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Abstract

Algorithmic Game Theory focuses on the intersection of 
Computer Science and Game Theory. In the last few years, we 
have been witnessing a very intense research activity on this 
hybrid field. Computer Scientists have been working hard to 
compose the Theory of Algorithms and Complexity for problems 
originating from Game Theory.
In this talk, we will project some interesting snapshots of this
composition.
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Computer Science Today

Information Networks

The Internet

• Services, service providers, pricing, auctions…

• Economic agents

• Individual and selfish objectives

• Competition, antagonism and lack of coordination
⇒ main obstacle to optimization

“The Internet has arguably surpassed the von Neumann computer as the most
complex computational artifact of our time.”

C. H. Papadimitriou (STOC 2001)

INTRODUCTION 1  
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Game Theory

Interactions among agents

Utilities and costs

Rational decision-makers 

Notions of equilibria (Nash, correlated, etc.)

Applications to Economics, Operations Research, 
Biology, Political Science ...

Now it is the turn of Computer Science …

INTRODUCTION 2  
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Computer Science and Game Theory

Use Game Theory to model and analyze economic 
phenomena over the Internet.

Use Game Theory to analyze the selfish behavior of 
users in application domains (e.g. scheduling, 
communication, caching).

INTRODUCTION 3
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Computer Science and Game Theory (cont.)

Import Game Theory into more traditional areas of 
Computer Science (e.g., Algorithms and Complexity, 
Networking)
• New problems
• New algorithmic paradigms
• New complexity classes

Import Computer Science into Game Theory
• Design efficient programs for game-playing.

INTRODUCTION 4
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Computer Science and Game Theory (cont.)

Some Concrete Tasks
• Evaluate the performance of distributed systems with 

selfish entities.
• Use game-theoretic tools to analyze specific applications:

• scheduling 
• routing
• P2P network creation

• Study the algorithmic efficiency to solve computational 
problems in Game Theory:
• compute Nash equilibria
• compute Stackelberg strategies

INTRODUCTION 5 

…
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Computer Science and Game Theory (cont.)

Payoffs
• A quantitative understanding of the performance of selfish 

distributed systems. 
• Precise models (and analytical results) for important 

applications. 
• A collection of 

• upper /* algorithms /*
and
• lower /* completeness /*

bounds on the complexity of several algorithmic problems 
of Game Theory
Most prominent: computation of Nash equilibria

INTRODUCTION 6  



School on Algorithmic Game Theory, Patras, December 18-19 2006 10

Algorithmic Game Theory

Connects Computer Science and Game Theory.

Already two devoted conferences:
• ACM Conference on Electronic Commerce (ACM EC)
• International Workshop on Internet and Network 

Economics (WINE)

Two forthcoming (text)books titled Algorithmic Game 
Theory:
• Nisan, Roughgarden, Tardos & Vazirani (edited)

Cambridge University Press, 2007 (expected)
• Mavronicolas & Spirakis

Springer-Verlag, 2007 (expected)

INTRODUCTION 7  
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Strategic Game
• Players
• Strategy set for each player;
• Utility or Individual Cost function for each player:

• maps a strategy profile to a number
Nash equilibrium (Nash 1950, 1951)
• A state of the game where no player can unilaterally deviate to 

increase her Expected Individual Cost
Social Cost
• Expected Maximum Individual Cost
• Maximum Expected Individual Cost
• Sum of Expected Individual Costs

GAME THEORY 1

Game Theory Primer
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GAME THEORY 2

Price of Anarchy

(Koutsoupias and Papadimitriou (STACS 1999))

A prominent idea that was missing from classical Game 
Theory.
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Example: The KP game

Individual Cost = Expected latency on the link she chooses

Social Cost = Expected maximum latency

GAME THEORY 3

(Koutsoupias and Papadimitriou (STACS 1999))

Users

Machines



School on Algorithmic Game Theory, Patras, December 18-19 2006 14

The KP model

Theorem 1. For the case of identical links, the fully 
mixed Nash equilibrium exists uniquely. For the general 
case, the fully mixed Nash equilibrium may only exist 
uniquely. 

