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Abstract—Content distribution networks (CDNs) balance costs and quality in services related to content delivery. Devising an efficient

content outsourcing policy is crucial since, based on such policies, CDN providers can provide client-tailored content, improve

performance, and result in significant economical gains. Earlier content outsourcing approaches may often prove ineffective since they

drive prefetching decisions by assuming knowledge of content popularity statistics, which are not always available and are extremely

volatile. This work addresses this issue, by proposing a novel self-adaptive technique under a CDN framework on which outsourced

content is identified with no a priori knowledge of (earlier) request statistics. This is employed by using a structure-based approach

identifying coherent clusters of “correlated” Web server content objects, the so-called Web page communities. These communities are

the core outsourcing unit, and in this paper, a detailed simulation experimentation has shown that the proposed technique is robust and

effective in reducing user-perceived latency as compared with competing approaches, i.e., two communities-based approaches, Web

caching, and non-CDN.

Index Terms—Caching, replication, Web communities, content distribution networks, social network analysis.
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1 INTRODUCTION

DISTRIBUTING information to Web users in an efficient and

cost-effective manner is a challenging problem, espe-
cially, under the increasing requirements emerging from a

variety of modern applications, e.g., voice-over-IP and

streaming media. Eager audiences embracing the “digital

lifestyle” are requesting greater and greater volumes of

content on a daily basis. For instance, the Internet video site

YouTube hits more than 100 million videos per day.1

Estimations of YouTube’s bandwidth go from 25 TB/day

to 200 TB/day. At the same time, more and more
applications (such as e-commerce and e-learning) are relying

on the Web but with high sensitivity to delays. A delay even

of a few milliseconds in a Web server content may be

intolerable. At first, solutions such as Web caching and

replication were considered as the key to satisfy such

growing demands and expectations. However, such solu-

tions (e.g., Web caching) have become obsolete due to their

inability to keep up with the growing demands and the
unexpected Web-related phenomena such as the flash-

crowd events [17] occurring when numerous users access a
Web server content simultaneously (now often occurring on

the Web due to its globalization and wide adoption).
Content distribution networks (CDNs) have been pro-

posed to meet such challenges by providing a scalable and
cost-effective mechanism for accelerating the delivery of the
Web content [7], [27]. A CDN2 is an overlay network across
Internet (Fig. 1), which consists of a set of surrogate servers
(distributed around the world), routers, and network
elements. Surrogate servers are the key elements in a
CDN, acting as proxy caches that serve directly cached
content to clients. They store copies of identical content,
such that clients’ requests are satisfied by the most
appropriate site. Once a client requests for content on an
origin server (managed by a CDN), his request is directed to
the appropriate CDN’s surrogate server. This results in an
improvement to both the response time (the requested
content is nearest to the client) and the system throughput
(the workload is distributed to several servers).

As emphasized in [4] and [34], CDNs significantly

reduce the bandwidth requirements for Web service

providers, since the requested content is closer to user

and there is no need to traverse all of the congested pipes

and peering points. So, reducing bandwidth reduces cost

for the Web service providers. CDNs provide also scalable

Web application hosting techniques (such as edge comput-

ing [10]) in order to accelerate the dynamic generation of

Web pages; instead of replicating the dynamic pages

generated by a Web server, they replicate the means of

generating pages over multiple surrogate servers [34].

CDNs are expected to play a key role in the future of the

Internet infrastructure since their high user performance
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and cost savings have urged many Web entrepreneurs to

make contracts with CDNs.3

1.1 Motivation and Paper’s Contributions

Currently, CDNs invest in large-scale infrastructure (surro-
gate servers, network resources, etc.) to provide high data
quality for their clients. To revenue their investment, CDNs
charge their customers (i.e., Web server owners) based on
two criteria: the amount of content (which has been
outsourced) and their traffic records (measured by the
content delivery from surrogate servers to clients). Accord-
ing to a CDN market report,3 the average cost per GB of
streaming video transferred in 2004 through a CDN was
$1:75, while the average price to deliver a GB of Internet
radio was $1. Given that the bandwidth usage of Web
servers content may be huge (i.e., the bandwidth usage of
YouTube is about 6 petabytes per month), it is evident that
this cost may be extremely high.

Therefore, the proposal of a content outsourcing policy,
which will reduce both the Internet traffic and the replicas
maintenance costs, is a challenging research task due to the
huge-scale, the heterogeneity, the multilevels in the structure, the
hyperlinks and interconnections, and the dynamic and evolving
nature of Web content.

To the best of the authors’ knowledge, earlier approaches
for content outsourcing on CDNs assume knowledge of
content popularity statistics to drive the prefetching
decisions [9], giving an indication of the popularity of
Web resources (a detailed review of relevant work will be
presented in Section 2). Such information though is not
always available, or it is extremely volatile, turning such
methods problematic. The use of popularity statistics has
several drawbacks. First, it requires quite a long time to
collect reliable request statistics for each object. Such a long
interval though may not be available, when a new site is
published to the Internet and should be protected from
“flash crowds” [17]. Moreover, the popularity of each object
varies considerably [4], [9]. In addition, the use of
administratively tuned parameters to select the hot objects
causes additional headaches, since there is no a priori
knowledge about how to set these parameters. Realizing the
limitations of such solutions, Rabinovich and Spatscheck

[30] implied the need for self-tuning content outsourcing
policies. In [32], we initiated the study of this problem by
outsourcing clusters of Web pages. The outsourced clusters
are identified by naively exploring the structure of the Web
site. Results showed that such an approach improves the
CDN’s performance in terms of user-perceived latency and
data redundancy.

The present work continues and improves upon the
authors’ preliminary efforts in [32], focusing on devising a
high-performance outsourcing policy under a CDN frame-
work. In this context, we point out that the following
challenges are involved:

. outsource objects that should be popular for long
time periods,

. refrain from using (locally estimated or server-
supplied) tunable parameters (e.g., number of
clusters) and keywords, which do not adapt well
to changing access distributions, and

. refrain from using popularity statistics which do not
represent effectively the dynamic users’ navigation
behavior. As observed in [9], only 40 percent of the
“popular” objects for one day remain “popular” and
the next day.

