2486

2.8.2.

PARALLEL IMPLEMENTATIONS OF DECLARATIVE LANGUAGES BASED ON GRAPH REWRITING

K. Hammond and G.A. Papadopoulos

University of East Anglia, UK

Q. INTRODUCTION

Dactl is a compiler target language based on a parallel graph
rewriting model of computation. Throughout this paper, the reader
is assumed to be familiar with the syntax and semantics of Dactl as
presented in e.g. Glauert (1). In particular, it is necessary to
thoroughly understand Dactl control markings, patterns and rule-
ordering. More esoteric points of Dactl usage will be explained
carefully where appropriate.

The reader is also assumed to possess at Jeast a working knowledge
of functional and logic programming languages. Examples in this
paper use Standard ML, henceforth SML, (Milner et al. (2));
PARLOG (Gregory (3)); and safe GHC (Ueda (4)).

SML was chosen as an example of a functional language which is
widely used, with many interesting (difficult to compile) features.
This paper considers only a purely functional subset of SML,
Hammond (5) treats the translation of the non-declarative features.

PARLOG and GHC were chosen as representative of the concurrent
logic family of languages because they are “safe”; any computation
performed in the “passive” part of a clause (head and guard) is
allowed only 10 test the values of variables. The implementation of
the run-time safety check for GHC is described by Glauvert and
Papadopoulos (6). Certain advanced PARLOG metaprogramming
features are discussed in detail by Papadopoulos (7).

1, FUNDAMENTAL TECHNIQUES

To illustrate the basic features of our techniques, we initially restict
ourselves to minimal subsets of the languages which concern us.
For functional languages, we consider first-order functions without
nested definitions (Jet or where) and with flat patterns. For logic
we consider unguarded clauses with non-overlapping patterns.

It is necessary to consider functional and logic languages
independently, due to the different computational models adopted.
The evaluation of a function application will deliver a single result,
whilst the evaluation of a logic clause will simply succeed or fail,
results being obtained through instantiation of logic variables.
Whichever model of computation is chosen, the basic form of a
source program is equivalent: a set of rules defining the behaviour of
a rule-systern; a goal expression defining the problem 1o be sotved
using this rule-system and a set of predefined delia rules defining
micro-operations such as arithmetic, conditionals etc.

The target program will have a similar form: a single Dactl module
comprising several rule-groups (one for each source rule-group)
with their associated declarations: a single rule for the special pattern
Inirial; and a list of imported modules which define the necessary
delta-rules. In practice, many of these imported modules may be
implemented directly on a given machine rather than as Dactl code.
All ground forms will be nodes whose symbol has the Creatable
access class, whether predefined Dactl types such as /nz. etc. or
user-defined constructors.

1.1 Functional

The basic principle of implementing a functional language is that
every expression should. when evaluated, reduce 1o the normal form
of that expression. if one exists. (For a lazily evaluated language the
condition can be rather weaker: the goal expression must reduce to
normal form, and other needed expressions mus: reduce to weak-
head normal form.) For the time being we will consider only a fully
strict implementation, thus we require that on actvaton any
translated SML expression will redace to its normal form.
Svnchronisation is achieved where necessary through Dactd
notification, utilising the fact that no rules will exist for expressions
which are in a norma! form.

One of the simplest possible functions is the identity functon:

fun I x = x;

This can be wrivially ranslated into the Dactl rule (we will ignore
symbol declarations):

I [x] => *x;

It is necessary to activate x in order to cause notification. In this
translation function application is mapped into a node whose symbol
is the functor and whose children are the arguments to the function.
Activation of such a node will then result in the reduction of the
function application. For instance:

fun Comb x y =1 (x + y);:

=> Comb (x y: => #I{"*ADD[x v]];

There are several points 1o notice about this translation. First is the
treatment of the multiple arguments to Comb. Second is the
suspension of the application of/ pending the evaluation of its
argument. Last is the use of a delta-rule ADD to perform addttion.
The Dactl special rules for addition, /Add etc. cannot be used
directly since x or » may be either integers or reals. Use of
typechecking information would allow the direct use of the special
rules, but at the potential expense of compiling four rules for Comb.
Such a rranslation would also cause complications if exception
handling and lazy evaluation were permitted. With a fully strict
implementation, x and y must alreadv be in normal form, therefore
there is no need to activate them before performing the addition.