(Mavronicolas & Spirakis (STOC 2001 & Algorithmica))

CONTRIBUTION 1
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The KP model

Theorem 2. A pure Nash equilibrium always exists. 

Proof Idea.

• Use lexicographic ordering on the assignments.

• Argue that the lexicographically smallest assignment is a 
Nash equilibrium. 

CONTRIBUTION 2

(Fotakis, Kontogiannis, Koutsoupias, Mavronicolas & Spirakis (ICALP 2002))
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The KP model

Theorem 3. A pure Nash equilibrium can be computed in 
polynomial time. 

Proof Idea.

• Use the classical Graham´s LPT scheduling algorithm for 
assigning weighted jobs to related machines.

CONTRIBUTION 3

(Fotakis, Kontogiannis, Koutsoupias, Mavronicolas & Spirakis (ICALP 2002))
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The KP model

Theorem 4. Computing Social Cost (=Expected 
Maximum) is  #P-complete. 

Proof Idea.

• Use reduction from the problem of computing Pr (X≤ c), 

where X is a sum of Bernoulli random variables.

CONTRIBUTION 4

(Fotakis, Kontogiannis, Koutsoupias, Mavronicolas & Spirakis (ICALP 2002))
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The KP model

Theorem 5. For the case of identical users and restricted 
to the fully mixed Nash equilibrium,  

Theorem 6. For the case of identical links and restricted 
to the fully mixed Nash equilibrium,  

CONTRIBUTION 5

(Mavronicolas & Spirakis (STOC 2001 & Algorithmica))
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The KP model

Theorem 7. For the case of identical links,  

Proof Idea:
• Ball fusion:

• it reduces the problem to the special case where all users 
have almost equal traffic;

• replace two balls with their sum and assign a probability to 
the sum so that expected traffic for each bin is the same;

• show that Social Cost then increases or remains the same.

CONTRIBUTION 6

(Koutsoupias, Mavronicolas & Spirakis (TOCS 2003))
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The KP model

Conjecture. The worst Nash equilibrium is the fully mixed 
Nash equilibrium. 

(The Fully Mixed Nash Equilibrium Conjecture)
Notes:

• Intuitive and natural:
• The fully mixed Nash equilibrium⇒ “collisions”;
• Increased probability of “collisions” ⇒ a corresponding 

increase to expected maximum;
• Significant:

• It identifies the worst Nash equilibrium and trivializes the 
algorithmic problem of computing the worst Nash equilibrium; 

CONTRIBUTION 7

(Gairing, Lücking, Mavronicolas, Monien & Spirakis (CIAC 2003 & TCS 2005))
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The KP model

Theorem 8. The Fully Mixed Nash Equilibrium 
Conjecture is valid for the case of arbitrary links and two 
identical users.

Theorem 9. The Fully Mixed Nash Equilibrium 
Conjecture is valid for the case of identical users and 
two links.
Proof ideas:

• purely combinatorial
• analytical estimations

CONTRIBUTION 8

(Lücking, Mavronicolas, Monien , Rode, Spirakis & Vrto (MFCS 2003))
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The KP model

Theorem 10. For the case of identical links, denote 

. Then, the Social Cost of any Nash 
equilibrium is no more than 2h(1+ε) times the Social 
Cost of the fully mixed Nash equilibrium.

Proof techniques:
• Uses concepts and techniques from Majorization Theory and 

Stochastic Orders;
• Definition of stochastic variability:

• X is stochastically more variable than Y if for all increasing 
and convex functions φ, E(φ(X)) ≥ E(φ(Y)).

CONTRIBUTION 9

(Gairing, Lücking, Mavronicolas, Monien & Spirakis (CIAC 2003 & TCS 2005))
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The KP model

Proof techniques (continued):

•

•

•
• We prove: is stochastically more 

variable than      .

• Rest uses a careful probabilistic analysis (with heavy use 
of Hoeffding´s Lemma).

