
Web Services –Separation of Concerns:
Computation Coordination Communication

Theophilos A. Limniotes and
George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos St., P.O. Box 20537
1678 Nicosia, Cyprus

{theo,george}@cs.ucy.ac.cy

Farhad Arbab
Department of Software Engineering, CWI

P.O.Box 94079, 1090 GB Amsterdam
The Netherlands

farhad@cwi.nl

ABSTRACT. The purpose of this paper is to investigate
the use of a new concept in component communication,
expressed by the channel based coordination language called
ρέω, in the coordination of Web Services. The role of ρέω is to
construct and manage connectors. Connectors are patterns of
connected channel communicators. The communication and
coordination of components lying over a distributed address
space has been dealt so far with stream or datagram connections
created and controlled by the participating calculation and
coordination components. Web Services can take advantage of
the ρέω channel system that separates the communication issue
using components that have independent sink and source ports
that can be attached to web services components, thus
overcoming the problem of compatibility in distributed systems.
The flow of information is entirely regulated by the channel
interconnections.

1. INTRODUCTION
In the recent years the development of distributed computing
systems with the use of component engineering provoked the
development of component broker systems with stub
procedures and proxy messages which mainly achieve
communication but not coordination between components. Such
successful well-known systems are CORBA, COM/DCOM
(only for Microsoft systems), and Java RMI. Their
disadvantages are simply restricted to their complexity, which
secures communication of heterogeneous systems (CORBA,
RMI). However communication does not guarantee the
exploitation of the full functionality in some products,
especially between heterogeneous systems. So such systems are
in fact successful only with platforms of the same vendor.
Moreover, due to the multiple levels of communication
transactions tend to be very slow.

On the other hand the HTTP component provides a simple
interface for communicating with an HTTP server. This
communication protocol is simple, inexpensive and the HTML
format is common to all platforms. That creates an advantage
over other systems that simply claim to be open, but in practice
are inflexible and contain numerous limitations. So the next

advancement happened in the area of Web Services, with an
effort to establish communication between components. The
initial effort was made in 1998 with the establishment of an
independent to presentation code for representing data forms,
the Extensible Markup Language, XML by the independent
WWW Consortium (W3C). The Extensible Markup Language
(XML) is a subset of SGML. Its goal was to enable generic
SGML to be served, received, and processed on the Web in the
way that is now possible with HTML. XML has been designed
for ease of implementation and for interoperability with both
SGML and HTML.

At the present the definition of the web services classes for
reuse and composition (integration of heterogeneous web
service patterns) is done with the Web Service Definition
Language WSDL ([2]). The Simple Access Object Protocol
(SOAP) for XML is a lightweight protocol for exchange of
information in a decentralized, distributed environment. It is an
XML based protocol that consists of three parts: an envelope
that defines a framework for describing what is in a message
and how to process it, a set of encoding rules for expressing
instances of application-defined data types, and a convention
for representing remote procedure calls and responses. SOAP
can potentially be used in combination with a variety of other
protocols. Finally the Universal Description, Discovery and
Integration (UDDI) protocol is one of the major building blocks
required for successful Web services. UDDI creates a standard
interoperable platform that enables companies and applications
to quickly, easily, and dynamically find and use Web services
over the Internet. UDDI also allows operational registries to be
maintained for different purposes in different contexts.

Coordination is important for Web Services: such systems
combine services that are located on different web sites and this
combination implies the need for coordination of their activities
in order to regulate the flow of information and guarantee the
reliability of the shared information. The Web Services systems
can accommodate the channel based coordination system called
ρέω. The dynamic connectors of channels that the functionality
of this system offers are used in the management of the
communication of distant components. The primitives of ρέω
coordination language offer a great variety of synchronous and
asynchronous channels with respect to access rights, mutability,
reliability, grouping of connecting nodes, and execution model
([5]). The ρέω system is explained further in section 2.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SAC ’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/04…$5.00.