So far the rules given have used only simple variables as arguments.
It 1s easy to extend the translation scheme to more generai patterns,
however. Translatine the ubiticuous naive Fibonacci functon:

Zun Fib 0 1

| Fib 1 =1

| Fib n = Tib (n-1) + Fib (n-2);
=>

ADD["#Tib[~*SUEB[n

“#Pib["*SUBIn

1)
1

[N

The first two rules translate the pattern directly, the third tags the
variable with its type, strictly unnecessary in this case. Note the use
of rule sequencing, the third rule will only match integers which are
neither 0 or 1. This sequencing proves especially useful when
ranslating complex patterns with lazy evaluation. In the third rule,
we see parallelism for the first ime: computations of fib (n-7) and
fib (n-2 are free 1o proceed in parallel. This parallelism is implicit,
derived only from the information that all functions are strict. The
parallelism is in this case probably superfluous since there exist far
better sequential algorithms for the calculation of Fibonacci
numbers, but it does illustrate the wiviality of deriving parallelism
from “Divide and Conquer™ algorithms.

Such a translation is readily extended to functions of several
arguments and those using user-defined constructor functions. Note
the direct ranslation of constructor functions into Dactl svmbols.

"
[RN

s G
2

*

[N

fots

n
VooV
4
nn

i

4
%)
Y
O
I

I'h

ey SRt 4

The first real complications occur when lazy evaluation is
inroduced. Lazy evaluation is desirable because of the flexibility it
provides the functional programmer. However, by its nature lazy
evaluation imposes sequence on otherwise parallelisable sections of
code, which is obviously undesirable. We will treat this issue later.

Since it is no longer possible to assume that all arguments have been
reduced to normal form, or even head normal form when they are
passed to a function, it is necessary to force evaluation where
necessary. We assume that there exist versions of ADD, SUB etc.
which do this, called ADDL, SUBL etc. Then the translation of the
naive Fibonnaci function given above will become:

The pattern tag, int, on the third rule is now necessary since the
argument to Fib could be an unevaluated expression. Such an
expression must be reduced to head normal form in case it matches
either of the literal parterns. If, however, an SML pattern is a
variable or the wildcard pattern then it may not be necessary to force
evaluation. As illustration consider the following translation of the
Ackermann function:

fun ack 0n=n~+1

| ack m 0 = ack (m-1) 1

| ack m n = ack (m-1) (ack m (n-1));
=> Ack [0 n] => *ADDL[n 1}:

Ackim:Int 0] => *Ack[SUBL[m 1)
Ack[m:Int n:Int] =>

*Ack [SUBL[m 1] Ack{m SUBL([n 111];
Ack [m: {(Any-Int) n]} => #Ack{~*m n];
Ack{m n] => #Ack[m “*nj;

1

The first rule does not require the value of » in order to match the
pattern (though it will be necessary to perform the addition).
However, the value of n is required if the second and third rules are
to be differentiated. Two default rules are required to force
evaluation of either argument. Note that priority is given to the first
argument, in accordance with the standard semantics for pattern-
matching in a lazy functional language.

SML control statements (IF, ANDALSO, ORELSE erc.) are
necessarily non-strict, and are treated identically to lazy delta-rules.
Note that ANDALSO, ORELSE in particular are sequential
operators, it is a simple matter to write parallel versions if required.
To illustrate this we give the Dactl rules for ANDALSO. For a strict
implementation the default rule would be omitted and the appropriate
arguments activated in place.

ANDALSC!ITRUE c¢2] => *¢2;
ANDALSO[FALSE c¢c2] => *FALSE;
ANDALSO[cl c¢2] => #ANDALSO["*cl c21}:

In fact, these lazy control smuctures cause complications in a strict
translation since it is not possible to annotate the successors of these
nodes. The solution is to use source-to-source transformation to
inroduce new functions to replace the unevaluated portions of the
control strucrure. Since this generally inroduces some overhead
through chaining of parameters, it is obviously pointless to compile
out simple expressions.