In accordance to the above challenges, we propose a
novel self-adaptive technique under a CDN framework on
which outsourced content is identified by exploring Web
server content structure and with no a priori knowledge of
(earlier) request statistics. This paper’s contribution is
summarized as follows:

. Identifying content clusters, called Web page commu-
nities, based on the adopted Web graph structure
(where Web pages are nodes and hyperlinks are
edges), such that these communities serve as the core
outsourcing unit for replication. Typically, it can be
considered as a dense subgraph where the number
of edges within a community is larger than the
number of edges between communities. Such struc-
tures exist on the Web [1], [13], [20]—Web servers
content designers (humans or applications) tend to
organize sites into collections of Web pages related
to a common interest—and affect users’ navigation
behavior; a dense linkage implies a higher prob-
ability of selecting a link. Here, we exploit a
quantitative definition for Web page communities
introduced in [32], which is considered to be suitable
for CDNs content outsourcing problem. Our defini-
tion is flexible, allowing overlaps among commu-
nities (a Web page may belong to more than one
community), since a Web page usually covers a wide
range of topics (e.g., a news Web server content) and
cannot be classified by a single community. The
resulting communities are entirely being replicated
by the CDN’s surrogate servers.

. Defining a parameter-free outsourcing policy, since our
structure-based approach (unlike k-median, dense
k-subgraphs, min-sum, or min-max clustering) does
not require the number of communities as a pre-
determined parameter, but instead, the optimal
number of communities is any value between 1 and
the number of nodes of the Web site graph, depend-
ing on the node connectivity (captured by the Web
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server content structure). The proposed policy called
Communities identification with Betweenness Cen-
trality (CiBC) identifies overlapped Web page com-
munities using the concept of Betweenness Centrality
(BC) [5]. Specifically, Newman and Girvan [22] have
used the concept of edge betweenness to select edges
to be removed from the graph so as to devise a
hierarchical agglomerative clustering procedure,
which though is not capable of providing the final
communities but requires intervening of adminis-
trators. Contrary to this work [22], the BC is used, in
this paper, to measure how central each node of the
Web site graph is within a community.

. Experimenting on a detailed simulation testbed, since the
experimentation carried out involves numerous
experiments to evaluate the proposed scheme under
regular traffic and under flash crowd events. Current
usage of Web technologies and Web server content
performance characteristics during a flash crowd
event are highlighted, and from our experimentation,
the proposed approach is shown to be robust and
effective in minimizing both the average response
time of users’ requests and the costs of CDNs’
providers.

1.2 Road Map

The rest of this paper is structured as follows: Section 2
discusses the related work. In Section 3, we formally define
the problem addressed in this paper. Section 4 presents the
proposed policy. Sections 5 and 6 present the simulation
testbed, examined policies, and performance measures.
Section 7 evaluates the proposed approach, and finally,
Section 8 concludes this paper.

2 RELEVANT WORK

2.1 Content Outsourcing Policies

As identified by earlier research efforts [9], [15], the choice of
the outsourced content has a crucial impact in terms of
CDN’s pricing [15] and CDN’s performance [9], and it is
quite complex and challenging, if we consider the dynamic
nature of the Web. A naive solution to this problem is to
outsource all the objects of the Web server content (full
mirroring) to all the surrogate servers. The latter may seem
feasible, since the technological advances in storage media
and networking support have greatly improved. However,
the respective demand from the market greatly surpasses
these advantages. For instance, after the recent agreement
between Limelight Networks4 and YouTube, under which
the first company is adopted as the content delivery platform
by YouTube, we can deduce, since this is proprietary
information, the huge storage requirements of the surrogate
servers. Moreover, the evolution toward completely perso-
nalized TV (e.g., the stage6)5 reveals that the full content of
the origin servers cannot be completely outsourced as a
whole. Finally, the problem of updating such a huge
collection of Web objects is unmanageable. Thus, we have
to resort to a more “selective” outsourcing policy.

A few such content outsourcing policies have been
proposed in order to identify which objects to outsource for

replicating to CDNs’ surrogate servers. These can be
categorized as follows:

. Empirical-based outsourcing. The Web server con-
tent administrators decide empirically about which
content will be outsourced [3].

. Popularity-based outsourcing. The most popular
objects are replicated to surrogate servers [37].

. Object-based outsourcing. The content is replicated
to surrogate servers in units of objects. Each object is
replicated to the surrogate server (under the storage
constraints) which gives the most performance gain
(greedy approach) [9], [37].

. Cluster-based outsourcing. The content is replicated
to surrogate servers in units of clusters [9], [14]. A
cluster is defined as a group of Web pages which
have some common characteristics with respect to
their content, the time of references, the number of
references, etc.

From the above content outsourcing policies, the object-
based one achieves high performance [9], [37]. However, as
pointed out by the authors of these policies, the huge
amount of objects results in not being implemented on a
real application. On the other hand, the popularity-based
outsourcing policies do not select the most suitable objects
for outsourcing, since the most popular objects remain
popular for a short time period [9]. Moreover, they require
quite a long time to collect reliable request statistics for each
object. Such a long interval though may not be available,
when a new Web server content is published to the Internet
and should be protected from flash crowd events.

Thus, we resort to exploit action of cluster-based out-
sourcing policies. The cluster-based one has also gained the
most attraction in the research community [9]. In such an
approach, the clusters may be identified by using conven-
tional data clustering algorithms. However, due to the lack
of a uniform schema for Web documents and dynamics of
Web data, the efficiency of these approaches is unsatisfac-
tory. Furthermore, most of them require administratively
tuned parameters (maximum cluster diameter, maximum
number of clusters) to decide the number of clusters, which
causes additional problems, since there is no a priori
knowledge about how many clusters of objects exist and of
what shape these clusters are.

In disaccordance with the above approaches, we exploit
the Web server content structure and consider each cluster
as a Web page community, where its characteristics are
that it reflects the dynamic and heterogeneity nature of the
Web. Specifically, it considers each page as a whole object,
rather than breaking down the Web page into information
pieces and reveals mutual relationships among the
concerned Web data.

2.2 Identifying Web Page Communities

In the literature there are several proposals for identifying
Web page communities [13], [16]. One of the key distin-
guishing properties of the algorithms that is usually
considered has to do with the degree of locality which is
used for assessing whether or not a page should be assigned
in a community. Regarding this feature, the methods for
identifying the communities can be summarized as follows:
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. Local-based methods. These methods (also known
as bibliographic methods) attempt to identify com-
munities by searching for similarity between pairs of
nodes. Thus, their object is to answer the question
“Are these two nodes similar?” In this context, the
bibliographic approaches use two similarity metrics:
the cocitation and the bibliographic coupling. These
techniques, although well established, fail to find
large-scale Web page communities of the Web site
graph because the localized structures are too small.
More details on their application can be found in [8].

