Effective Keyword Search for Software Resources
installed in Large-scale Grid Infrastructures

George Pallis, Asterios Katsifodimos, Marios D. Dikaiakos
Department of Computer Science
University of Cyprus, Nicosia, Cyprus

Abstract—In this paper, we investigate the problem of can choose among 1,700 Amazon Machine Images (AMIs),
supporting keyword-based searching for the discovery of with each AMI hosting at least 90,000 files, including
software resources that are installed on the nodes of large- installed software. Envisioning the existence of a sofevar

scale, federated Grid computing infrastructures. We address a h . th h Id submit to th
number of challenges that arise from the unstructured natue Search engine, the researcher would submit a query to the

of software and the unavailability of software-related meadata ~ Search engine using some keywords (e.g. “graph tool,” or
on Grid sites. We present Minersoft, a Grid harvester that vsits ~ “communities discovery”). In response to this query, the
Grid sites, crawls their file-systems, identifies and clasBes  engine would return a list of software matching the query’s
software resources, and discovers implicit associationssbween keywords, along with computing sites where this software is
them. The results of Minersoft harvesting are encoded in a ’ . .
weighted, typed graph, named the Software Graph. A number chated. Thus, the re_see_lrcher_would be able to identify the
of IR algorithms are used to enrich this graph with structural  Sites hosting an application suitable to her needs, anddvoul
and content associations, to annotate software resourcestiv  accordingly prepare and submit jobs to these sites.
keywords, and build inverted indexes to support keyword-baed However, software usually resides in file systems, together
searching for software. Using a real testbed, we present an  yith nymerous other files of different kinds. Traditionaéfil

evaluation study of our approach, using data extracted from t d t maintai tadat tina fil fi
a production-quality Grid infrastructure. Experimental r esults Systems do not maintain metacata representing file sersantic

show that our approach achieves high search efficiency. and distinguishing between different file types. Furtherno
the registries of distributed computing infrastructuraety
. INTRODUCTION publish little information about installed software [1Hi-

A growing number of large-scale Grid and Cloud in- nally, software files usually come with few or no free-text de
frastructures are in operation around the world, providingscriptors. Consequently, the software-search problematan
production-quality computing and storage services to manye addressed by traditional IR approaches. Instead, we need
thousands of users from a wide range of scientific anchew techniques that will: i) discover automatically softesa
business fields. One of the main goals of these large-scalelated resources installed in file systems that host a great
distributed computing environments is to make their soft-number of files and a large variety of file types; ii) extract
ware resources and services easily accessible and atractistructure and meaning from those resources, capturing thei
for end-users [6]. To achieve this goal, it is important tocontext, and iii) discover implicit relationships amongiin.
establish advanced, user-friendly tools for software cfear Also, we need to develop methods for effective querying and
and discovery, in order to help end-users locate applicatiofor deriving insight from query results. The provision ofifu
software suitable to their needs and encourage softwanext search over large, distributed collections of unstre
reuse [8], [23], [27]. data has been identified among the main open research
Motivation. Adopting a keyword-based search paradigmchallenges in data management that are expected to bring
for locating software seems like an obvious choice, givera high impact in the future [2]. Searching for software falls
that keyword search is currently the dominant paradigm founder this general problem since file-systems treat soétwar
information discovery [18]. To motivate the importance of resources as unstructured data and maintain very littleyif a
such a tool, let us consider a researcher who is searchingetadata about installed software.
for graph mining software deployed on a Grid infrastruc- Contributions. Following this motivation, we developed
ture. Unfortunately, the manual discovery of such softwareghe Minersoft software search engine. To the best of our
is a daunting, nearly impossible task: taking the case oknowledge, Minersoft provides the first full-text search fa
EGEE [1], one of the largest production Grids currently incility for locating software resources installed in largesle
operation, the researcher would have to search among 3@®rid infrastructures. Furthermore, Minersoft can be gasil
sites with several sites hosting well over 1 million softerar extended to support search on Cloud infrastructures like
related files. The situation is not better in emerging CloudAmazon’s EC. Minersoft visits a Grid site, crawls its file-
infrastructures: a user of the Amazon Elastic Cloud servicesystem, identifies software resources of interest (bisarie