CONTRIBUTION 10

(Gairing, Lücking, Mavronicolas, Monien & Spirakis (CIAC 2003 & TCS 2005))
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The KP model

Nashification:

• a technique that converts a pure assignment into a 
Nash equilibrium with no increased Social Cost.

• if there is a PTAS for best assignment, it can be 
combined with Nashification to yield a PTAS for best 
pure Nash equilibrium.

Theorem 11. There is a PTAS for best pure Nash
equilibrium. 

CONTRIBUTION 11

(Gairing, Lücking, Mavronicolas, Monien & Spirakis (CIAC 2003 & TCS 2005))
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The KP model

Theorem 12. It is NP-complete to approximate a worst 

Nash equilibrium with a ratio better than some fixed 
constant. 

Theorem 13. If the number of links is fixed, there is a 
pseudopolynomial algorithm to compute a worst Nash 
equilibrium. 

CONTRIBUTION 12

(Gairing, Lücking, Mavronicolas, Monien & Spirakis (CIAC 2003 & TCS 2005))
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Discrete Routing Games

Unsplittable traffic

Parallel links network

Mixed strategies

Convex latency functions 
φ(x+1) - φ(x) ≤ φ(x) - φ(x-1)

Social Cost = Sum of Expected Individual Costs

CONTRIBUTION 13

(Gairing, Lücking, Mavronicolas, Monien & Rode (ICALP 2004))
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Discrete Routing Games

Theorem 14. For discrete routing games with convex
latency functions, the following hold in the case of 
identical users:

1. The FMNE Conjecture is valid (and the convexity
assumption is essential).

2. A fully mixed Nash equilibrium may only exist uniquely. 

3. There is an efficient combinatorial characterization of 
instances admitting a fully mixed Nash equilibrium. 

CONTRIBUTION 14

(Gairing, Lücking, Mavronicolas, Monien & Rode (ICALP 2004))
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Discrete Routing Games

Theorem 15. For discrete routing games, the following 
are upper bounds on the Price of Anarchy:

1. For identical users, identical links with a polynomial latency 
function φ(λ) = λd,  and for mixed Nash equilibria, 

2. For identical users, arbitrary links with polynomial latency 
functions and pure Nash equilibria, 

CONTRIBUTION 15

(Gairing, Lücking, Mavronicolas, Monien & Rode (ICALP 2004))
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Discrete Routing Games

Theorem 16. For identical users and arbitrary links, a pure 
Nash equilibrium can be computed in time

The algorithm:

• It runs in lg n phases;
• In each phase, user chunks of halving size are switched 

together to a different machine in order to improve;
• Uses a particular data structure to implement each switch in 

Θ (lg m) time.

/* proved there are O(m) switches per phase /*

CONTRIBUTION 16

(Gairing, Lücking, Mavronicolas, Monien & Rode (ICALP 2004))



School on Algorithmic Game Theory, Patras, December 18-19 2006 30

Discrete Routing Games

Theorem 17. For identical users and arbitrary links with 
convex latency functions, an optimal assignment can be 
computed in time 

The algorithm:
• Reduction to the problem of computing a pure Nash 

equilibrium

/* The reduction requires convexity;
it uses a “Global Optimality = Local Optimality” –like theorem for
M-convex functions.                                                      /*

CONTRIBUTION 17

(Gairing, Lücking, Mavronicolas, Monien & Rode (ICALP 2004))
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Discrete Routing Games

Theorem 18. Computing the best or the worst Nash 
equilibrium is  NP–complete for the case of arbitrary 

users, even if links are identical and their number is very 
small.

Theorem 19. Counting best or worst Nash equilibria is 
#P–complete for the case of arbitrary users, even if links 

are identical and their number is very small.

CONTRIBUTION 18

(Gairing, Lücking, Mavronicolas, Monien & Rode (ICALP 2004))
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Discrete Routing Games

Many open problems

• Study fully mixed Nash equilibria for the case of arbitrary 
users. 

• Obtain more general bounds on the Price of Anarchy.

• Prove or disprove optimality for the algorithm to compute a 

pure Nash equilibrium in the case of identical users.