. Global-based methods. These methods (also known
as spectral methods) consider all the links in the
Web graph (or subgraph). Specifically, spectral
methods identify the communities by removing an
approximately minimal set of links from the graph.
In this context, the Kleinberg’s HITS [19] algorithm
(stands for Hyperlink-Induced Topic Search) and
the PageRank [6] are used to identifying some key
nodes of the graph which are related to some
community and work well as seed sets [1]. However,
without auxiliary text information, both PageRank
and HITS have limited success in identifying Web
page communities [13]. A well-known global-based
approach is the maximum flow one [12]. Given two
vertices of a graph G, s and t, the maximum flow
problem is to find the maximum flow that can be
routed from s to t while obeying all capacity
constraints with respect to G. A feature of the
flow-based algorithms is that they allow a node to be
in at most one community. However, this is a severe
limitation in CDNs content outsourcing, since some
nodes may be left outside of every community.
Another algorithm is the Clique Percolation Method
(CPM) [24] which is based on the concept of k-clique
community. Specifically, a k-clique community is a
complete subgraph of size k, allowing overlaps
between the communities. CPM has been widely
used in bioinformatics [24] and in social network
analysis [25] and is considered as the state-of-the-art
overlapping community finding method.

3 OUTSOURCED CONTENT SELECTION

In this paper, we study the problem: Which content should be
outsourced by the origin server to CDN’s surrogate servers so as
to reduce the load on the origin server and the traffic on the
Internet, and ultimately improve response time to users as well as
reduce the data redundancy to the surrogate servers? Next, we
formally define the problem; this paper’s notation is
summarized in Table 1.

3.1 Primary Problem Statement

CDNs are overlay networks on top of the Internet that
deliver content to users from the network edges, thus
reducing response time compared to obtaining content
directly from the origin server.

Problem 1: Content outsourcing. Let there be a network

topology X consisting of jXj network nodes, and a set N of

jN j surrogate servers, whose locations are appropriately [29]

selected upon the network topology. Also, let there be a set O of

jOj unique objects of the Web server content, which has an

outsourcing contract with the CDN provider, whereNo denotes

the set of locations where object o has been replicated and loðjÞ
denotes that the object o is located at the jth surrogate. It has to

be noticed here, thatNo includes also the origin Web server. For

a set W of jW j users, where Ow represents the set of objects

requested by client w, we will denote the response time

experienced by user i ði 2WÞ, when s/he retrieves object o

from the surrogate jðj 2 NÞ, as Toi;j. Therefore, CDNs should

adapt an outsourcing policy in order to select the content to be

outsourced ðOoutsourcingPolicy
outsourced � OÞ in such a way that is

minimizes the following equation:

response time ¼
X
i2W

X
o2Oi

min
j2No

Toi;loðjÞ

� � !
ð1Þ

subject to the constraint that the total replication cost is
bounded by OS � CðNÞ, where OS is the total size of all the
replicated objects to surrogate servers, and CðNÞ is the cache
capacity of the surrogate servers.

Regarding where to replicate the outsourced content, we
propose a heuristic6 replica placement policy [26]. Accord-
ing to this policy, the outsourced content is replicated to
surrogate servers with respect to the total network’s latency
from the origin Web server to the surrogate servers, making
a conservative assumption that the clients’ request patterns
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are homogeneous. Specifically, for each outsourced object,
we find which is the best surrogate server in order to place
it (produces the minimum network latency). Then, we select
from all the pairs of outsourced object-surrogate server that
have been occurred previously, the one which produces the
largest network latency and, thus, place this object to that
surrogate server. The above process is iterated until all the
surrogate servers become full.

3.2 Web Page Communities Identification

The outsourced content is replicated to CDN’s surrogate
servers in the form of Web page communities. As it has
been described in Section 2, several approaches have been
proposed in the literature [12], [13], [20] in order to identify
Web page communities. However, all these approaches
require heavy parameterization to work in CDNs’ environ-
ment and present some important weaknesses, since we
could end up either with a huge number of very small
communities or with a single community comprised by the
entire Web server content. On the other hand, max-flow
communities [12] seem more appropriate, but they suffer
from their strict definition (in the sequel, we provide
detailed explanation of this).

Formally, we consider a graph G ¼ ðV ;EÞ, where V is a
set of nodes and E is a set of edges. Let diðGÞ be the degree
of a generic node i of the considered graph G, which, in
terms of the adjacency matrix M of the graph, is
di ¼

P
j;i6¼j Mi;j þ

P
j;i6¼j Mj;i. If we consider a subgraph

U � G, to which node i belongs, we can split the total
degree di in two quantities: diðUÞ ¼ dini ðUÞ þ douti ðUÞ. The
first term of the summation denotes the number of edges
connecting node i to other nodes belonging to U , i.e.,
dini ðUÞ ¼

P
j2U;i 6¼j Mi;j. The second term of the summation

formula denotes the number of connections of node i
toward nodes in the rest of the graph (G \ U 0, where U 0 is
the complement of graph U), i.e., douti ðUÞ ¼

P
j=2U;i6¼j Mj;i.

Specifically, a Web page community has been defined in
[12] as follows:

Definition 1: The hard Web page community. A subgraph
UðVu; EuÞ of a Web site graph G constitutes a Web page
community, if every node v ðv 2 VuÞ satisfies the following
criterion:

dinv ðUÞ > doutv ðUÞ: ð2Þ

This definition is quite restrictive for the CDNs’ content
outsourcing problem since it allows a node to be in, at most,
one community or in no community at all. For instance,
according to Definition 1, node 1 in Fig. 2a will not be
assigned to any community; also no community will be
discovered for the graph shown in Fig. 2b, although at a
first glance, we could recognize four communities based on
our human perception, i.e., the four triangles; a careful look
would puzzle us whether the four nodes (pointed to by
arrows) at the corners of the square really belong to any
community.

Thus, a new and more flexible definition of the
community is needed, that 1) will allow for overlapping
communities, 2) will be based only on the hyperlink
information, assuming that two pages are “similar”/
“correlated” iff there exists a link between them, 3) will
not make use of artificial “weights” on the edges of the Web

site graph, and 4) will not make use of the direction of links
in the Web site graph (the user browses the Web using both
hyperlinks and the “back button”).

Definition 2: The generalized Web page community [32].

A subgraph U of a Web site graph G constitutes a Web page
community, if it satisfies the following condition:X

v2U
dinv ðUÞ >

X
v2U

doutv ðUÞ; ð3Þ

i.e., the sum of all degrees within the community U is larger
than the sum of all degrees toward the rest of graph G.

Obviously, every hard Web page community may also be
a generalized Web page community, but the opposite is not
always true. Thus, our definition overcomes the limitation
explained in Fig. 2 by implying more generic communities.
Thus, rather than focusing on each individual member of the
community, like Definition 1, which is an extremely local
consideration, we consider relative connectivity between the
nodes. Certainly, this definition does not lead to unique
communities, since by adding or deleting “selected” nodes
the property may still hold. Based on the above definition,
we regard the identification of generalized Web page
communities as follows:

Problem 2: Correlation clustering problem. Given a graph
with V vertices, find the (maximum number of) possibly
overlapping groups of vertices (i.e., a noncrisp clustering [11]),
such that the number of edges within clusters is maximized
and the number of edges between clusters is minimized, such
that Definition 2 holds for each group.