The aim of this study is to create a language that takes care of
the transportation of the functionality of the ρέω system ([1])
across the Internet. The objects are all distributed across the
participating machines and a web service invocation is achieved

492

2004 ACM Symposium on Applied Computing

with SOAP-XML messages over TCP/IP connections that at the
bottom level implement these channels. The architecture
described is similar to that of an XML based multiple
heterogeneous system ([3]). The form of migration is in XML
and the stages for the translation are adequately described in
section 3. The next section is a report of the new-formed
language (Channel Coordination Definition Language). This is
followed by the case study- a distributed space object system
([6]) and its implementation with the new language.

2. THE ρέω SYSTEM AND THE
COORDINATION AMONG
COMPONENTS
In many network architectures, each process in the network is
either client or a server. This channel-based system is an
application of synchronization and communication (through an
adequate channel system) rather than combining proxies of
services to build a web component. This is how the basic
architecture of the system should look like.

By definition every channel in ρέω represents a connector ([1]).
More complex connectors are made out of simpler ones. The
create operation creates channels with specified channel end
unique identification variables (cev) that either can be source or
sink end. Every cev is said to coincide on a node N that maybe
connected, with the connect operation to one (among many)
component instance. The operation disconnect applies to a
channel end likewise, while read suspends the instance that
performs this operation waiting for a value that can much to a
data pattern p that is expected to be read to a variable. The
operation take is a destructive variant of read and the channel
loses the value that is read. Similarly the write operation
suspends the operation of the calling instance until the value of
variable v is written to the source channel end port. Moreover
there is a wait operation that suspends the operation of the
executing component if some predefined nconds conditions
parameters become true. The node operation join merges two
nodes (with their connectivity) to one, and split produces a
new node N ́́and splits the set of channel ends that coincide on a
node N between the two nodes N and N ́according to the set of
the specified edges. The node operation hide hides a specified
node N from participation in the future node-modifying
operations. Further node operations are forget that changes
cev (or connected to it node N) so it no longer refers to the
channel end it designates and move that relocates cev or N to a
new location given as loc.

The coordination of web components should include predicates
of channel communication like create, read, write, etc
([5]). The construction and access to a web component is
performed with XML function transportation ([4]). The basic
idea is that a web service should be able to receive and transmit
its operation related information to a sink requestor component
via a ρέω channel. Morover a third attached component would
be able to influence the flow of data between the original two
components with its own absorption of data ([1]). The
components that execute the ρέω operations (read write and
take) work with constructed components that implement a

communication pattern independently, i.e. the latter do not have
to know about the former. Of course this pattern can change
with the execution of certain commands like create, connect
and join (that belong to the channel management group of
operations) at run time so it is not static. These can be classified
as the management construction predicates while the former
implement the message passing primitives. This functionality is
very useful because it separates the communication components
(created by web channel-services components) from the
coordination concerns (incited by the web services). This in
turn makes our system much more flexible with the ability for
dynamic change of the communication pattern while running, as
well as for dynamic change of the coordinating components.
The overall architecture for such system is as follows:

There are three types of components

• The actual web services and client components

• The channel services components

• The “Channel-end Register” node components

The latter plays the role of a service register of a web service
whose main task is to offer channel end references (according
to a certain algorithm). So the management of this channelling
system is actually undertaken by node processes which act like
brokers.

The former is a candidate for using the channel-end registry and
to do that it has to initially create a channel locally (with a
primitive _create operation). The returned channel-ends IDs
are stored with two respective node instances. The referred
nodes are instantiated by the node-level create operation.

The actual channel-service components are descriptions of
types of methods like create which implement this channel
service. These descriptions have to be expressed in WSDL in
order to be transmitted over the Internet via SOAP. The
description should include definitions of the operations
performed by the channel service, the required messages, the
data types in used, and the chosen communication protocols.
The purpose of the WSDL is to describe these services over the
Internet. Channel services and Node brokers exchange WSDL
files to restore connectivity and performed operations. SOAP
comes in once a channel serviced is to be invoked. There would
be no need for this intermediate conversion if the system should
consider only interaction between (say) Java programs with
RMI calls. The XML-based Web Services enable the definition
of objects written in any language into language neutral types ,
and vice versa. The following figure shows an example Web
service and a client invoking it in two different ways: Using
SOAP and using HTTP GET. Each invocation consists of a
request and a response message.

Figure 2: Client- Server invocation.