libraries, documentations etc), assigns type informatmn language-specific software repositories and CASE tools (a
these resources, and discovers implicit associationsdegtw survey of recent work can be found in [19]).
them. Also, Minersoft extracts a number of terms by exploit- In [20], Maarek et. al. presented GURU, possibly the
ing the path within file-system and the filename of softwarefirst effort to establish a keyword-based paradigm for the
resources. retrieval of source code installed on standalone comput-
To achieve these tasks, Minersoft invokes file-systerers. Similar approaches have been proposed also in [5],
utilities and object-code analyzers, implements hewgssti [21]. All these works exploit source-code comments and
for file-type identification and filename normalization, and documentation files, representing them as term-vectors and
performs document analysis algorithms on software docuusing similarity metrics from Information Retrieval (IR} t
mentation files and source-code comments. The results ddlentify the associations between software resourcesilRes
Minersoft harvesting are encoded in the Software Graphshowed that such schemes work well in practice and are able
which is used to represent the context of discovered softto discover links between documentation files and source
ware resources. We process the Software Graph to annotatedes. The use of folksonomy concepts has been investigated
software resources with metadata and keywords, and use the context of the Maracatu system [26]. Folksonomy is
these to build an inverted index of software. Indexes froma cooperative classification scheme where the users assign
different Grid sites are retrieved and merged into a centrakeywords (called tags) to software resources. A drawback of
inverted index, which is used to support full-text searghin this approach is that it requires user intervention to miywua
for software installed on the nodes of a Grid infrastructuretag software resources. Finally, the use of ontologies is
The distributed architecture, the implementation and #ve p proposed in [16]; however, this work provides little eviden
formance evaluation of the Minersoft crawler are presentedn the applicability and effectiveness of its solution.
in [15]. In this paper, we introduce the core information The search for software can also benefit from extended file
retrieval component of Minersoftthe Software Graphand  systems that capture file-related metadata and/or seraantic
its related algorithms. The main contributions of this worksuch as the Semantic File System [12], the Linking File Sys-
can be summarized as follows: tem (LiFS) [4], or from file systems that provide extensions

« We introduce theSoftware Grapha typed, weighted O Support search through facets [17], contextualizatia), [

graph that captures the types and properties of softwar@nd desktop search (e.g., Confluence [13], Wumpus [28],
resources found in a file system, along with structural€tc)- Although Minersoft could easily take advantage of file

and content associations between them (e.g. director§ySteéms offering this kind of support, in our current design
containment, library dependencies, documentation ofVe assume that the file system provides the metadata found
software). in traditional Unix and Linux systems, which are common

« We present the Software Graph construction algorithmin Most Grid and Cloud infrastructures.
This algorithm comprises techniques for discovering In the Grid context, a recent work has proposed a software

structural and content associations between softwarg€@rch service, called GRIDLE [23]; this scheme allows

resources that are installed on the file systems of largeSers to specify a high-level workflow plan including the
scale distributed computing environments. requirements of each software file. Then, GRIDLE presents a
« We demonstrate the effectiveness of the Software GrapFnked list of files that match partially or totally user regu

as a structure for annotating software resources with dglents. However, GRIDLE cannot be used as a keyword-
scriptive keywords, and for supporting full-text search b_ased pa.\radlgm for locating software resources in the Grid
for software. To this end, we use Minersoft to harvestSince neither crawls the Grid sites, nor searches installed

sites of the EGEE Grid. Results show that MinersoftSoftware files.
achieves high search efficiency. Although we are not aware of any work that proposes
a keyword-based paradigm for locating software resources

Th.e remainder of this Paper s organized as fOHOWS'on large-scale Grid infrastructures, our work overlapwit
Section 2 presents an overview of related work. In Sec-