Finding the optimal correlated clusters is unfeasible,
since this clustering problem is NP-hard [2]. To deal with
this problem, we propose a heuristic algorithm, namely
CiBC, which identifies generalized Web page communities.

4 THE CIBC ALGORITHM

CiBC is a heuristic CDN’s outsourcing policy which
identifies generalized Web page communities from a Web
server content. CiBC is a hybrid approach, since the identified
communities are based on both local and global graph’s
properties (discussed in Section 2.2). The Web server content
is represented by a Web site graph G ¼ ðV ;EÞ, where its
nodes are the Web pages and the edges depict the hyperlinks
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among Web pages. Given the Web site graph (Web server

content structure), CiBC outputs a set of Web page

communities. These communities constitute the set of objects

ðOCiBC
outsourcedÞ which are outsourced to the surrogate servers.
CiBC consists of two phases. In the first phase, we

compute the BC of the nodes of the Web site graph. In the

second phase, the nodes of the Web site graph are

accumulated around the nodes which have the lowest BC,

called pole-nodes. Then, the resulted groups are processed

and a set of Web page communities is produced. The
algorithm is given in Fig. 3.

4.1 Phase I: Computation of Betweenness
Centrality

Initially, the BC of nodes is computed [5] (line 2), providing
information about how central a node is within the Web
graph. Formally, the BC of a node can be defined in terms of
a probability as follows:

Definition 3. Betweenness centrality. Given a Web graph
G ¼ ðV ;EÞ, spstðvÞ is the number of the shortest paths from a
node s 2 V to t 2 V that contains the node v 2 V , and spst is
the number of shortest paths from s to t. The betweenness
value of node v for pairs s, t ðbstðvÞÞ is the probability that
node v falls on a randomly selected shortest path connecting s
with t. The overall BC of a node v is obtained by summing up
its partial betweenness values for all unordered pairs of nodes
fðs; tÞjs; t 2 V ; s 6¼ t 6¼ vg:

BCðvÞ ¼
X

s 6¼ t 6¼ v2V

spstðvÞ
spst

: ð4Þ

In our framework, the BC of a particular Web page
captures the level of navigational relevance between this
page and the other Web pages in the underlying Web server
content. This relevance can be exploited to identify tightness
and correlation between the Web pages, toward forming a
community. In order to compute the BC, we use the
algorithm described in [5], since to the best of our knowl-
edge, it has the lowest computational complexity. Specifi-
cally, according to [5], its computation approach is OðV EÞ,
where V is the number of nodes and E is the number of
edges. Then, the nodes of the graph G is sorted by the
ascending order of BC values (line 4).

4.2 Phase II: Accumulation around Pole-Nodes

The first step in this phase is to accumulate the nodes of the
Web graph G around the pole-nodes. It is an iterative
process where, in each iteration, we select the node with the
lowest BC (called pole-node). Specifically, we start the
formation of the communities from the pole-nodes since,
as it is pointed in [22], the nodes with high BC have large
fan-outs or are articulation points (nodes whose removal
would increase the number of connected components in the
graph) of the graph. For instance, consider Fig. 4, where the
communities of the graph sample are well formed and
intuitive. The numbers in parentheses denote the BC index
for the respective node ID (the number left to the
parentheses). We observe that, in some cases, the nodes
with high BC are indeed central in the communities (e.g.,
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node 8), but there are also cases, where the nodes with high
BC are the nodes which are in-between the communities
(e.g., nodes: 3, 4, 14, and 18). Fig. 5 depicts another example,
where the communities are not obvious at all. If we start the
formation of communities from the node with the highest
BC, i.e., node U, then it is possible that we will end up with
a single community covering the whole graph. Therefore,
we accumulate the nodes of the Web graph around the ones
which have low BC. This process comes to an end when all
the nodes of the graph have been assigned to a group.

In this context, the selected pole-node is checked if it

belongs to any group (line 8). If not, it indicates a distinctive

one (line 11) and then, it is expanded by the nodes which are

directly connected with it (line 12). Afterward, the resulted

group is expanded by the nodes which are traversed using

the bounded-Breadth First Search (BFS) algorithm [33] (line

13). A nice feature of the bounded-BFS algorithm is that the

resulted group is uniformly expanded until a specific depth

of the graph. A typical value for the graph’s depth is
ffiffiffiffi
V
p

[2].

Then, the above procedure is repeated by selecting as pole-

node the one with the next lowest BC. At the end, a set of

groups would have been created.

The next step is to minimize the number of these groups

by merging the identified groups so as to produce general-

ized Web page communities. Therefore, we define an l� l
matrix B (l denotes the number of groups), where each

element B½i; j� corresponds to the number of edges from

group Ci to group Cj. The diagonal elements B½i; i�
correspond to the number of internal edges of the group

Ci ðB½i; i� ¼
P

v2Ci d
in
v ðCiÞÞ. On the other hand, the sum of a

row of matrixB is not equal to the total number of edges. For

instance, if a node x belongs to communities Ci and Cj, and

there is an edge x�!y, then this edge counts once for B½i; i�
(since it is an internal edge), but it also counts for B½i; j�
(since y belongs also to Cj). As far as the merging of the

groups is concerned, the CiBC consists of several iterations,

where one merge per iteration takes place. The iterations

come to an end (convergence criterion) when there is not any

other pair to be merged. In each iteration, the pair of groups

is selected for merging which has the maximum B½i;j�
B½i;i�

(line 24). We consider that a merge of the groups Ci, Cj

takes place when the following condition is true:

B½i; j� � B½i; i�: ð5Þ

The above equation satisfies Definition 2, since the sum
of the internal edges of the resulted communities would be
larger than the sum of edges toward to the rest of the graph.

Degenerate cases of communities (i.e., communities with
only two or three nodes or communities which are larger
than the cache size) are removed (line 30). The algorithm
terminates when there is no change in the number of
communities.

4.3 Time and Space Complexity

The CiBC’s first phase is an initialization process that
calculates the BC of nodes. This computation can be done in
time complexityOðV EÞ for a graphGðV ;EÞ [5]. Considering
the sparse nature of the Web site graphs, i.e., jEj ¼ OðjV jÞ, it
is obvious that this computation is very fast and it does not
affect the performance of the algorithm. Therefore, even for
the case of dynamic graphs where we have to execute it
periodically, the overhead due to this computation is
negligible.