1.2 Logic

Consider again the Fibonacei function, this time written as a GHC
predicate:

- true |
- true

=[N3INsl!,

ibf{l

#AND B3],

bl:# ar ~*pL ’
L2:* CONS [n2 I
b3:* nsl])

Note that in a concurrent logic language, unless otherwise indicated
(by means of sequential operators or special calls), everything is

247

performed in parallel: head unificatons, attempts to commit to a
clause, and conjunctive goals within guards and bodies are all
evaluated in parallel. In the case of GHC, the body calls can
commence execution even before commitment and in parallel with
their respective guards. In the above example, the three calls in the
body of Fib are executed in parallel and are monitored by an AND
process which is defined as follows:

AND [SUCCEEL SUCCEZD SUCCEED] => *SUCCEED;
r:AND{ (Any-FAIL) (Any-FAIL) (Any-FAIL)] -> #=;
AND[Any Any Any] => *FAIL;

AND monitors the execution of its child processes; if they all
complete sucessfully it reports success and terminates (first rule).
Otherwise, if any of them fails it reports failure and also terminates
(last rule). The use of a single # causes the AND process to be
activated every time it receives a signal from any of its children.
Thus if some children have reported successful termination but
others are still executing, AND is re-suspended awaiting the
outcome of their computation (second rule). In this way the earliest
possible detection of failure is achieved. Note here that unlike a
functional langunage, failure is a valid result in a logic language
which may, in fact, cause the creation of additional useful
computation. Finally, note that any new variables on the right hand
side of a clause are represented in Dactl as new nodes with the
pattern Var.

In the abové example we do not need to consider suspension on
uninstantiated input arguments since all the head arguments are
variable terms. However, this is not always the case as it is
illustrated by the following merge program written in PARLOG and
its ranslation to Dactl:

mode merge (?,7?,").

merge ([A]X],Y, [A12}) <~ merge(X,Y,2).

merge (X, [A|Y], [Al12]) <- merge(X,Y,2).

merge({],Y,Y).

merge (X, [],X).

MergeCCONS[a xI y z1] => #AND!“bl ~b21,
Pl:*Unify [zl CONS{a z:Varl:,
b2:*Merge(x vy z]|

Merge[x CONSla y] zl] => ~p27,
bl: zl CONSia z:Vari],
bZ:*Merge(x y zI

Merge [Nil y z] => *Unify[z y]|

Merge(x Nil z] => *Unifyiz x}:

(Merge [pl pZ p3l&

(Merge{ (Var+CCNS [Any Any]) Any Anyl+

Merge [Any (Vax+CONS[Any Anyl) Anyl))
=> #Merge["pl "p2 p3];

Merge[Any Any Any] => *FAIL;

If the input arguments of merge are not sufficiently instantiared, the
fifth rule is selected causing suspension of the computation unt! the
required data have arrived (note here the use of Dactl pattern
operators to detect whether to suspend or fail). If these arguments
are eventually instantiated to something other than a list, the last rule
will be selected to report failure. Note also that if the body of a
clause comprises a single call, there is no need for an AND process
and a more direct representation is possible as illustrated by the third
and fourth rules.

2. IMPROVEMENTS TQ THE BASIC SCHEMES

Having discussed the principles of the translation process, we now
consider improvements which are essential in order to compile real
functional or logic programs, or desirable in terms of efficiency.
We restrict our attention to declarative constructs only.

2.1 Functipnal

The most important omission from the translation scheme presented
earlier is that of higher-order functions. These present problems
through the use of general function application, where the function
applied is in fact an expression which reduces 10 a function, and also
through the use of Currving. Considering general function
application first, a natural representation is through a binary functon
application operator AP, whose first operand is an expression
representing a function, and whose second operand is an expression
representing the function argument. Using the Dacil symboi
representing a function in a nullary node allows functions to be
manipulated as values in the correct manner: since no rules are
provided for these forms such nodes act like constructors.

Obviously, normal functions and delta rules must be anslated in
such a way that they may be used in conjunction with AP as higher-
order functions. This can be achieved by adding rules for each
function for each case where the function has insufficient
arguments. For example (lazy version):

fun parvition x [] I
partition x (y::y
il y < % then
else
=> Partition(x NULL
P

rti
ertition{x CONS
*IF[LTL[y %] P
Pa

=> *Partition(x];
ysi => *Partition[x ys]:

AP [Partition x]
AP [Partition[x]

Parial applications may be translated into either the functional style
used for total applications if the function is a function name, or into
the applicative style using explicit APs.