. . rior work on software resources retrieval [5], [20], [21],

tion 3, we introduce the concepts of software resourceij%] These works mostly focus on developing schemes
software package ?‘”d Software Graph. Section 4 describ at facilitate the retrieval of software source files using
the proposed algorithm to create a Software Graph annotat e keyword-based paradigm. Minersoft is different from
with keyword-based metadata. In Section 5 we presentth '

an experimental assessment of our work. We conclude in .. works in a number of key aspects: i) Our system
SectioFr)1 6 ' u IIgupports searching not only for source codes but also for

executables and libraries stored in binary format; ii) Mine
soft does not presume that file-systems maintain metadata
(tags etc) to support software search; instead, the Mifterso
A number of research efforts have investigated the probharvester generates such metadata by invoking standard file
lem of software-component retrieval in the context ofsystem utilities and tools and by exploiting the hierarahic

Il. RELATED WORK



organization of file-systems; iii) Minersoft introduceseth  The Software Graph is “typed” because its vertices and
concept of the Software Graph, a weighted, typed graphedges are assigned to different types (classes). Eachxverte
The Software Graph is used to represent software resource$ the Software Graplé:(V, E) is annotated with a number
and associations under a single data structure, amenable @b associated metadata attributes, describing its comtedt
further processing. context:

« name(v) is the normalized naneof the software
resource represented by
In this section we provide some background and define , ;,,c(v) denotes the type of; a vertex can be classified
software resource, software package and Software Graph, into one of a finite number of types (more details on
which are the main focus of this paper. this are given in the following section).
Definition 1: Software Resource A software resource is « site(v) denotes the computing site where file is
a file that is installed on a machine and belongs to one of  |gcated.

IIl. BACKGROUND

the following categories: ipxecutablegbinary or script), « path(v) is a set of terms derived from the path-name
ii) software libraries, iii) source codeswritten in some of software resource in the file system ofite(v).
programming language, ionfiguration filesrequired for o zone;(v),l = 1,...,z, is a set of zones assigned to
the compilation and/or installation of code (e.g. makefiles vertex v. Each zone contains terms extracted from a
V) unstructured or semi-structuredftware-description doc- software resource that is associatedutaand which

uments which provide human-readable information about contains textual content. In particulagne; (v) stores
the software, its installation, operation, and mainteeanc the terms extracted from’s own contents, whereas

(manuals, readme files, etc). zones(v), ..., zone,, (v) store terms extracted from

The identification of a software resource and its classiticat software documentation files associated tdhe num-

into one of these categories can be done by human experts  per (-, — 1) of these files depends on the file-system

(system administrators, software engineers, advanced)use organization of site(v) and on the algorithm that
Definition 2: Software Package A software package discovers such associations (see subsequent section).

consists of one or more content or/and structurally asso-  Each term of a zone is assigned an associated weight
ciated software resources that function as a single ertity t w;, 0 < w; < 1 equal to the term's TF/IDF value

accomplish a task, or group of related tasks. in the corpus. Furthermore, eaehne;(v) is assigned
Human experts can recognize the associations that establis 3 weight g, so that>>;7*, ¢, = 1. Zone weights are

the grouping of software resources into a software package. jntroduced to support weighted zone scoring in the
Normally, these associations are not represented through resolution of end-user queries.

some common, explicit metadata format maintained in the Each edgee of the graph has two attributes:
flle-system. Instead, _they are _expres_segl |mpI|C|'FIy byﬂ_lom_ (type, w), wheretype denotes the association represented by
and naming conventions or hidden inside configuration fllese anduw is a real-valued weight) < w < 1) expressing the
(e.g., makefiles, software libraries). Therefore, the @0  yoqree of correlation between the edge’s vertices. St

tion of software-file classification and grouping is a non-,, -re Packageare coherent clusters of “correlated” software
trivial task. To represent the software resources found in Jesources iSoftware GraphNext, we focus on presenting
file-system and the associations between them we introdu%w the Software Graph can be constructed (section 1V) and