The performance of the second phase of CiBC is highly
dependent on the maximum number of iterations executed
by CiBC, which is proportional to the initial number of the
selected pole-nodes. Considering that a typical value of
maximum number of nodes for each community is m ¼

ffiffiffiffi
V
p

[2], the time complexity with respect to the number of nodes
is OðV

ffiffiffiffi
V
p
Þ, since in each iteration, all the pairs of the

communities are checked. In particular, the time that is
required is

m2 þ ðm� 1Þ2 þ . . . ¼
Xm
n¼0

ðm� nÞ2 ffi m3
Xm
n¼0

1� n

m

� �2
;

which means that the complexity is Oðm3Þ. As far as the
memory space is concerned, the space complexity is OðV Þ
(i.e., an m�m matrix).

To sum up, the time and space computational require-
ments of CiBC algorithm are mainly dependent on the
number of graph’s nodes. On the other hand, its perfor-
mance is only linearly affected by the number of edges.

5 SIMULATION TESTBED

The CDNs’ providers are real-time applications and they
are not used for research purposes. Therefore, for the
evaluation purposes, it is crucial to have a simulation
testbed [4] for the CDN’s functionalities and the Internet
topology. Furthermore, we need a collection of Web users’
traces which access a Web server content through a CDN, as
well as, the topology of this Web server content (in order to
identify the Web page communities). Although we can find
several users’ traces on the Web,7 real traces from CDN’s
providers are not available. Thus, we are faced to use
artificial data. Moreover, using artificial data enables us to
validate extensively the proposed approach. In this frame-
work, we have developed a full simulation environment,
which includes the following:

1. a system model simulating the CDN infrastructure,
2. a Web server content generator, modeling file sizes,

linkage, etc.,
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3. a client request stream generator capturing the main
characteristics of Web users’ behavior, and

4. a network topology generator.

Table 2 presents the default parameters for the setup.

5.1 CDN Model

To evaluate the performance of the proposed algorithm,
we used our complete simulation environment, called
CDNsim, which simulates a main CDN infrastructure and
is implemented in the C programming language. A demo
can be found at http://oswinds.csd.auth.gr/~cdnsim/. It
is based on the OMNeT++ library8 which provides a
discrete event simulation environment. All CDN network-
ing issues, like surrogate server selection, propagation,
queueing, bottlenecks, and processing delays are com-
puted dynamically via CDNsim, which provides a detailed
implementation of the TCP/IP protocol (and HTTP 1.1),
implementing packet switching, packet retransmission
upon misses, objects’ freshness, etc.

By default, CDNsim simulates a cooperative push-based
CDN infrastructure [31], where each surrogate server has
knowledge about what content (which has been proactively
pushed to surrogate servers) is cached to all the other
surrogate servers. If a user’s request is missed on a surrogate
server, then it is served by another surrogate server. In this
framework, the CDNsim simulates a CDN with 100
surrogate servers which have been located all over the
world. The default size of each surrogate server has been
defined as the 40 percent of the total bytes of the Web server
content. Each surrogate server in CDNsim is configured to
support 1,000 simultaneous connections. Finally, the CDN’s
surrogate servers do not apply any cache replacement
policy. Thus, when a request cannot be served by the CDN’s
infrastructure, it is served by the origin server without being
replicated by any CDN’s surrogate server. The outsourced
content has a priori been replicated to surrogate servers
using the heuristic approach that has been described in
Section 3.1. This heuristic policy is selected as the default
replica placement one since it achieves the highest perfor-
mance for all the outsourcing policies.

5.2 Web Server Content Generation

In order to generate the synthetic Web site graphs, we
developed a tool, the so-called the FWGen.9 The FWGen

tool produces synthetic but realistic Web graphs since it
encapsulates many of the patterns found in real-world
graphs, including power-law and log-normal degree dis-
tributions, small diameter, and communities “effects.” The
parameters that are given to FWGen are

1. number of nodes,
2. number of edges or density related to the respective

fully connected graph,
3. number of communities to generate,
4. skew, which reflects the relative sizes of the

generated communities, and finally
5. the assortativity factor, which gives the percentage

of the edges that are intracommunity edges.

The higher the assortativity is, the stronger communities are
produced. For instance, if the assortativity is 100 percent,
then the generated communities are disconnected with each
other. In general, research has shown that the assortativity
factor of a Web site’s graph is usually high [22]. From a
technical point of view, FWGen creates two files. The first
one is the graph and the second one records the produced
communities. Thus, we can compare the communities
identified by the CiBC using a similarity distance measure.
For our experiments, the produced Web graphs have
16,000 nodes and their sizes are 4.2 Gbytes. The number
of edges slightly varies (about 121,000) with respect to the
values of the assortativity factor.

5.3 Requests Generation and Network Topology

As far as the requests’ stream generation is concerned, we
used the generator described in [21], which reflects quite well
the real users’ access patterns. Specifically, this generator,
given a Web site graph, generates transactions as sequences
of page traversals (random walks) upon the site graph, by
modeling the Zipfian distribution to pages. In this work, we
have generated 1 million users’ requests. Each request is for a
single object, unless it contains “embedded” objects. We
consider that the requests arrive according to a Poisson
distribution with rate equal to 30. Then, the Web users’
requests are assigned to CDN’s surrogate servers taking into
account the network proximity and the surrogate servers’
load, which is the typical way followed by CDNs’ providers
(e.g., Akamai) [36]. Some more technical details about how
CDNsim manages the users’ requests can be found in [32]
and at http://oswinds.csd. auth.gr/~cdnsim/. Finally,
concerning the network topology, we used an AS-level
Internet topology with a total of 3,037 nodes. This topology
captures a realistic Internet topology by using BGP routing
data collected from a set of seven geographically dispersed
BGP peers.

6 EXPERIMENTATION

6.1 Examined Policies

In order to evaluate our proposed algorithm, we conducted
extensive experiments comparing CiBC with another state-
of-the-art policy. It should be noticed that although there
are several approaches which deal with finding commu-
nities (dense clusters) in a graph, the CPM algorithm has
been preferred to be compared with CiBC. The reason is
that CPM, in contrast to the most common approaches
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(flow-based, matrix-based such as SVD, distance-based,
etc.), may produce, in an effective way, overlapped Web
page communities which are in accordance with our target
application. Furthermore, we investigate the performance
of our earlier proposal, i.e., Correlation Clustering Com-
munities identification (C3i) and of a Web caching scheme.

. CPM. The outsourced objects obtained by the CPM
ðOCPM

outsourcedÞ correspond to k-clique percolation clus-
ters in the network. The k-cliques are complete
subgraphs of size k (in which each node is
connected to every other nodes). A k-clique percola-
tion cluster is a subgraph containing k-cliques that
can all reach each other through chains of k-clique
adjacency, where two k-cliques are said to be
adjacent if they share k� 1 nodes. Experiments
have shown that this method is very efficient when
it is applied on large graphs [28]. In this framework,
the communities are extracted with the CPM using
the CFinder package, which is freely available from
http://www.cfinder.org.