Now, of course, it is no longer true that activating any node will
cause reduction 1o head normal form for a lazy implementation: no
rules exist to reduce AP nodes where the function part is a general
expression or a sequence of AP nodes. This can be remedied by
supplying a default rule for AP, but there is a complication: Dacil
does not allow us to specify sequence between rule-groups, they
may be tested in paraliel. A simple solution is to supply all the rules
for AP (including those acting on delta-rules) in one rule-group.
Then the final rule in the group 1s simply:

AP[L x] => #AP["*f x);

So far we have considered only the reduction to head normal form
of a lazily evaluated program. Often this is what is required, since
normal form and head normal form are the same for nullary
constructors. The following Dactl rules force reduction to normal
form of any node, and can therefore be used in the /nirial node.
Such rules, are of course unnecessary for a strict evaluation
strategy.

RNE [e] => #RNF'["*x];

RNT' [e] => #7 (symbol

......... ~* RNF[(successor (e,

(e)}) ["*RNI'[{successor (e, 1)1

n)ll;

The rule for RNF’ is encoded in Dactl using “screwdriver”
operations to manipulate the structure of its argument.

A similar set of rules, though more detailed in order to account for
differing output formats, is used in the translator to print the result
of a lazy program. This permits the execution of lazy programs
generating infinite data structures or the viewing of results as they
are produced.

Deep pattems may be handled either directly, in which case multiple
default rules are required to evaluate unreduced, needed expressions
at each point in the pattern, or by wransformarion of the source into a
simpler form conrtaining only single level patterns. The latter is
probably the better approach, but requires some compilation effort to
coalesce the source patterns, and introduces overhead in the form of
needed arguments carried forward. For example:

fun first (x1::x2::xs) = x1;

=>

Zun first (xl:i:rest) = first' xl rest
and first' x1 (x2::xs) = x1;

In conjunction with strictness analysis this approach eliminates the
requirement for default rules in the Dactl code. This observation is
exploited in a translator from the functional language Clean to Dactl
described by Kennaway (8).

Since SML is a block-structured language whereas Dactl is “fat”,
we use lambda-lifting on the SML source before performing the
ransformation. It is necessary at this stage to prevent identifier
name clashes. This is achieved in the prototvpe SML compiler
through “colouring” each identifier uniquely.

To improve the space efficiency of the implementation, common
sub-expressions and maximal free expressions may be eliminated.

248

Such eliminations naturally take advantage of the graph rewriting
abilities of Dactl. Common sub-expression elimination is
straightforward: maximal free expressions present certain
complications, however, since these must be shared between
different activations of the same rule in order to achieve full laziness,
Unfortunately, Dactl has no direct mechanism to express globally
accessible nodes. A possible solution is 1o pass these expressions
as parameters of each rule activation, but such overhead seems
unacceptable in general.

Strictness analysis is used to determine which arguments to a
function may be evaluated in parallel for a lazy scheme. This is
important because strictness is the only source of parallelism in a
functional language. As with the non-strict control structures,
unevaluated arguments which could be annotated with strictness
information must be compiled into separate rules. For the prototype
SML compiler, we use only the simple technique for strictness
analysis described by Peyton-Jones (9).

2.2, Logdc

In section 1.2 we showed how programs without guards may be
ranslated into Dactl. In this section we exiend this method to handle
guarded clauses. Consider the pariirion program rewritten in GHC
and its translation to Dactl:

partition({Xi{Xs],A,S,L0) :- A<X | LO=[X{L3],
partition(Xs,A,5,12).
partition{{X!Xs],A,SC,L) :- A>=X | SC=[X1512,
partition(Xs,A,51,1).
partition({]), ,S,L) - true | &=[], L=[]
Partition[CONS{x xs} a s 1)

g
gl:*Less[a x), g2
Partition[Nil Any s 1] => #AND["bl ~

=> #Partition Commit["gl "g2 x x

pé]
=> #Partition{"pl p2 »3 p4];
=> *FPARTL;

Partition|pl:Var p2 p3
Partition[Any Any Any]