493

This next figure shows the same example with WSDL
terminology pointing to the various things that WSDL
describes. Refer to this in order to visualize the WSDL
elements.

Figure 3: The WSDL message information and binding.

3. THE XML DECLARATIONS FOR THE
ρέω OPERATIONS
Following here is the description of the first-level primitive
methods for the construction of a Channel Composition
Definition Language (CCDL). First come the DTD elements
declarations as suggested in [4]. The purpose of encapsulating
these primitives in XML code is to help in the implementation
the system through the web services.

• create
<!ELEMENT CreateChannel(source,sink)>
<!ATTLIST channel
name ID #REQUIRED
type CDATA #REQUIRED>

<!ELEMENT source>
<!ATTLIST source
id ID #IMPLIED>

<!ELEMENT sink>
<!ATTLIST sink
id ID #IMPLIED>

The code in above is the data type expression of a channel
itself. Ιts constituents are name ID, and type. Each cev has its
own ID. The above structure is translated to the following XML
representation. This is the XML code for creating a channel.

<!DOCTYPE CreateChannel SYSTEM “CreateChannel.dtd”>
< CreateChannel>
<name ID=”_create” type=”Synch” />
<source id=”asource”>… </source>
<sink id=”asink”>… </sink>

</name>
</CreateChannel>

So the first message from the client can accommodate together
with a cev ID a time limit and a location. If a member object
indeed resides on the chosen site then a mechanism of
retrieving the location of a specific service can be carried out

with the use of channels. The messages are sent through a web
browser, initially using an RMI call and presenting the cev ID.

In a case study a client that wishes to communicate with a ρέω
based system has at first to get in touch with a sink channel. If
every site that takes part in this scheme performs a
CreateChannel operation then it will be in position to provide
access to its participating components. The cev values should
be available for potential customers.

The message sent to connect to a participating site (and
therefore bind to it) is a channelEnd “connect” message
and should include the ID of a channel’s end. A source or a sink
is connected to the component instance that performs the
primitive operation connect, which along with disconnect,
forget and move form the group of channel end operations
ChannelEnd with the following DTD:

• connect, disconnect, forget, move
<!ELEMENT ChannelEnd (timelimit?, location?)>
<!ATTLIST ChannelEnd
cev ID #REQUIRED>

<!ELEMENT timelimit (#PCDATA)>
<!ELEMENT location (#PCDATA)>

and this is the XML code for channel end operations.

<!DOCTYPE ChannelEnd SYSTEM “ChannelEnd.dtd”>
< ChannelEnd>
<cev =”_connect” />
<timelimit>…</timelimit>
<location>…</location>

</cev>
</ChannelEnd>
</CreateChannel>

• read, take, write
The next group of primitives defines the operations of _read,
_take and _write, which have attributes the appropriate cev
and a variable v for read or for write. This is the DTD code for
the read/write group of operations, followed by the XML code
for the read/write group of operations.
<!ELEMENT UseChannel (timelimit, variable)>
<!ATTLIST UseChannel
name ID #REQUIRED
portType CDATA #REQUIRED
filterType CDATA #REQUIRED>

<!ELEMENT timelimit #REQUIRED>
<!ELEMENT variable #REQUIRED>

<UseChannel>
<name=”_read” type=”asource” filter=”pat”/>
<timelimit>…</timelimit>
<variable>v</variable>

</name>
</UseChannel>

The three types of primitive DTD declarations can be
transferred to the corresponding node predicates. The referred
nodes are not created (like channels) but are initially
constructed by sets of channel ends that are connected to
components by the primitive operation connect and are
enhanced by the join node operation. The latter merges two or
more nodes together.

• move
The move operation can relocate a channel end to the referred
location loc. This is the DTD code for the move operation,
followed by the XML code for the move operation.

494

<!ELEMENT MovChannel (cevariable, loc)>
<!ATTLIST MovChannel
name ID #REQUIRED
portType CDATA #REQUIRED
filterType CDATA #REQUIRED>

<!ELEMENT loc #REQUIRED>
<!ELEMENT cevariable #REQUIRED>

<MovChannel>
<name=”_move” type=”asource” filter=”pat”/>
<variable>cev</variable>
<location>loc<location>

</name>
</MovChannel>

The result of this operation is to pass the message to perform
the move operation for the particular cev.

