Chapter 18
Delivering Social Multimedia Content
with Scalability

Irene Kilanioti and George A. Papadopoulos

18.1 Introduction

CDNs aim at overcoming Internet issues and ensuring smooth and transparent con-
tent delivery. They principally replicate content in locations as near as possible to
the user that is bound to consume it. CDNs handle altogether the major issues of
(1) the most efficient placement of surrogate servers in terms of high performance
and less infrastructure cost; (ii) the best content diffusion placement, namely the
decision of which content will be copied in the surrogate servers and to what extent;
and (iii) the temporal diffusion, related to the most efficient timing of the content
placement [15]. They are, however, very dissimilar in terms of the services pro-
vided and their geographic coverage. The optimization of their overall efficiency,
as far as user is concerned, is practically achieved with the automatic detection of
the medium (either computer or mobile -smartphone/tablet), optimized management
of the browser cache, server load-balancing, the consideration of specific nature of
the content of the media provider (video on demand, live videos, geo-blocked con-
tent, etc.,) or features of certain operators, such as real-time compression, session
management, etc.

Utilization of CDNss is likely to have profound effects on large data download
through enhanced performance, scalability, and cost reduction. Extended use of
OSNs, and the increasing popularity of streaming media are the factors that drive
the HTTP traffic growth [4]. The amount of traffic generated on a daily basis by
online multimedia streaming providers is multiplied by the transmission over OSNs
(with more than 400 tweets per minute including a YouTube video link [3] being

I. Kilanioti () - G.A. Papadopoulos (B<)

Department of Computer Science, University of Cyprus, 1 University Avenue,
P.O. Box 20537, 2109 Nicosia, Cyprus

e-mail: ekoila01 @cs.ucy.ac.cy

G.A. Papadopoulos
e-mail: george @cs.ucy.ac.cy

© Springer International Publishing AG 2016 383
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_18



384 I. Kilanioti and G.A. Papadopoulos

published per minute). Subsequently, CDN users can benefit from an incorporated
mechanism of social awareness over the CDN infrastructure. In [15, 16] Kilanioti
and Papadopoulos introduce a dynamic mechanism of preactive copying of content
to an existing validated CDN simulation tool and propose an efficient copying policy
based on prediction of demand on OSNs along with its variations.

18.1.1 A Toy Example of Our Approach

Let us consider Bob, located in London and assigned to the London CDN servers of
an OSN service. Most of Bob’s social friends are geographically close to him, but he
also has a few friends in Europe and Australia assigned to their nearest servers. Bob
logs into the OSN and posts a video that he wants to share. Pushing the video content
to all other geographically distributed servers immediately before any requests occur
would be the naive way to ensure that this content is as close as possible to all users.
Aggregated over all users, pushing can lead to traffic congestion, and users would
experience latency in accessing the content, which, moreover, could not be consumed
at all. The problem of caching would be intensified when Alice, the only friend of
Bob in Athens, would be interested in that content, and with many such Alices in
various places.

Rather than pushing data to all surrogates, we can proactively distribute it only
to friends of Bob likely to consume it and only at the time window that signifies a
non-peak time for the upload in London area and a non-peak-time for the download
in Athens area, thus taking advantage of the timezone differences of our geo-diverse
system. The content will be copied only under certain conditions (content with high
viewership within the media service, copied to geographically close timezones where
the user has mutual friends with high influence impact). This would contribute to
smaller response times for the content to be consumed (for the users) and lower
bandwidth costs (for the OSN provider).

18.1.2 Contributions

In this work we modify the Social Prefetcher algorithm [15, 16] to incorporate best
performing caching mechanisms. We conduct experiments over a large corpus of
YouTube videos and use Twitter, where information propagates via retweeting across
multiple hops in the network [19]. Social cascades are directly analyzed, as the real
dataset of User Generated Content (UGC) used includes multimedia links over the
OSN. The Twitter dataset contains geographic locations, follower lists and tweets
for 37 million users, spreading of more than one million YouTube videos over this
network, a corpus of more than 2 billions messages and approximately 1.3 million
single messages with an extracted video URL. The wide popularity and massive user
base of YouTube and Twitter allow us to obtain safe insights regarding user navigation
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behavior on other similar media and microblogging platforms, respectively. The
implemented variations are incorporated in a validated simulator for CDNs, and
restrictions of the CDN infrastructure (storage issues, network topology) are taken
into account.

The present work goes beyond the Social Prefetcher algorithm [16] in terms of
performance. The latter surpasses performance improvement of similar works in
pull-based methods, that are employed by most CDNs, whereas moreover uses more
refined topology of data centers and does not neglect storage issues. Storage costs are
still a significant challenge despite the proliferation of cloud computing. In this work
we examine which caching schemes in the surrogate server affect the CDN metrics
the most. We further enhance the performance of Social Prefetcher algorithm, an
optimization analysis of which is presented by the authors in [15]. The findings of
present work can be exploited for future policies complementary to existing CDN
solutions or incorporated to OSN providers mechanisms, to handle larger scale data.