• Study the approximability of best and worst Nash equilibria.

CONTRIBUTION 19
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Restricted Parallel Links

Similar to the KP model except that:

• there is for each user a set of allowed links;

• the cost of the user on the other links is infinite.

Intermediate model between related links and unrelated
links.

CONTRIBUTION 20

(Awerbuch, Azar, Richter & Tsur (WAOA 2003 & TCS 2006))
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Restricted Parallel Links

Theorem 20. There is a polynomial time algorithm to 
Nashify a given assignment for the case of restricted 
identical parallel links.

Techniques and milestones:
• it pushes the unsplittable user traffics through a flow network;
• provides the         PREFLOW-PUSH like algorithm for the setting 

of unsplittable flows.
• Approximation factor for optimum assignment is 2 for related 

links and               for identical links

CONTRIBUTION 21

(Gairing, Lücking, Mavronicolas & Monien (STOC 2004))

first
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Security Games

A network;

Many attackers,    one defender 
⇓ ⇓

choose vertices chooses an edge 
to destroy to protect

Attacker wins the probability of not being caught
Defender wins the expected number of attackers it catches

What are the                         ?
How can we evaluate them?

CONTRIBUTION 22

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

Nash equilibria

attacks

defender



School on Algorithmic Game Theory, Patras, December 18-19 2006 36

A Graph-Theoretic Security Game

Associated with G(V, E), is a strategic game:

•
• ν attackers (set       )  or vertex players vpi

• strategy set : Svpi=V
• a defender or the edge player ep

• strategy set : Sep = E

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 23
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Individual Profits

In a pure profile 
• Vertex player Individual Profit:

•
1 if it selected node is not incident to the edge selected by the
edge player, and 0 otherwise

• Edge player´s Individual Profit:

•
the number of attackers placed on the endpoints of its selected 
edge

CONTRIBUTION 24

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))
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Example

a graph G
ν=4 vertex players 
edge player ep

• IPs(ep)=3
• IPs(vp1)=0
• IPs(vp4)=1

CONTRIBUTION 25

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))
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In a profile s, the Defense Ratio is: 

•

The worst-case value of the Defense Ratio is the Price of Defense:

•

• It is the Price of Anarchy applied to the security game.

The Price of Defense

DRs =

CONTRIBUTION 26

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))

Expected number of attackers caught in s
Number of attackers

PoDG=
Expected number of attackers caught

Number of attackers
max
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Notation

In a profile s, 
• Support of player i Supports(i)

• set of pure strategies that it assigns positive probability

Supports(vp) = the supports of all vertex players

Ps(Hit(υ)) = Probability the edge player chooses an edge 
incident to vertex υ

VPs(υ) = expected number of vertex players choosing vertex υ

VPs(e) = VPs(υ) + VPs(u), for an edge e=(u, υ)

CONTRIBUTION 27

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))
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Notation (cont.)

Uniform profile:
• if each player uses a uniform probability distribution on its 

support. I.e., for each player i,

Attacker Symmetric profile:
• All vertex players use the same probability distribution

CONTRIBUTION 28

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Computational Complexity Tools (1/2)

UNDIRECTED PARTITION INTO HAMILTONIAN 
CIRCUITS OF SIZE AT LEAST 6

Input: An undirected graph G(V,E)  

Question: Can the vertex set V be partitioned into disjoint 
sets V1, Λ, Vk, such that each |Vi|≥6 and G(Vi) is 

Hamiltonian? 

CONTRIBUTION 29

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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We provide the first published proof that:

Theorem 21. UNDIRECTED PARTITION INTO 
HAMILTONIAN CIRCUITS OF SIZE AT LEAST 6 is NP-

complete.

Proof.
Reduce from: 
• the directed version of the problem for circuits of size at 

least 3
• known to be NP -complete [GJ79]

Computational Complexity Tools (2/2)
CONTRIBUTION 30

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Graph-Theoretic Tools (1/2)

KÖNIG-EGENVÁRY MAX INDEPENDENT SET

Instance: A graph G(V, E). 