• join, split
Suppose that a site has several cevs connected to it. Then
another site (which is member) can provide to it the class
join(sender, receiver) which performed by the receiver will
result in redirecting all messages to more combinations of sink
and source ends. This the DTD code for the join operation,
followed by the XML code for the join operation.

<!ELEMENT join (N1, N2)> //Nodes N1 and N2
<!ATTLIST join
name ID #REQUIRED
portType CDATA #REQUIRED>

<!ELEMENT cevs #REQUIRED>
<!ELEMENT N1 #REQUIRED>
<!ELEMENT N2 #REQUIRED>

<join>
<name=”join” type=”asource”/>
<variables>cevs</variables>
<node>N1</node>
<node>N2</node>

</name>
</Join>

At the nodes operations level, cevs are represented by nodes N
that are able to contain one or more of them, forming the so-
called connectors. The construction of these connectors is
achieved by the node-level-operation of join(). The split()
method works similarly but in an opposite way splitting the
channel ends between a new formed node and the old one.
Notice that channels do not support message passing with the
method call semantics. This is the DTD code for the join
operation, followed by the XML code for the join operation.

<!ELEMENT split (N, quoin)> //Nodes N - set of edges
quoin
<!ATTLIST split
name ID #REQUIRED
portType CDATA #REQUIRED>

<!ELEMENT cevs #REQUIRED>
<!ELEMENT N #REQUIRED>
<!ELEMENT edges #REQUIRED>

Object Space <split>
<name=”join” type=”asource”/>
<variables>cevs</variables>
<node>N</node>
<edges>quoin</edges>

</name>
</split>

4. THE DESCRIPTION OF A NEW
CHANNEL COMPOSITION DEFINITION
LANGUAGE
The above construction of XML function structures can be used
in the definition of a new service composition specification
language. The characteristics of this language are:

• The use of the ρέω system by all the participating parts
(installed on every machine locally).
• The sharing of information regarding the use of the ρέω
primitives. The exchange of messages is done at the web
service level, and concerns the channel end structures and
references, because the ends of a channel must internally know
each other to keep the identity of the channel and control
communication.
• If the type of a channel is asynchronous it must also have a
reference to the buffer that implements every channel.
• An interface reference from a component to a channel end
restricts the actions of the component to only the predefined
operations on the channel.
• The predefined operations are create, connect,
disconnect, forget, read, write, move, join, split.
These can be classified in the following categories:
1. The create primitive creates a new channel with a
specified channel type.
2. The connect, disconnect primitives connect and
disconnect respectively a specified node to the calling
component instance.
3. The forget changes the specified channel end id and
move changes the channel end to the new node.
4. The read, write and take operations perform a
read, a write, or a destructive read from/to a specified variable
to/from the connected specified node.
5. The join operation is a node merging operation
producing a new node from two other specified nodes. The
split creates a new node and splits the attached channel ends
between the new and the old one according to a specified list.

The type of the chosen channels plays an important role in the
outcome of the mode of execution of the node operations. The
Synch channels offer synchronous unbuffered transmission, and
the FIFO channels offer asynchronous unbounded buffered
transmission. Buffers can generally be used as sequencers and
Synch/SynchDrain channels as flow regulators. The mapping of
the messages is achieved by the references to the buffers and/or
the channel ends.

5. AN IMPLEMENTATION OF WEB
SERVICES (A CASE STUDY)
Using the definitions of the previous section the web resources
can be encapsulated in distributed objects, and the web can be
transformed from a collection of clients and servers (serving
web pages) into an object space of distributed objects ([6]). The
requests between such objects should be carried out via a web
browser as shown in fig. 4.

Request Web Resource
Distributed
Object

 Web Browser

Figure 4: Distributed objects in an object space.

495

The web browser communicates with another through a Local
Representative that each DSO has as shown in fig 5. The details
of this architecture will be explained in the next section.

Figure 5: A distributed shared object.

5.1. The Use of Channels in a Web
Component Case Study
Channels offer the necessary subtle connectivity required in the
implementation of such diversity and complexity as the
Distributed Object Space over the Internet. Moreover the
primitives of ρέω channels can be used as a language for the
coordination of concurrent services or as a connector
constructing language for the binding of the component spaces
(connectors) in a component based system.

