — |b| — 1 indices i, i # j, with b; = 0. Thus,

S s —ay Pl ST (b)) alPl —a) Pt = .
b € {0,1}" b e {0,1}"
b; =1 b; =0

Dividing through by (1 — a)"~! yileds that

S amh (7) S amn (7)< o

b e {0,1}" b e {0,1}"
bjzl b]‘IO

There are <|g|—_11) vectors b € {0,1}" with b; = 1; for any such vector, 1 < |b| < n.
Similarly, there are (Th_)ﬂ) vectors b € {0, 1}" with b; = 0; for any such vector, 0 < |b| < n —1.

It follows that
n n — a |b|-1 n=l /. _ N b
2 (Ib| —11) ¢u(|bl) (m) -2 ( |b|1) ) (m) = 0.

[b=1 [bj=0
We next show:
Lemma 4.6 o = 1/2

Proof: Assume, by way of contradiction, that a # 1/2. This implies that a/(a — 1) # 1.

We have established that a/(a—1) satisfies a polynomial equation of degree n—1. Consider
any exponent r, 0 <r < n — 1. The coefficient of (a/(ax — 1)) is

(n . 1) Gulr+1) - (n . 1) aur) = (" . 1) (6ur +1) = &u(r)

while the coefficient of (a/(a —1))" 177 is

(" - 1) (u(n =) = do(n — 1— 1)

r

TN
3
|
[S—
~—
S
RS
S
3
|
-
Sa—’
|
RS
S
3
|
[S—
|
-
Sa—’
Sa—’
[l

By Lemma 4.4, ¢,(n—7) = ¢¢(r) and ¢(n—1—r) = ¢(r+1). It follows that the coefficient
of (a/(a — 1)) is equal to the negative of the coefficient of (a/(av — 1))"~1=". In particular,
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when n is odd, the coefficient of (a/(a — 1))("~1/2 is equal to the negative of the coefficient
of (af(a —1))~1=0=D/2 = (a/(a — 1))"=D/2 which implies that in that case the coefficient
of (a/(a—1))"=D/2 s equal to zero. It follows that

(";1) (6u(r +1) = &u(r) ((afl)T—(afl)n_l_T) = 0.

2

(]

0<r

IN

We proceed by case analysis. Assume first that a/(a — 1) > 1. Then, for any integer r
such that 1 <r <(n—1)/2,7<n—1-r,so that

) < G5

(n ; 1) (Pe(r+1) = ¢¢(r)) > 0,

Since

it follows that

> (nzl)(@ml)—@(m ((ac_vl)T_g_yl)n_l_T) .

0<r<ugt

a contradiction.

Assume now that a/(a — 1) < 1. Then, for any integer r such that 1 < r < (n —1)/2,

7<n—1—7,SO hal
.

Since

(n ; 1) (Pe(r+1) = ¢¢(r)) > 0,

it follows that

3 (n; 1) (Ge(r+ 1) — ¢e(r)) ((af 1)7“ B (ai 1)n_1_r) -

0<r<egt

a contradiction. This completes our proof. [ |
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By Lemmas 4.5 and 4.6, Theorem 4.1 implies that

Pa(t)
1 : b )
b0y i (‘1)“(|i|)(t")'b"
0<i<|bl
1< 1
- (n—1b
m' > (—1)’-( i' |)(t—i)”_'b',
C0<i<n—|b|
1< 1
as needed. []

Theorem 4.3 implies that the optimal winning probability of an oblivious algorithm can be
computed exactly in exponential time.

5 Non-Oblivious Algorithms

In this section, we present our results for non-oblivious, single threshold algorithms. A combi-
natorial expression for the winning probability of any non-oblivious, single threshold algorithm,
and corresponding optimality conditions, are provided in Section 5.1; Section 5.2 uses the opti-
mality conditions to demonstrate non-uniformity for the optimal non-oblivious, single threshold
algorithm.