. C3i. The outsourced communities obtained by the
C3i are identified by naively exploring the structure
of the Web site [32]. This results in requiring
parameterization to identify communities. It is an
algorithm that came out from our earlier preliminary
efforts to develop a communities-based outsourcing
policy for CDNs.

. Web caching scheme (LRU). The objects are stored
reactively to proxy cache servers. We consider that
each proxy cache server follows the Least Recently
Used (LRU) replacement policy since it is the typical
case for the popularity of proxy servers (e.g., Squid).

. No replication (W/O CDN). All the objects are
placed on the origin server and there is no CDN/no
proxy servers. This policy represents the “worst-
case” scenario.

. Full replication (FR). All the objects have been
outsourced to all the CDN’s surrogate servers. This
(unrealistic) policy does not take into account the
cache size limitation. It is, simply, the optimal policy.

6.2 Evaluation Measures

We evaluate the performance of the above methods under a
regular traffic and under a flash crowd event (a large
amount of requests is served simultaneously). It should be
noted that, for all the experiments, we have a warm-up
phase for the surrogate servers’ caches. The purpose of the
warm-up phase is to allow the surrogate servers’ caches to
reach some level of stability and it is not evaluated. The
measures used in the experiments are considered to be the
most indicative ones for performance evaluation. Specifi-
cally, the following measures are used:

. Mean response time (MRT). The expected time for a
request to be satisfied. It is the summation of all
requests’ times divided by their quantity. This
measure expresses the users’ waiting time in order
to serve their requests. The overall response time
consists of many components, namely, DNS delay,
TCP setup delay, network delay between the user
and the server, object transmission delay, and so on.
Our response time definition implies the total delay

due to all the aforementioned components. In the
experiments for regular traffic, the results depict the
total response time, since DNS and TCP setup delay
are negligible, whereas the network delay dominates
the object transmission delay. So, it makes no sense
to present individual figures for these components,
and we resort to the total response time as the
measure of performance for regular traffic. In the
experiments simulating a flash crowd, we provide
more detailed results breaking down the response
time to its components.

. Response time CDF. The Cumulative Distribution
Function (CDF) here denotes the probability of
having response times lower or equal to a given
response time. The goal of a CDN is to increase the
probability of having response times around the
lower bound of response times.

. Replica factor (RF). The percentage of the number of
replica objects to the whole CDN infrastructure with
respect to the total outsourced objects. It is an
indication about the cost of maintaining the replicas
“fresh.” High values of replica factor mean high data
redundancy and waste of money for the CDNs’
providers.

. Byte hit ratio (BHR). It is defined as the fraction of
the total number of bytes that were requested and
existed in the cache of the closest to the clients
surrogate server to the number of bytes that were
requested. A high byte hit ratio improves the
network performance (i.e., bandwidth savings and
low congestion).

In general, replication and response time are interrelated

and the pattern of dependence among them follows the rule

that the increased replication results in reduced response

times, because the popular data are outsourced closer to the

final consumers. Specifically, the lowest MRT (upper limit),

which can be achieved by an outsourcing policy, is observed

when its replica factor is 1. In such a case, all the outsourced

objects ðOoutsourcingPolicy
outsourced Þ of the underlying outsourcing

policy have been replicated by all surrogate servers.
In addition, the performance of the examined outsourced

policies is evaluated. Specifically, the CiBC approach is

compared with CPM and C3i with respect to the following

measures in order to assess their speed (how quickly do they

provide a solution to the outsourcing problem?) as well as

their quality (how well do they identify the communities?):

. CPU time. To measure the speed of the examining
algorithms, since it is a value reported by using the
system call time() of the Unix kernel and conveys the
time that the process remained in the CPU.

. Similarity distance measure. To measure the degree
of discrepancy between identified and real commu-
nities (the produced communities by the FWGen
tool). For this purpose, a similarity distance measure
is used, which measures the mean value of the
difference of the objects’ correlation within two Web
page communities sets (identified communities by
an outsourcing policy and FWGen’s communities).
Specifically, the distance between Ci and C0i is
defined as
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DðCi; C0i; GÞ ¼
P

n12V
P

n22V jY � Zj
jV j jV j � 1ð Þ ; ð6Þ

Y ¼
P

c2Kðn1 ;CiÞ
Nðn2;cÞ

jKðn1;CiÞj , Z ¼
P

c2Kðn1 ;C
0
i
ÞNðn2;cÞ

jKðn1;C
0
iÞj

, and Kðn;CÞ
gives the set of communities ð½1 . . . jCj�Þ that the node

n has been assigned to, and N(n, c) = 1 if n 2 c and 0

otherwise. According to the above, if Ci and C0i are

equal then D ¼ 0.

Finally, we use the t-test to assess the reliability of the
experiments. T-test is a significance test that can measure
results effectiveness. In particular, the t-test would provide
us an evidence whether the observed MRT is due to chance.
In this framework, the t statistic is used to test the following
null hypothesis ðH0Þ:
H0: The observed MRT and the expected MRT are signifi-

cantly different.
The t statistic is computed by the following formula:

t ¼ x� �
sx

; ð7Þ

where x and � are the observed and expected MRTs,
respectively. The variable sx is the standard error of the
mean. Specifically, sx ¼ s

� , where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�

i¼1ðxi � xÞ
� � 1

r
;

and � is the number of observations in the sample. A small
value of the t statistic shows that the expected and the
actual values are not significantly different. In order to
judge whether t statistic is really small, we need to know a
critical value ðtdf;�Þ for the boundary of the area of
hypothesis’s rejection. For finding this critical value, we
should define the level of significance � (probability of
erroneously rejecting the null hypothesis) and the degrees
of freedom (df ¼ � � 1). Thus, if the value of t statistic,
computed from our data, is smaller than tdf;�, we reject the
null hypothesis at the level of significance �. In such a case,
the probability that the observed MRT is due to chance is
less than �.

7 EVALUATION

7.1 Evaluation under Regular Traffic

7.1.1 Client-Side Evaluation

First, we tested the competing algorithms with respect to
the average response time, with varying the assortativity
factor. The results are reported in Fig. 6. The y-axis
represents time units according to OMNeT++’s internal
clock and not some physical time quantity, like seconds and
minutes. So, the results should be interpreted by comparing
the relative performance of the algorithms. This means that
if one technique gets a response time 0.5 and some other
gets 1.0, then, in the real world, the second one would be
twice as slow as the first technique. The numbers which are
included within the parentheses represent the number of
communities identified by the underlying algorithm for
different values of the assortativity factor.