the conce pt of thoftware Graph . we evaluate its contribution (section V).
Definition 3: Software Graph. Software Graph is a

weighted, metadata-rich, typed graptiV, E). The vertex-  |V. SOFTWARE GRAPH CONSTRUCTION ANDINDEXING

set V' of the graph comprises: i) vertices representing A key responsibility of the Minersoft harvester is to
software resources found on the file-system of a computing,nsiryct a Software Graph (SG) for each computing site,
node (ile-vertice$, and ii) vertices representing directories starting from the contents of its file system. To this end,

of the file-system directory-verticey The edgest” of the  \ye propose an algorithm comprising a number of steps
graph represent structural and content associations betwe jascribed below :

vertices. o _ _ FST construction: Initially, Minersoft scans the file system
Structural associationscorrespond to relationships be- of 5 sjte and createsfide-system tre¢FST) data structure.
tween software resources and file-system directories.€Thesrhe internal vertices of the tree correspond to directories

relationships are derived from file-system structure acor ¢ the file system:; its leaves correspond to files. Edges
ing to various conventions (e.g., about the location andepresent containment relationships between directariels

naming of documentation files) or from configuration files gp_directories or files. All FST edges are assigned a weight
that describe the structuring of software packages (RPas, t equal to one. During the scan, Minersoft ignorestap list
files, etc).Content associationsorrespond to relationships

between software resources derived by text similarity. INormalization techniques for filenames are presented if [22



of files and directories that do not contain information ofinformation, logging etc. All this information can be used i
interest to software search (e.gt,np, / proc). order to get useful features from these resources. Minersof
Classification and pruning: Names and pathnames play an parses the binary files byte by byte and captures the pritabl
important role in file classification and in the discovery sf a character sequences that are at least four characters long
sociations between files. Accordingly, Minersoft normediz and are followed by an unprintable character. The extracted
filenames and pathnames of FST vertices, by identifying an#ieywords are stemmed and saved in the zones of the file-
removing suffixes and prefixes. The normalized names areertices of the SG.

stored as metadata annotations in the FST vertices. Subsgeyword flow: Software files (executables, libraries, source
quently, Minersoft applies a combination of system uébti code) usually contain little or no free-text descriptions.
and heuristics to classify each FST file-vertex into one ef th Therefore, content analysis typically discovers very few
following categories: binary executables, source codg. (e. keywords inside such files. To enrich the keyword sets of
Java, C++), libraries, software-description documentd ansoftware-related file-vertices, Minersoft identifies esl¢jeat
irrelevant files. Minersoft prunes all FST leaves found to beconnect software-documentation file-vertices with sofewva
irrelevant to software search, dropping also all interr8T'F file-vertices, and copies selected keywords from the former
vertices that are left with no descendants. This step esultinto the zones of the latter.

to a pruned version of the FST that contains only softwareContent association mining: Similar to [5] and [21], we
related file-vertices and the corresponding directoryi#®s.  further improve the density of SG by calculating the co-
Structural dependency mining: Subsequently, Minersoft sine similarity between the SG vertices of source files. To
searches for “structural” relationships between softwarejmplement this calculation, we represent each source-file
related files (leaves of the file-system tree). Discoveredertex as a weighted term-vector derived from its source-
relationships are inserted as edges that connect leaves @de comments. To improve the performance of content
the FST, transforming the tree into a graph. Structurahssociation mining, we apply a feature extraction techaiqu
relationships can be identified by: i) Rules that represenfo estimate the quantity of information of individual terms
expert knowledge about file-system organization, such agnd to disregard keywords of low value. Source codes that
naming and location conventions. For instance, a set oxhibit a high cosine-similarity value are joined through a
rules link files that contaiman-pageso the corresponding edge that denotes the existence of a content relationship
executablesReadmeand html files are linked to related petween them.