Output: A Maximum Independent Set of G is König-Egenváry
(α(G) = β'(G)) or No otherwise.

Previous Results for König-Egenváry graphs 
• (Polynomial time) characterizations 

[Deming 79, Sterboul 79, Korach et. al, 06]

CONTRIBUTION 31

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Graph-Theoretic Results (2/2)

Proposition 1. KÖNIG-EGENVÁRY MAX INDEPENDENT 
SET can be solved in polynomial time.

Proof.
• Compute a Min Edge Cover EC of G
• From EC construct a 2SAT instance φ such that

• G has an Independent Set of size |EC|(=β'(G))
(so, α(G) = β'(G)) if and only if φ is satisfiable.

CONTRIBUTION 32

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Existence of Pure Nash Equilibria

Theorem 22. There is no pure Nash equilibrium.
Proof Sketch.
Let e=(u,v) the edge selected by the edge player in s.

• |E| > 1 ⇒ there exists an edge (u´, v´)=e´≠ e , such that u ≠ u´.
• If there is a vpi located on e,

• vpi will prefer to switch to u and gain more     
⇒ Not a Nash equilibrium.

• Otherwise, no vertex player is located on e.
• Thus, ICep(s)=0,
• ep can gain more by selecting any edge containing at least one 

vertex player.
⇒ Not a Nash equilibrium.

CONTRIBUTION 33

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))
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Characterization of Mixed Nash Equilibria

Theorem 23. A profile s is a Nash equilibrium if and only if the
following two conditions hold: 
1. For any vertex v ∈ Supports(vp), 

Ps(Hit(v)) = minv'∈VPs(Hit(v')).
2. For any edge e ∈ Supports(ep),  

VPs(e) = maxe'∈ E VPs(e').

• Note.
Does not imply a polynomial time algorithm for computing a Nash 
equilibrium..

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 34
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Computation of General Nash equilibria

Theorem 24. A mixed Nash equilibrium can be 
computed in polynomial time.
Proof idea:
• Reduction to a two-person, constant-sum game:

• Consider a two players variation of the game Π(G):
• 1 attacker, 1 defender

• Show that it is a constant-sum game
• Compute a Nash equilibrium s´ on the two players game         

(in polynomial time)
• Construct from s´ a profile s for the many players game:

• which is Attacker Symmetric
• show that it is a Nash equilibrium

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 35
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Necessary Conditions for Nash Equilibria (1/2)

Proposition 1. For a  Nash Equilibrium s, Supports(ep) is 
an Edge Cover of G.

Proof Sketch.
• Assume in contrary that there exists a vertex v ∈ V such that

v Vertices(Supports(ep)), 
⇒ Edgess(v) = ∅ and Ps(Hit(v)) =0.  
⇒ any vertex player vpi chooses some such v with probability 1,
⇒ VPs(e) = 0,
⇒ IPs(ep) = 0. 
Since s is a Nash equilibrium, IPs(ep)>0.  
⇒ A contradiction.

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 36
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Necessary Conditions for Nash Equilibria (2/2)

Proposition 2. For a Nash Equilibrium s, Supports(vp) is 
a Vertex Cover of the graph G(Supports(ep)).

Proof Sketch.
• Similar to Proposition 1.

CONTRIBUTION 37

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))
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Proposition 3. A Nash equilibrium is a Covering profile.

Covering Profiles

Definition. A Covering profile is a profile s such that
• Supports(ep) is an Edge Cover of G

• Supports(vp) is a Vertex Cover of the graph G(Supports(ep)).

Supports(ep)

Supports(vp)

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 38
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Independent Covering Profiles

Definition. An Independent Covering profile s is a uniform,
Attacker Symmetric Covering profile s such that:

1. Supports(vp) is an Independent Set of G.

2. Each vertex in Supports(vp) is incident to exactly  one edge 
in Supports(ep).

Supports(ep)

Supports(vp)

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 39
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Proposition 4. An Independent Covering profile is a Nash 
equilibrium, called Matching Nash equilibrium.