The use of WSDL representation of component classes and its
corresponding XML expression should be regarded as the
means for the construction of a message that will incite a
channel operation at a remote (hosting) side. In this case it
could relate to a class or method associated with the use of ρέω
channels that exist on this remote site. Each information source
should have a channel where requests can be issued. Clients to a
channel end have to be aware of their cev ID (reference). The
XML message contains the code for some ρέω operations with
the corresponding cev references. These messages cause one or
more remote execution in the sites hosting the ρέω services. In
the present web component case study we deal with the
formation of Distributed Shared Objects (DSO), which reside in
different web sites.

So in this the web resources can be encapsulated in distributed
objects, and the web is transformed from a collection of clients
and servers (serving web pages) into an object space of
distributed objects ([6]). In our implementation this is achieved
via the requests between such objects that are carried out via a
web browser shown in fig. 2.

The web browser communicates with another through a Local
Representative that each DSO has as shown in fig 3. The details
of this architecture will be explained in the next section.

5.2 The Binding of a Candidate Object
To communicate with a Globe DSO, clients must bind to the
object. This causes a new Local Representative (LR) of the
DSO to be created in the client´s address space, effectively
connecting that address space to the rest of the DSO. To do this
the binding process has two main phases:

• To find where a host side of the DSO is and

• To initialise a Local Representative.

The shared objects of this system are all hosted under a
common class (Globe) name ([6]). A proxy called the translator
accepts requests from the DSO browser that the client uses. A
filter can sort out Globe related URLs. Such names are
forwarded to a special Globe gateway, which performs the
binding to the object and the callings of the appropriate
methods. The aim of every client request and binding is to
obtain its own Local Representative in its own address space,
effectively connecting that address space to the rest of the DSO

The name given by the client is passed to the name service
(NS). At this point there is an inter process communication
between the translator site and the Globe Gateway. For the
mobile channel system to be operable we consider that a
channel has already been created on every site with a Local
Representative.

• The first stage of the clients binding process begins
by sending the name ID of a DSO to the name service
(NS) which maps names to location transparent object
handles (OH)

• The name service returns an object handle.
• The object handle is passed to the location service.
• The location service retrieves a contact address.

A contact address represents a contact point of the DSO.
Contact addresses identify a LR that should be loaded into the
client’s address space. The contact address contains an
implementation handler. This is sent to the implementation
repository, which in turn returns a class archive.

The class archive is in turn used by the class loader for
extracting the implementation code in order to create the actual
LR, so that the client’s address is connected to the rest of the
DSO.

The overall view of information exchange is shown in the
figure below:

Figure 6: The overall view of the binding process.

6. THE ACHIEVEMENT OF THE DSO
COMMUNICATION THROUGH ρέω
CHANNELS
The communication between the DSO address space and the
potential member is done with the use of channels, one from
each object of a particular address space. Every member
address (site) possesses the ends of two channels One of them is
ready to receive applications from potential new members. The

496

XML-connect predicate has to be used by every applicant to
supply the cev ID to a DSO site. This connects the specified
channel end, cev, to the component instance that contains the
active entity, which performs this operation. The XML message
sends the cev ID to the site that ‘owns’ this channel. The
execution of connect at one site results to the attachment of the
calling procedure to the called channel end.

The ρέω commands are executed locally, i.e. all channels are
created at member sites or candidate member sites. For example
to have the binding operation performed with the use of
channels both the web browser and the translator have to own
at least one channel each, one for requesting and one for
replying respectively. The sites are remote and the web browser
component sends its cev ID to the translator component along
with a connect XML message. The channel-end level
primitives are indicated by the underscore.

ChannelEnd(timelimit,translator_loc)

The translator performs a connect operation with the received
cev ID and connects to the WB’s channel end.