We observe that the CiBC achieves the best performance
compared to CPM, LRU, and C3i. Specifically, the CiBC
improves the MRT at about 60 percent with respect to CPM,

about 38 percent with respect to LRU, and around 20 percent
with respect to C3i for regular traffic conditions. In general,
the communities-based outsourcing approach is advanta-
geous when compared to LRU and W/O CDN, only under
the premise that the community-identification algorithm
does a good job in finding communities. Although it is
impossible to check manually the output of each algorithm
so as to have an accurate impression of all the identified
communities, we observe that CPM achieves its lowest
response time when the assortativity factor is equal to 0.8. In
this case, it finds 81 communities, a number that is very close
to the number of communities found by CiBC and C3i
algorithms. Presumably, it does not discover exactly the
same communities, and this is the reason for achieving
higher response time than CiBC and C3i. In general, the low
performance of CPM is attributed to the fact that it fails to
identify large-scale communities, which makes this algo-
rithm worse than LRU. This observation strengthens our
motive to investigate efficient and effective algorithms for
community discovery, because they have dramatic impact
upon the response time.

As far as the performance of FR and W/O CDN is
concerned, since these approaches represent the unfeasible
lower-bound and impractical upper-bound of the MRT,
respectively, their performance is practically constant; they
are not affected by the assortativity factor. They do not
present any visible up/down trend, and any observable
variations are due to the graph and request generation
procedure. This is a natural consequence, if we consider
that they perform no clustering.

The general trend for the CiBC algorithm is that the
response time is slightly decreasing with larger values of
assortativity factor. The explanation for this decrease is that,
due to the request stream generation method, which
simulates a random surfer, as the value of assortativity
factor grows (more dense communities are created), the
random surfers browse mainly within the same commu-
nities. Fig. 7 depicts the CDF for a Web graph with
assortativity factor 0.75. The y-axis presents the probability
of having response times lower or equal to a given response
time. From this figure, we see that the CiBC serves a large
volume of requests in low response times. Quite similar
results have been observed for the other values of
assortativity factor.

Fig. 8 presents the BHR of the examined policies for
different values of the assortativity factor. The CiBC has the
highest BHR, around 40 percent. This is a remarkably
significant improvement, if we consider that the BHR of a
typical proxy cache server (e.g., Squid) is about 20 percent
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[35], and it is attributed to the cooperation among the
surrogate servers. On the other hand, the CPM and LRU
present low BHR, without exceeding 20 percent. The
increase of the BHR is a very significant matter, and even
the slightest increase can have very beneficial results to the
network, since fewer bytes are travelling in the net, and
thus, the network experiences lower congestion. In our case,
we see that although CiBC is only 6 percent (on average)
better than C3i in terms of BHR, this gain is translated into
20 percent reduction of the average response time (Fig. 6).

Overall, the experimentation results showed that the
communities-based approach is a beneficial one for CDN’s
outsourcing problem. Regarding the CiBC’s performance,
we observed that the CiBC algorithm is suitable to our
target application, since it takes into account the CDNs’
infrastructure and their challenges, reducing the users’
waiting time and improving the QoS of the Web servers
content.

7.1.2 Server-Side Evaluation

The results are reported in Figs. 9 and 10, where x-axis
represents the different values of cache size as a percentage
of the total size of distinct objects. A percentage of cache size
equal to 100 percent may not imply that all objects are found
in the cache due to the overlap among the outsourced
communities. In general, an increase in cache size results in a
linear (for caches larger than 15 percent) decrease in MRT
and in a linear (for caches larger than 10 percent) increase in
the replica factor. CiBC achieves low data redundancy as
well as low MRT. For small cache sizes (< 10 percent of total
objects’ volume), it is outperformed by LRU. This is due to
the fact that there is a time penalty to bring the missing
objects no matter how the cache size is increased. However,
as the cache size increases, the CiBC outperforms LRU.

On the other hand, the CPM algorithm presents high
data redundancy, without exhibiting the smooth behavior
of CiBC. Its replica factor is increased almost instantly by
increasing the cache size, with no significant improvement
in MRT. Specifically, the CPM identifies Web page com-
munities where each one has a small number of objects.
Thus, the CPM reaches the maximum value of replica factor
for small cache sizes. This drawback is not exhibited by C3i,
which follows the CiBC’s pattern of performance, although
it lags with respect to CiBC at a percentage which varies
from 10 percent to 50 percent. Finally, the unfeasible FR
approach, as expected, presents high data redundancy,
since all the outsourced objects have been replicated to all
the surrogate servers.

CiBC achieves low replica factor. This is very important
for CDNs’ providers since a low replica factor reduces the
computing and network resources required for the content
to remain updated. Furthermore, a low replica factor
reduces the bandwidth requirements for Web servers
content, which is important economically for both indivi-
dual Web servers content and for the CDN’s provider
itself [4].

Fig. 11 depicts the performance of the examining
algorithms with respect to runtimes for various values of
the assortativity factor. The efficiency of the CiBC is obvious
since it presents the lowest runtimes for all the values of the
assortativity factor that have been examined. Specifically,
CiBC is 6-16 times faster than CPM. Furthermore, we
observe that the speed performance of CiBC is independent
of the assortativity factor, whereas the CPU time for CPM
depends on this factor at an exponential fashion. The
behavior of C3i depends a lot on the assortativity factor;
when the communities are “blurred” (i.e., low assortativity),
its execution time is two times that of CPM, and only when
the communities are more clearly present in the Web site
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graph, it becomes faster than CPM. Still, in the best case, C3i
is three times slowest than CiBC, because the way it selects
the kernel nodes [32] has a huge influence on the execution
time. Even for high network assortativity, i.e., well-formed
communities, an unfortunate selection of the kernel nodes
might cause larger execution time when compared with the
cases of networks with lower assortativity. Once again, this
observation confirms the motive of this work to develop
efficient and effective algorithms for community discovery
in the context of content outsourcing.

7.1.3 Web Page Communities Validation

Fig. 12 presents the validity of the examined outsourcing
algorithms by computing the similarity distance measure
(6) between the resulted communities (identified by CiBC,
C3i, and CPM) and the ones produced by the FWGen tool.
The general observation is that when the communities are
not “blurred” (i.e., assortativity factor larger than 0.75),
CiBC manages to identify exactly the same number of
communities (similarity distance ffi 0), although it is not
guided by preset parameters used in other types of graph
clustering algorithms. On the other hand, the communities
identified by CPM are quite different than those produced.
Finally, although C3i exhibits better performance than
CPM, its performance approaches than of CiBC only for
very large values of the network assortativity.