Proof.
We prove Conditions (1) and (2) of the characterization of a Nash 
equilibrium:
• Condition (1): Consider a vertex v ∈ Supports(vp).

• v is incident to exactly one edge e ∈ Supports(ep) (additional 

condition (2)).
⇒ Ps(Hit(v)) = sep(e).⇒ s is uniform ⇒ sep(e) = 1/ |Supports(ep)|. 

⇒ Ps(Hit(v)) = 1 / |Supports(ep)|. 

Matching Nash Equilibria

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 40
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Proof of Proposition 4 (cont.)

• Consider a vertex v´ Supports(vp).

⇒ Supports(ep) is an Edge Cover of G (additional condition (1)) 
⇒ there exists an edge e ∈ Supports(ep) such that v' ∈ e. 
⇒ Ps(Hit (v´)) ≥ sep (e)= 1 / |Supports(ep)| (s is uniform).

⇒ Ps(Hit(v)) = minv’∈VPs (Hit(v´)), for each vertex v ∈ Supports(vp).

i.e. Condition (1). 

• Condition (2): Similarly..

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 41
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Matching Nash Equilibria: 
Graph Theoretic Properties

Proposition 5. In a Matching Nash equilibrium s,

• Supports(vp) is a Maximum Independent Set of G.

• Supports(ep) is a Minimum Edge Cover of G.

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 42
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A characterization of Matching Nash Equilibria

Theorem 25. A graph G admits a Matching Nash 
equilibrium if and only if G contains an Expanding 
Independent Set.

(Mavronicolas, Papadopoulou, Philippou & Spirakis (ISAAC 2005 & Algorithmica))

CONTRIBUTION 43
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Game-Theoretic Characterizations of Graphs (1/3)

Identified strong connections between Game Theory and 
Graph Theory. For example:

• Discovered the first game-theoretic characterization of 
König-Egenváry graphs

• Discovered game-theoretic analogs of graph-theoretic
theorems.

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))

CONTRIBUTION 44
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Game-Theoretic Characterizations of Graphs (2/3)

Theorem 25. The graph G admits a Matching Nash 
equilibrium if and it is König-Egenváry graph (α(G) = β'(G)).

Proof.

• Assume that α(G) = β'(G)
• IS = Max Independent Set
• EC = Min Edge Cover
• Construct a Uniform, Attackers Symmetric profile s with:

• Supports(vp) = IS and Supports(ep) = EC. 

• We prove that s is an Independent Covering profile

⇒ a Nash equilibrium.
(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))

CONTRIBUTION 45
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Game-Theoretic Characterizations of Graphs (3/3)

Assume now that G admits a Matching Nash equilibrium s. 

• By Proposition 5, 
⇒ |Supports(vp)| = |Supports(ep)|

• by the definition of Matching Nash equilibria

⇒ α(G) = β'(G).

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))

CONTRIBUTION 46
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Since KÖNIG-EGENVÁRY MAX INDEPENDENT SET∈ P ⇒

Theorem 26. Finding a Matching Nash equilibrium can 
be solved in time

Matching Nash Equilibria: Computation

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))

CONTRIBUTION 47
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The Defense Ratio of 
Matching Nash Equilibria

Proposition 5. In a Matching Nash equilibrium, 
the Defense Ratio is α(G).

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Defender Uniform Nash Equilibria:
A Characterization

Theorem 27. A graph G admits a Defender Uniform Nash equilibrium if 
and only if there are non-empty sets V' ⊆ V and E'⊆ E and an integer 
r≥ 1 such that: 
(1/a) For each v∈ V', dG(E')(v) = r. 
(1/b) For each  v∈ V \ V',  dG(E')(v) ≥ r .

(2) V' can be partitioned into two disjoint sets V'i and  V'r such that:
(2/a) For each v∈ V'i, for any u∈ NeighG(v), it holds that u V'.
(2/b) The graph  h V'r, EdgesG (V'r) Å E' i is an  r-regular graph.
(2/c) The graph  h V'I ∪ (V \ V'), EdgesGV'I∪  ( V \V' ) ) Å E' i is a    

(V'i , V \ V' )-bipartite graph.
(2/d) The graph h V'i∪ V \V‘ ), EdgesG( V'i∪ V \ V‘ ) Å E' i is a       ( V 

\ V' ) - Expander graph.