software files. i) Dynamic dependencies that exist betweefyerted index construction: To support full-text search for
libraries and binary executables. Binary executables andoftware resources, Minersoft creates an inverted index of
libraries usually depend on other libraries that need to beoftware-related file-vertices of the SG. The inverted inde
dynamically linked during runtime. These dependencies ar@as 3 set of terms, with each term being associated to a
mined from the headers of libraries and executables and th?)osting” list of pointers to the software files containiriget
corresponding edges are inserted in the graph; each of theggm. The terms are extracted from the zones of SG vertices.
edges is assigned a weight of one, as there exists a direct| the supsequent sections, we provide more details on the

association of files. o _ algorithms for finding relationships between documentatio
The structural dependency mining step produces the firstnq software-related files (section IV-A), keyword extiarct

version of the SG, which captures software resources ang,q keyword flow (section IV-B), and content association
their structural relationships. Subsequently, Minerseftks mining (section IV-C).

to enrich file-vertex annotation with additional metadatd a
to add more gdges into the SG, in order to better eXPresR  ~ontext Enrichment
content associations between software resources.
Keyword scraping: In this step, Minersoft performs deep  During the structural dependency mining phase, Minersoft
content analysis for each file-vertex of the SG, in orderseeks to discover associations between documentation and
to extract its descriptive keywords. This is a resource-software leaves of the file-system tree. These associations
demanding computation that requires the transfer of all fileare represented as edges in the SG and contribute to the en-
contents from disk to memory, to perform content parsingrichment of the context of software resources. The disgover
stop-word elimination, stemming and keyword extraction.of such associations is relatively straightforward in thse
Different keyword-scraping techniques are used for déffeér  of Unix/Javadoc online manuals since, by convention, the
types of files: for instance, in the case of source code, waormalized name of a file storing a manual is identical to
extract keywords only from the comments inside the sourcethe normalized file name of the corresponding executable.
since the actual code lines would create unnecessary noidéinersoft can easily detect such a connection and insert an
without producing descriptive features. edge joining the associated leaves of the file-system tiee. T
Binary executable files and libraries contain strings thatassociation represented by this edge is considered strahg a
are used for printing out messages to the users, debuggirie edge is assigned a weight equal to 1.



In the case ofreadmefiles, however, the association determined by the edge weights of the &Ghat has been
between documentation and software is not obvious: softeccurred by exploiting the file-system tree, multiplied doy
ware engineers do not follow a common, unambiguousThe value of is a normalization constant calculated so that
convention when creating and placing readme files inside ththe sum of the weights of the zones attached to each vertex
directory of some software package. Therefore, we intreducequals 1. Recall that a software file is enriched by a zone if
a heuristic to identify the software-files that are potdhytia there already exists an edge between this file and a software-
described by a readme, and to calculate their degree afescription document. Each zone includes the selectedgterm
association. The key idea behind this heuristic is that af the underlying software-description document.
readme file describes its siblings in the file-system trea; if
sibling is a directory, then the readme-file’s “influence i
to th_e directory’s descendan'Fs so that equidis?ant Vertices  content Association
receive the same amount of influence and vertices that are

farther away receive a diminishing influence. If, for exaejpl Minersoft enriches the SG with edges that capture content
. ; MRS ers gest
a readme-file leat™ has a vertex-set”” of siblings in the  ,qq5ciation between source-code files in order to support,

file-system tree, then: . _ later on, the automatic identification of software packages
» Eachleaf v] € V" receives fromy” an “influence” of i the SG.