7.1.4 Statistical Test Analysis

When a simulation testbed is used for performance
evaluation, it is critical to provide evidence that the
observed difference in effectiveness is not due to chance.
Here, we conducted a series of experiments, making
random permutation of users (keeping the rest of the
parameters unchanged). Based on (7), the value of t statistic
is t ¼ �6:645. The critical value of t-test is tdf ;� ¼ 3:29 for

level of significance � ¼ 0:001 and degrees of freedom
df ¼ 175. From the above, it occurs that t175;0:001 > t, which
means that the null hypothesis H0 is rejected. Furthermore,
we computed the p-value of the test, which is the probability
of getting a value of the test statistic as extreme as or more
extreme than that observed by chance alone, if the null
hypothesis H0, is true. The smaller the p-value is, the more
convincing is the rejection of the null hypothesis. Specifi-
cally, we found that p-value < 0:001, which provides a
strong evidence that the observed MRT is not due to chance.

7.2 Evaluation under Flash Crowd Event

Flash crowd events occur quite often and present significant
problems to Web server content owners [17]. For instance,
in commercial Web servers content, a flash crowd can lead
to severe financial losses, as clients often resign from
purchasing the goods and search for another, more
accessible Web server content. Here, we investigate the
performance of the algorithms under a flash crowd event.
Recall that each surrogate server is configured to support
1,000 simultaneous connections.

The experiments for the regular traffic measured the
overall MRT without breaking it into its components, since
the network delay dominated all other components. The
situation during a flash crowd is quite different; TCP setup
delay is expected to contribute significantly to the MRT, or
even to dominate over the rest of the delay components.

To understand the effect of a flash crowd on the
performance of the algorithms, we simulated a situation
where the users’ request streams are conceptually divided
into three equi-sized epochs. The first epoch simulates a
situation with regular traffic, where the requests arrive
according to a Poisson distribution with rate equal to 30. The
second epoch simulates the flash crowd (i.e., the request rate
increases two orders of magnitude and bursts of users’
requests access a small number of Web pages), and finally, in
the third epoch, the system returns again to the regular
traffic conditions.

The dominant components of the response time are
depicted in Table 3 (averages of values). DNS delay is
excluded from this table because it was infinitesimal. The
variance of these measurements was very large, which
implied that the mean value would fail to represent the
exact distribution of values. Thus, we plotted for each
algorithm the total response time for each request in the
course of the three epochs. The results are reported in the
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four graphs of Fig. 13. It has to be noticed here that we do

not present results for the performance of the W/O CDN

approach, because the Web server content collapsed quickly

and did not serve any requests.

At a first glance, the results confirm the plain intuition
that during a flash crowd event the response times increase
dramatically; similar increase is observed in the variance of
the response time. Looking at Table 3, we observe that
during regular traffic conditions (epoch1) TCP setup delay
is one order of magnitude smaller than network and
transmission delay. But during the flash crowd, it becomes
comparable or even exceeds the value of the other two
components for the cases of CiBC and C3i. The flash crowd
event has caused the other two algorithms to crash; their
resources could cope with the surge of requests only for a
small period during the flash crowd. This interval is very
short for LRU; it is well known that the Web caching
techniques cannot manage effectively the flash crowd
events [17]. On the other hand, initially, CPM responds
gracefully to the surge of requests (similar to the other two
community-based outsourcing algorithms), but soon its
lower quality decisions with respect to the identified
communities make it also crash.

Turning to the two robust algorithms, namely, CiBC and
C3i, we observe that they are able to deal with the flash
crowd. There are still many requests that experience
significant delay, but the majority is served in short times.
Apparently, CiBC’s performance is superior than that of
C3i. Moreover, as soon as the surge of requests disappears,
the response times of CiBC are restored to the values it had
before the flash crowd. C3i does not exhibit this nice
behavior, which is attributed to its community-identifica-
tion decisions.

In summary, the experiments showed that CiBC algo-
rithm presents a beneficial performance under flash crowd
events, fortifying the performance of Web servers content.
Specifically, CiBC is suitable for a CDN’s provider, since it
achieves low data redundancy, high BHR, and MRTs, and it
is robust in flash crowd events.

7.3 Evaluation with Real Internet Content

To strengthen the credibility of the results obtained with the
synthetic data, we evaluated the competing methods with
real Internet content. The real Web site we used is the
cs.princeton.edu. This Web site consists of 128,805 nodes and
585,055 edges. As far as the requests’ stream generation is
concerned, we used the same generator that we used for the
synthetic data. Then, we “fed” these requests into CDNsim
in exactly the same way we did for synthetic data. The
execution of CiBC revealed 291 communities, whereas the
execution of C3i revealed 1,353 communities. As expected,
due to its exponential time complexity, CPM did not run to
completion and we terminated it after running for almost
five days. The execution time for CiBC and C3i was 7,963
and 19,342 seconds, respectively, on a Pentium IV 3.2-GHz
processor.

Table 4 presents the relative performance results for the
competing algorithms for a particular setting (i.e., 40 percent
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Fig. 13. Response time for (a) CiBC, (b) C3i, (c) CPM, and (d) LRU.

TABLE 4
Performance of the Algorithms for Real Internet Content



cache size), since the relative performance of the algorithms

was identical to that obtained for the synthetic data. Notice

that the replica factor is not measured for LRU, since it

refers to static replication and not to “dynamic” replication.

Similarly, BHR and RF have no meaning in the context of

the W/O CDN approach. These results are in accordance

with those obtained for the synthetic ones; indicatively,

CiBC presents 27 percent higher BHR, 17 percent better

response time, and 10 percent lower replication than C3i.

8 CONCLUSION

In this paper, we dealt with the content selection problem

—which content should be outsourced in CDN’s surrogate

servers. Differently from all other relevant approaches, we

refrained from using any request statistics in determining

the outsourced content, since we cannot always gather them

quite fast to address “flash crowds.” We exploited the plain

assumption that Web page communities do exist within

Web servers content, which act as attractors for the users,

due to their dense linkage and the fact that they deal with

coherent topics. We provided a new algorithm, called CiBC,

to detect such communities; this algorithm is based on a

new, quantitative definition of the community structure.

We made them the basic outsourcing unit, thus providing

the first “predictive” use of communities, which so far have

been used for descriptive purposes. To gain a basic, though

solid understanding of our proposed method’s strengths,

we implemented a detailed simulation environment, which

gives Web server content developers more insight into how

their site performs and interacts with advanced content

delivery mechanisms. The results are very promising and

the CiBC’s behavior is in accordance with the central idea of

the cooperative push-based architecture [31]. Using both

synthetic and real data, we showed that CiBC provides

significant latency savings, keeping the replication redun-

dancy at very low levels. Finally, we observed that the CiBC

fortifies the CDN’s performance under flash crowd events,

providing significant latency savings.
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