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Characterization of Defender Uniform Nash 
Equilibria: Illustration

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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Defender Uniform Nash Equilibria: Complexity

Theorem 28. The existence problem of Defender Uniform
Nash equilibria is NP-complete.

Proof.
• Reducing from

• UNDIRECTED PARTITION INTO HAMILTONIAN 
CIRCUITS OF SIZE AT LEAST 6
• proved to be NP-complete. 

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))
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The Defense Ratio of 
Defender Uniform Nash Equilibria

Theorem 29. In a Defender Uniform Nash equilibrium, 
the Defense Ratio is ,  for some 0≤π≤ 1. 

(Mavronicolas, Michael, Papadopoulou, Philippou & Spirakis (MFCS 2006))

CONTRIBUTION 52



School on Algorithmic Game Theory, Patras, December 18-19 2006 66

Bounds on the Price of Defense 

Theorem 30. The Price of Defense is            . 

A graph is Defense-Optimal if it admits a Nash     

equilibrium with Price of Defense             . 

Theorem 31. A graph is Defense-Optimal iff it admits a 
Fractional Perfect Matching.  
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Fair Pricing Games

Similar to the KP model, except that:

• Weights are chosen according to some joint probability 
distribution D, which comes from a class Δ of probability 
distributions. 

• The Individual Cost to each agent choosing a resource is 
equal to 

• Social Cost = Maximum Resource Cost

CONTRIBUTION 54

(Mavronicolas, Panagopoulou, & Spirakis (WINE 2005 & Algorithmica))



School on Algorithmic Game Theory, Patras, December 18-19 2006 68

Strategies and Assignments

A pure strategy for agent i is some specific resource.

A mixed strategy for agent i is a probability distribution on the 
set of pure strategies.

A pure assignment L ∈ Mn is a collection of pure strategies, one 
per agent.

A mixed assignment P ∈ Rm×n is a collection of mixed 
strategies, one per agent.

• i.e. pi
j is the probability that agent i selects resource j.

• The support of agent  i is .}0:{ >∈= j
ii pMjS
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Fix a pure assignment  L = < l1, l2, …, ln >.

Resource demand on resource j :

Resource congestion on resource j :

Resource Cost on resource j : 

Individual Cost for agent i : it is the Resource Cost of  the 
resource she chooses, i.e.

Resource Cost and Individual Cost
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Expected Individual Cost

Now fix a mixed assignment  P.

The Conditional Expected Individual Cost of agent i
on resource j is the conditional expectation of the 
Individual Cost of  agent i had she been assigned to 
resource j.

The Expected Individual Cost of agent i is

j
iIC

.ICIC ∑
∈

⋅=
Mj

j
i

j
ii p
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The pure assignment L = <l1, l2, …, ln> is a pure Nash 
equilibrium if, for all agents i, the Individual Cost ICi is 
minimized (given the pure strategies of the other 
agents).

Thus, in a pure Nash equilibrium, no agent can 
unilaterally improve her own Individual Cost.

Pure Nash Equilibria
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Mixed Nash Equilibria

The mixed assignment P is a mixed Nash equilibrium
if, for all agents i, the Expected Individual Cost ICi is 
minimized (given the mixed strategies of the other 
agents), or equivalently, for all agents i,

P is a fully mixed Nash equilibrium if additionally 
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The Price of Anarchy

Let w be a demand vector and P be a Nash equilibrium.

The Social Cost is:

Let w be a demand vector. The Optimum is:

The Price of Anarchy is:
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Assume demands are chosen according to some joint 
probability distribution D, which comes from some (known) 
class  Δ of possible distributions.