5.1 The Winning Probability and Optimality Conditions

We show:

Theorem 5.1 Assume that A is any non-oblivious, single threshold algorithm. Then,

Pa(t)

- ¥

be{o,1}n

n—|b]
1 i
ooy, 2, O 2 (t_za’)
0<i<n—|b| T C{i:b; =0}, et
izl =,
Yierou <t
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bl
H (1—ay) — ] (=1)*- Z (|b|—t—|I|+Zal)
= " o<ig|b] T C{izb; =1}, <
7] =i,
7] < [b| = t + Yjer cu

Proof: C(learly,

PA(t)
= P(EO S t and 21 S t)
= Z P(Yo<tand ¥; <t | yp(x)=b) -Pp(ya(x)=Db)
be{o,1}n
(by the Conditional Law of Alternatives)
= Z P( Z z; <tand Z 2, <t | ypa(x)=b) -Pa(ya(x)=Db)
be{o,1}n i:Ai(X):O i:Ai(X):l
(by definition of ¥ and ¥q)
= Z P(Z z; <tand Z z; <t | ya(x)=b) -Pa(ya(x)=b)

bE{O,l}" 1:0;=0 1:b;=1

- ¥

be{o,1}n

P( Z z; <t and Z z; <t /\ z; € [0, and /\ z; € [ay, 1]) -
1:6;, =0 1:6;, =0

1:b;=1 1:b;=1

PA(ya(x) = b)

(since A is a single threshold algorithm)

be%,:l}n

P ip—ori <tand Yoy o <tand Ay oz €0, and Ay —y @i € [ag,1])
P(Aip.—o%i € [0, and Ay g 7 € [ay, 1]) '

Pa(ya(x)=b)

(by definition of conditional probability)

befo,1}n

P(Zi:biZO r; <t and /\i:b,‘:O IS [0,0&2]) ' P(Zi:biZI r; <t and /\i:b,‘:l IS [Oéi, 1])
P(/\i:b,:o IS [07 al]) ' P(/\i:biZI IS [O[Z', 1])

Pa(ya(x)=b)

(since all variables x; are independent)
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2.

be{o,1}n

P(Zi:biZO Lq S t and /\i:b,‘:O IS [0,0&2]) P(Zi:biZI Tq S t and /\i:b,‘:l IS [Oéi, 1])
P(/\i:biZO IS [07 al]) P(/\i:b,‘:l IS [O[Z', 1])

PA(ya(x)=b)

(by definition of conditional probability)

2.

be{o,1}n
P( Z z; <t /\ z; €10,a4]) - P( Z z; <t /\ z; € [ay, 1]) -
1:6;, =0 1:6;, =0 1:b;=1 2:b;=1
Pa(ya(x) =b)
be{o,1}»
) n—|b]
CRE TP S AP (t i Zal)
- Llip =0 21 0<i<n—|b| ZC{i:b; =0}, leT
Z] =1,
Yerou <t
) [b]
S iy R R SN 2 (Ibl—t—lll+2az)
slikb =1 ! 1<i<|b| ZC{i:b; =1}, leT
Z] = 1,

Z] < [bl =1+ e cu
PA(ya(x) = b)
(by Lemmas 2.4 and 2.7)

2.

be{o,1}n

n—|b]
1 3
(n — DD 0 2 (U 2 (t_zal)
b= 0<i<n—|bl I C{i:b; =0}, et
7=,
ez u <t
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Hl:blzl(l — )
1 bl
[T G-a)-pn 3 (-1 > (|b|—t—|z|+2az)
I:b;=1 " 0<i<|b] I C{izh; =1}, “
|I| =1,
IZ] < |b|l =t + Xjer cu
Pa(ya(x) =b)
be{0,1}n
1 n—|bl
=D vl Z (=1)"- Z (t—Zal)
=0 M i b IC{i:b =0} et
|I| =1,
ZIEI o) < t
1
Hl:blzl(l — )
1 bl
H(1—a1)—W > (=1 > (Ibl—t—|1|+20‘l)
I:b;=1 " 0<i<|bl I C{izh; =1}, “
|I| =1,

Z] < [b| =1+ ez
H a;bl)
1<i<n
(since A is a single threshold algorithm),

Clearly,
(b))  _ ) _
H o = Hal H(l ap),
1<i<n 1:6;=0 I:b;=1
so that
Pa(?)
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be{0,1}n
1 n—|b|
T ‘ Z (1)t Z (t—zal)
0<i<n—|b| T C{i:b; =0}, et
izl =+,
Yoerou <t

b
1 7
[T G-an- o X (1 ) (|b|—t—|z|+2az)
" 0<i<|b| TC {Z b = 1}7 leT
Z] = 4,
IZ] < [bl =1+ X jer cu

as needed. []

Figures 1 and 2 depict the winning probabilities for some simple cases. It is already evident
that the optimal non-oblivious algorithm is not uniform.