_connect(timelimit,cev_wb) //primitive channel
operation

From then on the client’s web browser will receive information
from its created channel. Likewise the web browser can
perform the operation connect with the cev ID of the translator
and so get a request through the client’s channel, e.g the
translator performs:

ChannelEnd(timelimit,webBrowser_loc)

And the web browser responds with:

_connect(timelimit,cev_trans)

The translator belongs to the object space where the channels
are already created and connected. So the following read and
write operations have to be performed. The gateway has a
channel for receiving (read) information for binding while the
components name service, location service and implementation
repository have a special channel that reads requests from the
gateway. The channel of the gateway moves from the name
service to the location service and from there to the
implementation repository in order to perform the binding.

_connect(timelimit,cev_nameService)// to NS site
UseChannel_write(timelimit,var)
_write(timelimit, cev_nameService)
_connect(timelimit,cev_locService)// to LS site
UseChannel_write(timelimit,var)
_write(timelimit,cev_locService)
_connect(timelimit,cev_implemService)// to IR site
UseChannel_write(timelimit,var)
_write(timelimit, cev_implemService)

At every binding stage NS, LS, and IR components respond
with performing a write operation on the channel that the
gateway owns.

_connect(timelimit,cev_gateway)// to Gateway
UseChannel_write(timelimit,var)
_write(timelimit, cev_gateway)

Once the binding is completed the join operation is executed
by the web browser site’s local representative and the local
representative of the gateway in order to Join the node that
contains the rest of the object space channels.

ChannelEnd(timelimit,translator_loc)// to translator
site

_connect(timelimit,cev_gateLR)
join(node_webBrowser, node_translator)

7. CONCLUSION
In this paper it is investigated the use of a channel operation
system in distributed systems. The new-formed system is
process oriented in the sense that the processes participating in
the construction of a distributed object perform the channel
operations.

• The flow of data does not decide the execution of a read or
a write. On the other hand the relocation of a channel does
not influence the reliability of the data carried. The
outcome from this is a configurable net of components that
connect/disconnect to and from nodes at run time.

• At the node level nodes with their attached channel ends
can join and split between them. This allows the dynamic
reconfiguration of connections at real time and the
redirection of flow of data between the member objects.

The Channel Composition Definition Language mainly
provides a solution for the composition of a communication
pattern among components through the XML encapsulation of
the ρέω primitives. The major advantage is that a web server is
enough for the passage of the execution messages. The
construction and management of the communication concerns
of the created channels can take advantage of the fast evolving
web communication protocols.

8. REFERENCES
1. F. Arbab, F. Mavaddat, “Coordination through Channel

Composition”, 5th International Conference on
Coordination Models, Languages and Applications,
(Coordination 2002), York, UK, April 8-11, 2002, LNCS
2315, Springer Verlag, pp. 22-39.

2. J. Yang and M. Papazoglou. “Web Component: A
Substrate for Web Service Reuse and Composition”, 14th
International Conference on Advanced Information
Systems Engineering, (CAiSE 2002), Toronto, Canada,
May 27-31, 2002, LNCS 2348, Springer Verlag, pp. 21-36

3. G. Gardarin, F. Sha, Tram Dang Ngoc. “XML-based
components for Federating Multiple Heterogeneous Data
Sources”, 18th International Conference on Conceptual
Modeling, (ER '99), Paris, France, November, 15-18, 1999,
pp 506-519.

4. S. Szykman, J. Senfaut, R. Sriram. “The Use of XML for
Describing Functions and Taxonomies in Computer-based
Design”, Proceedings of the 1999 ASME Design
Engineering Technical Conferences (19th Computers and
Information in Engineering Conference), Las Vegas, NV,
12-15 September, 1999, Paper No. DETC99/CIE-9025.

5. F. Arbab, F. S. de Boer, J. G. Scholten, M. M. Bonsangue,
“MoCha: A Middleware Based on Mobile Channels”, 26th
International Computer Software and Applications
Conference (COMPSAC 2002), Oxford, England, 26-29
August 2002, Proceedings. IEEE Computer Society 2002,
pp 667-673.

6. I. Kuz, P. Verkaik, Ivor. van der Wijk, Maarten van Steen,
A. S. Tanenbaum. “Beyond HTTP: An Implementation of
the Web Globe”, Technical Report, Delft University of
Technology, November 1999.

497

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boer:Frank_S=_de.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Scholten:Juan_Guillen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bonsangue:Marcello_M=.html