Partition Commit [SUCCEED Any x %s a s 0]
=> #AND|["bl ~b2],
b1l:*Unify {20 CONS[x
b2:*Partition{xs a s
Partition_Commit [Any SUCCEED x s a sO 1]
=> #AND["bl "b2],
bl:*Unify[sC CONS{x sl:Varl],
b2:=Partition(xs a sl 11|
FAIL Any Any Any Any Any]
=> *PAIIL;
r:Partition Cormit [Any Any Any Any Any Any Any)
-> #x;

Partition Commit [FAIL

Since the first two clauses have identical input patterns, they can be
coalesced into a single Dactl rule which performs the required input
matching once only. We are then left with two non-overlapping
rules; the first evaluates the two guards and commits to the body of
either the first or the second clause; the second closes the output
soreams if 1ts first argument is the empty list. In general, guards are
evaluated by 2 process which takes the form:

Predname_Commit [guards head_andﬁguardwva:s}

where guards is a set of processes, one process for each guard
conjunction, and head and guard vars is the set of variables
appearing in the head of the clause plus any new variables appearing
in the guards. Thus the environments of the head and guard
evaluations are carried forward and used when Predname_Commir
commits to the appropriate body.

Certain guarded clauses possess overlapping input patterns which
cannot be coerced to a set of rules with non-overlapping patterns as
shown above. For such clauses we proceed as follows: since all
clauses in the procedure must be tried in parallel, we first ransform
the overlapping patierns into non-overlapping ones by inroducing a
new function symbol for each set of overlapping patierns; then we
fire all rules in paralle] using a Dactl “metarule”. Consider the
following program fragment which is part of a GHC meta-
interpreter (where we assume that the guard in the second clause is
safe) and 1ts wanslation to Dactl:

249

pred (A, Xa,Ca),
pred (B, ¥b,Cb),
and(Xa,Ca,Xb,Ch, X, C) .

pred ((A,3),X,C) :- true |

pred[pl p2 p3] => #Search{"#OR["ol "o2]],
ol:*Predl(pl p2 p3],
02:*Pred2[pl p2 p3]:

=> *Result [Unifyix "Ok"]]1|
=> *Result [Body (bl b2 b31],
bl:Predia xa:Var ca:Var]
r]
I

True X Any]
Clia k] x c]

b2:Pred(b xb:Var ch:Va
b3:And[xa ca xb ¢cb x c]
predl[pl:Var p2 ©3] => #Predl(*pl p2 p3]!;
edl => *FAIL;

pred2(a x Any] => #PredZ Commit!~g a x],
g:*Ghcsystem[a];

predZ Commit [SUCCEED & x)
=> *Result[Body![bl b23],
bl:Unifylx "Ok"],
b2:Calllall
mmit {FAIL Any Any] => *FAIL;
We now show how we handle deep pattern matching in the case of
logic languages. The problem with deep patterns is that many
processes may be working on the same data structure, each
nstantiating its own part. It is difficult to know at any given time
how much of the data structure has been created and how much is
vet 10 be constructed. This knowledge is essential in order 10
suspend on those parts of the structure which are needed but are stll
uninstantiated. Consider the following PARLOG program and a
possible transiaton to Dactl:

mode m(?) .

m([£(g{X))IT]).

M{CONS[TUP["F" TUP["G" x]] t]] => *SUCCEED]|

Mip:Var] => #M["p] |

MICCONS [h:Var t1] => #M[~

M{CONS [TUP["F" x:Var} t]
=> #M["#CONS [~#TUP["F" "x]

#CONS[~h t]]]
]

tl);
M{Any] => *FAIL;
Unfortunately, the rules needed to model suspension must cover all
possible combinations of input patterns and therefore their number
can be unnacceptably high. An alternative method where we
compile the required pattern matching into a set of primitive pattern
matches, each handled by a different process is described in (7).