For non-oblivious algorithms, the analysis is more involved since it must take into account
the conditional probabilities “created” by the knowledge of inputs by the agents. We show:

Theorem 5.2 (Optimality conditions for non-oblivious algorithms) Assume that A is
an optimal, randomized non-oblivious algorithm. Then, for any index k,

" n—1 1
2 ( b )(<n—1—|b|>!

|b|:0
> (—1)’(” - 'b') (6= gyl

0<I<n—1-|b|,6—-BI>0 !

_ _ gl Ubl+1)

(=(Ibl+ (1= )P = L2

> (—1)’(l|b| )l(b+1—6—l+m)'b') +

1<I<|b|+1,b+1—6—I+8>0 -1

n—1

> ("|;|1)(((1 - )P - (|§—|, > (—1)’(";") (b =& — 1+ s1)Ph) -

Ibl=0 © 0<I<[bl,[bl—6—1+41>0
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Figure 1: The winning probabilities for n =3, n =4 and n =5
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n=4and n=>5
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=3

Figure 2: The winning probabilities for n
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> ( s 1) 18— g

—_ !
(n |b|) 1<I<n—|b|,6§-BI>0

Unfortunately, the conditions in Theorem 5.2 do not admit a uniform solution (independent
of n). We discover that the solutions for n = 3 and n = 4 are different. The solution for n = 3
and § = 1 satisfies the polynomial equation 5% — 28 4+ 6/7 = 0; the solution is calculated
to be to 1 — /1/7 = 0.622, which is the threshold value conjectured by Papadimitriou and
Yannakakis in [11] to imply optimality for the same case. (See Appendix ?? for a complete
derivation.) On the other hand, the solution for n = 4 and § = 4/3 satisfies the polynomial
equation —(26/3)3°+ (98/3)3? — (368/9)3 — 416/27 = 0; the solution is calculated to be equal
to approximately 0.678.

5.2 Non-Uniformity

In this section, we derive the optimal algorithms for the special cases where (i) n = 3 and

6=1,and (i) n=4and § =4/3.

5.2.1 The Casen=3and 6 =1

We proceed by case analysis on the interval in which 3 lies. In each case, we first use The-
orem 5.1 to derive an expression for the probability of any symmetric protocol as a function
of the common threshold 3. (Theorem 5.2 establishes that an optimal protocol is symmetric.)
We use this expression to compute the optimal 3.

pel0,1/3]
The optimal probability is

> ()@, 3 (s

[b|=0 0<I<3—|b|,1-8I>0
1

=M -0 % (—1)’(";") (bl = 11— 1]
)>0

" 0<I<bl(|bl-1-1-p1

3/, 1 (3 . (3 5 (3 3 (3 3
= () G0 (- (azer- (a-wr.

[(1—@0—&((8)(0—1—0+0)0]+
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g)u—zm%w

3\ 1 (2 , (2 )
Bk (Ja-or- (s

[ﬂ—ﬂf—%«@)u—l—o+m*—Q)u—1—1+ﬂfﬂ+

= N

(1~ 5y —%(@)@—1—o+of—(fy3—1—1+ﬂf+(2)3—1—2+2m3—

3
(3) (3—1-3+33))]
1
6
3
2

(1=3(1 =36 +35% = 5°) +3(1 = 65 + 125 — 85%) — (1 — 95 + 274 — 275%)) +
(1-2(1= 25+ %) + (145 + 457)(1 — §) +

36001 - 5 — 5(1 - 267 +

L= B $(8 =B+ 354357+ 5°) + 245%))

~~
~~

(1 -34+93-98%+36%+3 - 188+ 363% — 243° —276% +273° + 95 — 1) +

N WS =

(1=2+45 257 +1 - 45+ 45%)(1 - ) +

31— 264 5 — S+ 5+

(1= 5 = 5(5- 95~ 95 + 215°)

)+ (35 - 35°) + (28— 68 1 68 + (1 - 24 29— 29)

(
1 3., 1.4
6 T2 el

The optimality condition is derived by differentiating with respect to 3. We obtain that
33 — 35%/2 = 0, which implies that 33(1 — 3/2) = 0. Either 3 = 0 or 8 = 2. Neither of these
values both is acceptable and maximizes the probability (the first is acceptable but minimizes
the probability, while the second is not acceptable, since it is greater than 1/3, which is the

upper boundary of the interval under consideration).
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g e(1/3,1/2]