We define the Diffuse Price of Anarchy to be

DPAΔ

The Diffuse Price of Anarchy
CONTRIBUTION 61

Price of Anarchy
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The proposed cost mechanism is used in real life by:
• Internet service providers
• Operators in telecommunication networks 
• Restaurants offering an “all-you-can-eat” buffet

The cost mechanism is  fair since
• No resource makes profit
• Agents sharing the same resource are treated equally

Motivation
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The Optimum

Proposition 6. For any demand vector w,

( ) .OPT
n

W
=w
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Pure Nash Equilibria Inexistence

Theorem 26. There is a pure Nash equilibrium if and 
only if all weights (demands) are identical.

Proof. ( if )
• Let

• Then, in any pure assignment L,

• Hence any pure assignment is a pure Nash equilibrium. 
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Fully Mixed Nash Equilibria: Existence

Theorem 27. There is always a fully mixed Nash 
equilibrium.

Proof.

Let F be the fully mixed assignment with

In F, and for all          and           , it holds that

i.e. the Conditional Expected Individual Cost of an agent i on 
resource j is independent of  j, so F is a fully mixed NE.
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CONTRIBUTION 66

Theorem 28. The fully mixed Nash equilibrium F is the 
unique Nash equilibrium in the case of 2 agents with 
non-identical demands. 

Proof.

• Consider an arbitrary Nash equilibrium P.

• Let  S1, S2 be the support of agent 1, 2 respectively.

• W.l.o.g., assume that  w1 > w2 . 

Fully Mixed Nash Equilibria: Uniqueness

(Mavronicolas, Panagopoulou, & Spirakis (WINE 2005 & Algorithmica))
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Fully Mixed Nash Equilibria: Uniqueness (cont.)

Proof. (continued)
• We can prove (by contradiction) that           
• Now fix Then

• Hence P=F.
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The Price of Anarchy: Lower Bound (1/2)

Theorem 29. The Price of Anarchy is         .

Proof.

• First observe that 

• Fix a demand vector w with and 

• Then             . 
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The Price of Anarchy: Lower Bound (2/2)
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for m=n, as needed.

Now

Proof. (continued)
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The Price of Anarchy: Upper Bounds (1/2)

Theorem 30. For two agents (n = 2), the Price of Anarchy,      

is .
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Theorem 31. The Price of Anarchy is                      .

Proof.
Fix any w.   For any pure assignment,

Hence, for any Nash equilibrium P,

The Price of Anarchy: Upper Bounds (2/2)
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The class Δ of Bounded, Independent Probability 
Distributions:
• Weights are independent, identically distributed random 

variables such that:

•

•

The Diffuse Price of Anarchy  (1/2)
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Theorem 29. Consider the class Δ of bounded, 
independent probability distributions. Then, 

1.

2.

The Diffuse Price of Anarchy (2/2)
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Research Plans

Study further the complexity of Nash equilibria. 

Study further the evaluation of Nash equilibria via the Price 
of Anarchy.

Apply game-theoretic modeling and analysis to problems 
from practical applications (e.g., caching, bandwidth 
allocation, security, network formation, etc.).

Develop the field of Selfish Distributed Computing as a 
realistic reformulation of Fault-Tolerant Distributed 
Computing.  

Develop the field of Byzantine Game Theory.

PLANS 1
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Further develop the theory of complexity classes PLS and 
PPAD and classes in the Polynomial Time Hierarchy in 

relation to the problem of computing and counting equilibria.
(Jointly with B. Monien and K. Wagner)

Develop the algorithmic theory of games with collusion.
(Jointly with F. Meyer auf der Heide)

Study further security games with interdependencies.
(Jointly with B. Monien, V. Papadopoulou, A. Philippou

and    P. Spirakis)

Develop the algorithmic theory of tremble equilibria. 
(Jointly with P. Spirakis)

More Concrete Research Plans
PLANS 2
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European Union        , IST Program:

• ALCOM-FT
• FLAGS (Global Computing 1)
• DELIS
• AEOLUS (Global Computing 2)

Cyprus Research Foundation, Funds for supporting 
research collaboration between two European countries:
• EPDS (Cyprus-Greece) } completed

• ALGATHE (Cyprus-France) } in progress

Research Funds
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