1

) . . To this end, we represent each source {iks a weighted
o Each leaff that is a descendant of an internal node P g

. . . . " term-vectorV(s) in the Vector Space Model (VSM). We
v €V » [ECEIVes from” an *influence” of1/(d - 1), estimate the similarity between any two source-code files
whered '_S the length of the FST path fronf" to f‘_ s; and s; as the cosine similarity of their respective term-

The association between software-file and readme-file Vefeciors: V7 (s,) - V(s;). If the similarity score is larger than

tices can be computed easily with a simple linear-time, gpecific threshold (for our experiments we have set the

breadth-first searcttraversal of the FST, which maintains ;,...<7 014 > 0,05), we add a new typed, weighted edge to

a stack to keep track of discovered readme files during thg,o g connecting; to s;. The weightw of the new edge
. . . . ’ 7 -
FST traversal. For each discovered association we msert@qums the calculated sirfnilarity score.

corresponding edge in the SG; the weight of the edge is

L The components of the term-vectors correspond to terms
equal to the association degree.

of our dictionary. These terms are derived from comments
B. Content Enrichment found inside source-code files and their weights are cal-

Minersoft performs the “keyword-flow” step, which en- culated using a TF-IDF weighing scheme. To reduce the
riches software-related vertices of the SG with keywordsdimensionality of the vectors and noise, we apply a feature
mined from associated documentation-related vertices. Thselection technique in order to choose the most important
keyword-flow algorithm is simple: for all software-related terms among the keywords assigned to the content zones
verticesv, we find all adjacent edges; = (v,y) in the SG, ~ Source files. Feature selection is based omgtlentity of in-
wherey is a documentation vertex. For each such edge formationQ(t) metric that a ternt has within a corpus, and
we attach a documentatiamne to v. is defined by the following equatior®)(t) = —log2(P(t)),

As we referred in the previous Section, each SoftwaréNhereP(t) is the observed probablhty of occurrence of term
file is described by a number of zones. A zone included inside a corpus [20]. In our case, the corpus is the union of
a set of keywords. If there is an edge @ between a all content zones of SG vertices of source files. To estimate
software-description document (i.e., readme, manual) anth€ probabilityP(¢), we measure the percentage of content
a software file (i.e., executable file, library, source code)zones of SG vertices of source files whereiappears; we
then we enrich the content of the software file by adding &0 not count the frequency of appearance of a content-
new zone. Such an action improves keyword-based searchif@ne. as this would create noise.
since software files contain little or no free-text desdoips. Subsequently, we drop terms which their quantity of
So, the software files are represented by a number of zoneimformation values from the content-zones of SG vertices
However, each zone has a different degree of importancef source files are lower than a specific threshold (for our
in terms of describing the content of a software file. Forexperiments we remove the terms whé}€) < 3,5). The
instance, theontent zonef a vertexv is more important for  reason is that low terms would be useful for identifying
the description of than itsdocumentation zone$hus, each different classes of vertices. In our case, however, we
zone(v) is assigned a weighy; so thatZ =/, g = 1, already know the class where each vertex belongs to (this
wherez, is the total number of zones for a software file  corresponds to the type of the respective file). Therefore,
The weight of each zone is computed as follows: the weighby dropping terms that are frequent inside the source-code
of zonewhich includes the textual content of takes the class, we maintain terms that can be useful for discrinmgati
value o. The weights of the other zones of each file arebetween files inside a source-code class.



V. EVALUATION

Grid Site Binaries

Sources

Libraries Docs Irrelevant

AEGIS01-PHY-SCL 6.064

31.734

7.669 66.810 38.559

CY-03-INTERCOLLEGE 26.971

8.925

3.644 23.064 27.296

CY-01-KIMON 28.691

166.294

22.571 295.074 45.666

The software design of Minersoft enables the distribution

RO-08-UVT 8.134

56.793

4.199 68.335 146.940

of its crawling and indexing tasks to the computing nodes

HG-05-FORTH 28.351

495.995

65.507 759.571 114.138

BG04-ACAD 46.330

960.824

93.663 1.305.390 298.039

of EGEE [1]. In the current implementation we used Java,

Total 144.541

1.720.565

197.253 2.518.244 670.638

Python, and an open-source high performance, full-text
index and search library (Apache LucépeDetails on the
software architecture and the performance evaluationef th

Table |
FiILEs CATEGORIES

overall system can be found in [15].