The optimal probability is

> ()@, 3 () ammm

|b|=0 0<i<3-|b|,1-8i{>0
-9 -gr % (—1)’(";") (bl = 11— 1]
" 0<I< b, ([P 1-1-51)>0

3\ 1 (3 s (3 s (3 N 5
B TN T I PR

[(1—@3—%((3)(3—1—%0)3— (f)<3—1—1+ﬂ>3+(2)(3—1—2+2ﬂ)3—

(g)(:s —1-3+35)%)
L1801 304 857~ 57) 4 3(1— 60+ 126 — 857)) ¢
D (1201204 57) 4 (1 - 45+ 45)(1 - 5) +

36001 - 5 — 5(1 - 267 +

(1= p)* - é(g —3(1+338+36% 4 3°) 4+ 248°) — (=1 + 93 — 273* + 275%))

(1-3+98-96%2+33+3— 185+ 3637 — 243°) +

N WS =

(1 -2448-28*+1—-484+48%)(1 - 3) +
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3@(1—2ﬁ+ﬁ2—%+ﬁ2)+
1
3__

(1= 5) = (59595 + 2157 = 275" 4+ 273* — 95 + 1))
13 9 7 3

= (G5B + 30 - 58+ (38 =35°) + (58 -68°+68°) + 0
3 1

=5t 7

The optimality condition is derived by differentiating with respect to 3. We obtain that
33 — 35%/2 = 0, which implies that 33(1 — 3/2) = 0. Either 3 = 0 or 8 = 2. Neither of these

values is acceptable (both are outside the interval (1/3,1/2] under consideration).

g e(1/2,1]

The optimal probability is

> ()@, 3 (s

|b|=0 0<i<3-|b|,1-8i{>0
-9 -gr % (—1)’(";") (bl = 11— 1]
" 0<I< b, ([P 1-1-51)>0

3/, 1 (3 . (3 5 (3 3 (3 3
= () G0 (- (azer- (a-wr.

3\ 1 {0 0
(3)<a<(0)<1—o> -))-
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@(3— 1-3+30)%)]
= S0-30-35+35 - )+
2201254 P09+

3001~ 0) — (01— 20° + 1~ 45+ 45%)] 4

((1-p) - é(8 = 3(L+30 +36% + 5%) + 245° — 2767 + 275" - 96 + 1))
(—2+98-98% +35%) +

N O —

~(1-2448-26%)(1-8) +
36(1-28+8*—1425- 3%+
(1—3ﬁ—|—3ﬁ2—ﬁ3—é(8—3—9ﬁ—9ﬁ2—3ﬁ3—|—24ﬁ3—27ﬁ3+27ﬁ2—9ﬂ—|—1))
1 3 3 1 3 15

= (—§+§ﬁ—§ﬁ2‘|‘§ﬁ3)+(—§+7ﬁ—9ﬁ2+3ﬁ3)+0+0
11 21 7

= —E+9ﬁ_?ﬂ2+§ﬁ3-

The optimality condition is derived by differentiating with respect to 3. We obtain that
6/7 — 23 + 3? = 0, which implies that either 3 = 14+ /1/7 or 3 = 1 — /1/7 = 0.622. The
first is not acceptable because it is greater than 1. The second maximizes indeed the optimal
probability. (The second derivative at 3 = 1 — \/1/7 becomes negative.) The correspond-
ing optimal (maximum) probability is 0.545. This settles a conjecture of Papadimitriou and
Yannakakis [11] for the case n = 3 and § = 1.

5.2.2 The Case n =4 and 6 =4/3

S (! 1 4—|bl\ 4 N+
> ()@, 2, T G

[b|=0 0<i<4-|b|,2-pI1>0

bl
R DS )>0<—1>l(";") (b~ 5 —1-p1)

" 0<i<|bl,(|b|-£-1-p1

A R 7 N R N L £ AN RO 21 U I /A N B
o (et (ks (-
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)(2—§—z+2ﬂ>2>1+

[(1—@3—%((3)(3—%—%0)3— (3)<3—f—1+ﬂ>3+(3)<3—§—2+2ﬂ>3—

2
N1 o) 4,
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6 Discussion

We have presented a simple yet elegant combinatorial framework for the design and analysis
of distributed, decision-making protocols in the presence of incomplete information. Within
this framework, we have settled down completely the case where no communication is allowed
among the agents. Our techniques and arguments have been purely combinatorial; as such,
they are of independent interest. We feel that our work makes a significant advancement in the
field of distributed optimization problems by providing a mathematical framework in which
further research can be carried out.
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