Finally, we decribe the implementation of the 3-argument metacall as
defined in (3). This is used for systems programming and
metaprogramming. A call of the form call(p,s.c) is executed as
follows: if p completes execution successfully, call instantiates its
status variable s to SUCCEED and terminates. If p fails, call
instantiates s to FA/L and also terminates. If, during the evaluation
of p, call receives a STOP message through its control argument ¢, it
kills the process p and terminates. If call is called with its first
argument instantiated to something other than a valid predicate, it
fails. A possible implementation in Dact is shown below:

Call[Any s:Var STCP] => *SUCCEED, s:=*5TOP|
Call[p:Var s:Var c:vVar) => #Call{"p s "cli
Call[.c: (SUCCEED+FAIL) s:Var Var] => *SUCCEED,
) 5:=%*p]|
Pred s:Var c:Var] => #Calll~*p s ~c];

=> *FAIL;

TAny]

The propagation of the STOP signal down the computation tree is
achieved by extending the rule system for p with an additional rule
which checks whether an extra, special argument has been
instantated to STOP. Consider the following:

3. SUITABILITY OF DACTL as A CTL

With the exception of global nodes which are needed to allow
efficient maximal free expression elimination, Dactl provides a
sound framework for the translation of pure functional languages,
focussing attention on the compilation issues involved rather than on
machine issues. All purely functional constructs may be translated.
The lack of fine control over machine resource allocation is
somewhat disconcerting, though necessary if Dactl is not to impose
constraints on the architectures which support it. Machine-
dependent annotations will, however, permit some fine-tuning
where the target machine characteristics are known. For functional
languages, deep pattern-matching presents certain implementation
probiems, as do general function application and the equality test
(for similar reasons).

As far as safe concurrent logic languages are concerned, we have
shown that all their features can be implemented in Dactl. Some of
them, however, need to be programmed around and lead to less
efficient code. Guarded clauses with overlapping parterns, for
example, must be fired in parallel by means of an extra metarule
which, in addition, will monitor their progress. This is necessary
because Dactl is a rewrite-rule based language with no notion of
backtracking. Deep pattern matching causes the creation of rather
complicated code, as was also the case for functional languages.
Finally, the killing of unnecessary computation, although it can be
achieved in principle by means of the transformation technique
shown in the previous section, is not always effective. Since the
speed of propagation of the kill signal depends on the scheduling of
processes, it can lead to race conditions. What is needed here is a
low-level implementation which, however, is not easy to develop in
a parallel graph reduction model: it is hard to detect unneeded but
active portions of graph. Note that the root of the problem stems
from the existence of speculative parallelism in the concurrent logic
model which, in general, is difficult to control on a parallel
architecture.

4., CONCLUSIONS

We have demonstrated the feasibility of translating several
declaradve languages into the parallel intermediate language Dactl,
highlighting areas of especial difficuity. The fundamental model of
parallel graph reduction supported by Dactl has thus been shown 1o
be sufficiently expressive to accommodate both functional and logic
styles of programming. A prototype compiler for SML, based on
the techmques illustrated here, has been written in C. A similar
compiler for GHC is currently under construction, built on top of
the SPM (PARLOG) system. Since implementations of Dactl are
being produced for a variety of parallel machines (Flagship, GRIP,
Meiko Transputer Rack etc.), these compilers will enable these
languages to execute in a real parallel environment.

REFERENCES

1. Glauert, JRW., 1988, “An Ingoduction to Graph Rewriting
in Dactl”, Proc. Alvey Technical Conference.

Milner, R., 1984, “The Standard ML Core Language”,
Edinburgh University, Internal Report, CSR-168-84.

t2

3. Gregory, S., 1987, “Parallel Logic Programming in
PARLOG: the Language and its Implementation”, Addison-
Wesley, London.

4. Ueda, K., 1986, “Guarded Homn Clauses”, D.Eng. Thesis,
University of Tokyo, Japan.

Hammond, K., 1988, “Implementing Functional Languages
on Parallel Machines”, Ph.D. Thesis, University of East
Anglia, in preparation.

n

6. Glauert, JR.W., and Papadopoulos, G.A., 1988, “A Parallel
Implementation of GHC”, submitted for publication.

7. Papadopoulos, G.A., 1988, “Compiling PARLOG 1nto
Dactl”, University of East Anglia, Internal Report, (to appear).

8. Kennaway, J.R., 1988, “Implementing Term Rewrite
Languages in Dactl”, Proc. CAAP '88, Lecrure No[;s in
Computer Science, 299, 102-116, Springer-Verlag, Berlin.

9. Pevton-Jones, S.L., 1987, “The Implementation of Functional
Programming Languages™, Prentice-Hall, London.