General-content queries [

Software-specific queries |

In this section, we evaluate the effectiveness of the Min-

ersoft search engine for locating software on the EGEE. A
difficulty in the evaluation of such a system is that there

are not widely accepted any benchmark data collections
dedicated to software (e.g., TREC, OHSUMED etc). On

the other hand, the usefulness of the findings of any study
depends on the realism of the data upon which the study
operates. For this purpose, the experiments are conduated o

linear algebra package; fag
fourier transformations; sym
bolic algebra computation i

brary; mathematics statistics
analysis; earthquake analysig;
scientific data processing; staf
tistical analysis software; atlaj

software

[

ImageMagick; lapack library;
GSL library; crab; k3b cd
burning; xerces xml; gcc for
tran; octave numerical com}
putations; matlab; hpc netlib
scalapack; mpich; autodoc!
docking; boost c++ library;
subversion client; java virtual

machine; ffmpeg video pro
cessing; FFTW library

EGEE. In this context, we use the following methodology
in order to evaluate the performance of Minersoft:

o Data collection Our dataset consists of the software
installed in 6 Grid sites of EGEE infrastructure. Table |
presents the software resources that have been identified
by Minersoft on those sites.

o Queries We use a collection of 27 queries, which were
provided to us by EGEE users, and which comprise
either single- or multiple-keywords. Each query has an
average of 2.3 keywords; this is comparable to values *
reported in the literature for Web search engines [25].
To further investigate the sensitivity of Minersoft, we
have classified the queries into two categories: general-
content and software-specific (see Table II).

« Relevance judgmenA software resource is considered
relevant if it addresses the stated information need
and not because it just happens to contain all the
keywords in the query. A software resource returned
by Minersoft in response to some query is given a
binary classification as either relevant or non-relevant
with respect to the user information need behind the e
query. In addition, the result of each query has been
rated at three levels of user satisfaction: “not satisfied,”
“satisfied,” “very satisfied.” These classifications are
referred to as theold standardand have been done

Table I
QUERIES.

ranking function of Lucene, which is based on TF-
IDF of documents and has extensively been used in the
literature [7], [10]. The maximum Precision@20 value
that can be achieved is 1.

NDCG (Normalized  Discounted  Cumulative
Gain) [14]: is a retrieval measure devised specifically
for evaluating user satisfaction. For a given query q,
the K ranked results are examined in decreasing
order of rank, and the N(D)CG computed as:
NDCG, = M, - > ey, Where each
r(j) is an integer relevance label (0="not satisfied”,
1="satisfied”, 2="very satisfied”) of the result returned
at position j and Mq is a normalization constant
calculated so that a perfect ordering would obtain
NDCG of 1.

NCG: This is the predecessor of NDCG and its main
difference is that it does not take into account the
position of the results. For a given query q, the NCG
is computed asNCG, = M, - Zf:lmr(j). A perfect
ordering would obtain NCG of 1.

manually by EGEE administrators and/or experiencedCumulative gain measures (NDCG, NCG) and precision

users.

complement each other when evaluating the effectiveness

Performance Measures.The effectiveness of Minersoft of |R systems [3], [9].

should be evaluated on the basis of how much it helps users

achieve their software searches efficiently and effegtival

this context, we used the following performance measures:

o Precision@20: reports the fraction of software re- F'Oh

sources ranked in the top 20 results that are labeled "

as relevant. The relevance of the retrieved results is °
determined by theold standard By default, we con-

sider that the results are ranked with respect to the

2Apache Lucene: http://lucene.apache.org/java/docs/

Examined Approaches.In order to evaluate the Minersoft
efficiency, we conducted experiments during the construc-

of inverted index. Specifically, we examine the follow-

File-search Inverted index terms are only extracted
from the full-text content of discovered files in EGEE
infrastructure without any preprocessing. This approach
searches files matching given query terms and it is
relevant to the desktop search systems (e.g., Conflu-
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Figure 1. Experimental Results.

[ Grid Sites | Vv | E (total edges)|  Esp | Eca | Index Size(GB) |
AEGIS01-PHY-SCL 120.369 1.007.508 207.080 800.428 0.73
CY-03-INTERCOLLEGE 72.424 209.243 154.998 54.245 0.34
CY-01-KIMON 565.799 20.670.759 1.050.076 | 19.620.683 2
RO-08-UVT 157.591 862.005 228.299 633.706 0.66
HG-05-FORTH 1.508.986 164.657.942 3.632.165 | 161.025.777 15
BG04-ACAD 2.632.193| 617.084.993 6.359.610 | 610.725.383 16

[ Total [ 5.057.362] 804.492.450 | 11.632.228] 792.860.222] 3473 |

Table 11l

SOFTWARE GRAPHS STATISTICS.

ence [13], Wumpus [28])File — search is used as a documents decreases the precision (about 5%) with respect
baseline for our experiments. to context-enhanced seardhdoes increase user satisfaction
« Context-enhanced searchhe files have been classified achieving higher cumulative gain measures (on average
into file categories. The terms of inverted index areabout 7%). The decrease of precision is due to the side-
extracted from the content and path of SG verticeseffects of stemming. On the other hand, teet-file-enriched
The irrelevant files are discarded. We also exclude thesearchdeteriorates the general system’s performance. This
software-description documents from the posting lists.is explained by the fact the software developers use similar
« Software-description-enriched searcfhe terms of in-  filenames in their software packages. On the other hant,
verted index are extracted from the content of SGfile-enriched searcimproves user satisfaction for general-
vertices as well as from the zones of documentatiorcontent queries since more results are returned to usars tha
files (i.e., man-pages and readme files) and the path dhe previous examined approaches. To sum up, the results
SG vertices. show that Minersoft is a powerful tool since it achieves high
» Text-file-enriched searchlrhe terms of inverted index effectiveness for both types of queries.
are extracted from the content, the path and the zones Table Il presents the statistics of the resulted SGs. Recal
from the other text files of SG vertices with the samethat Minersoft harvester constructs a SG in each Grid site.
normalized filename. In this context, Table Il presents the edges that have
Results. Figure 1 presents the results of the examined?¢en added due to structure dependerty;() and content
approaches with respect to the query types. Each approacha§sociations K¢ 4). For completeness of presentation, the
a step towards the construction of the inverted index that igndex size of each graph is presented. One observation is
implemented in Minersoft. For completeness of presentatio that the SGs are not sparse. Specifically, we found that they
we present the average and median values of the examind@llow the relationE" = V<, wherel.1 < o < 1.37; note
metrics. The general observation is tlantext-enhanced thata =2 corresponds to an extremely dense graph where
searchimproves significantly both thérecision@20 and ~ €ach node has, on average, edges to a constant fraction of
the examined cumulative gain measures compared witRll nodes. Another observation is that most of the edges are
file-searchfor both types of queries. Specificallgpntext- due to content associations. However, most of these edges
enhanced searcimproves thePrecision@20 about 97%  have lower weights(( 05 < w < 0,2) than the edges which
and NDCG about 87% with respect to the baseline approaci@re due to structure dependency associations.
Another interesting observation is that most of software-
specific queries indicate averag®-ecision@20 close to 1
(see median values), whereas the aver&gecision@20 In this paper, we present the design and implementation
for all the queries is about 0,8. Regarding tbeftware- of the core information retrieval component of Minersoft
description-enriched searchve make the following obser- - the Software Graph Experimental results showed that
vations: Although the enrichment of software-descriptionSG represents the software resources in an efficient way,

VI. CONCLUSION AND FUTURE WORK



improving the searching of software packages in largeescal[12] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James
network environments. In future work we intend to exploit
the linkage structure of SG so as to identify coherent claste
of “correlated” software resources and improve the ranking13]
of results. Also, we plan to extend the Minersoft architegtu
for Cloud infrastructures.
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