The rest of this paper is structured as follows: Sect. 18.2 reviews previous related
work. Section 18.3 formally describes the addressed problem. The proposed algo-
rithm is described in Sect. 18.4. Section 18.5 gives an outline of the methodology,
along with the preparation of the employed datasets. Our main findings are pre-
sented in Sect. 18.6. Section 18.7 concludes the paper and discusses directions for
future work.

18.2 Related Work

Systems that leverage information from OSNs with various research goals, such as
the decision for copying content or improvement of policy for temporary caching,
include [20, 21, 23]. Traverso et al. [23] improve QoS by exploiting time differences
among sites and the access patterns that users follow. Sastry et al. [20] analyze social
cascades and access to social profiles via a third-party page.

As long as the behavior of users in different media services is concerned, the
traffic on YouTube is described in several studies [4, 10-12, 18], with emphasis on
the characteristics of media content, such as file size, bitrate, usage patterns, and
popularity. In [11], the authors study the YouTube workload to discover that there
are many similarities between traditional Web and media streaming workloads. The
authors in [7] find a strong correlation among YouTube videos, because the links to
related videos generated by uploaders depict small-world characteristics. In [9] the
authors analyze how the popularity of individual YouTube videos evolves.

Authors in [16] extend the Social Prefetcher algorithm proposed in [15] to include
information about peak-time of various timezones of a geo-diverse system, as well
as contextual information about the viewership of video content within the media
service. The basic algorithm gives a near-optimal solution to the problem of content
delivery and addresses memory usage issues related to the very large graph dataset
accommodated. The suggested mechanism added to a CDN simulator overcomes the
testing limitations of other existing CDN platforms, such as the blackbox treatment
of CDN policies or the need for the participation of third users.
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18.3 Problem Description

‘We aim at mitigating the inherent Internet performance issues by improving the CDN
infrastructure mechanisms. We aim at the reduction of the response time for the user,
increase of the hit ratio of our request, as well as restriction of the cost of copying
from the origin server to surrogate servers. We consider the network topology, the
server location, and restrictions in the cache capacity of the server. Taking as input
data from OSNs and actions of users over them, we want to recognize objects that
will eventually be popular in the realm of the OSN platform.

We search a policy such that given a graph G(V, E), a set of R regions, where
the nodes of the social network are distributed, and the posts P of the nodes, it will
recognize the set of objects O that will be popular only in a subset of the regions
(Table 18.1), where the content is likely to be copied. The policy is represented by the
function Put(n;, Predict(G, P, R, O)), which takes as input a surrogate server n; € N
and the results of function Predict (set of g objects that will be globally popular and
A objects that will be locally popular), such that

Ohir (18.1)
Qtofal
is maximum, whereas constraint
> Sifu < G (18.2)
VieO
is fulfilled, where:
1 if object i exists in the cache of surrogate server k
fik = o . (18.3)
0 if object does not exist

Function Put(n;, Predict(G, P, R, O)) returns the set of objects o € O that have
to be placed in surrogate server n; € N.

18.4 Proposed Dynamic Policy

The proposed algorithm encompasses an algorithm for each new request arriving in
the CDN and an algorithm for each new object in the surrogate server. Internally, the
module communicates with the module processing the requests and each addressed
server separately (Fig. 18.1).
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Table 18.1 Notation overview

G(V,E) Graph representing the social network

V=AV],....Vy} Nodes representing the social network users

E={E\,...,En, ..., Ep} Edges representing the social network
connections, where Ej; stands for friendship
between i and j

R={ri,r,...,r} Regions set

N = {ny,na,...,ny} The surrogate servers set. Every surrogate
server belongs to a region r;

Ci,ieN Capacity of surrogate server i in bytes

0 ={01,02,...,04} Objects set (videos), denoting the objects users
can ask for and share

Si,0i €0 Size of object i in bytes

i Object accessed at the «-th iteration, «: the
counter maintained and incremented each time
there is a request for an object

AT; Number of accesses since the last time object i
was accessed

I1; Popularity of object i, i € O

gi={t,Vy,o}, 1 <x<w, 1<y <n

Request i consists of a timestamp, the id of the
user that asked for the object, and the object id

P ={p12.p13: - - - Puw}

User posts in the social network, where p;;
denotes that node i has shared object j in the
social network

ptsi,ptei, 1 <i<rt

peak time start and peak time end for each
region in secs

0={q1,92, .-, 9}

Object requests from page containing the
media objects, where g; denotes a request for
an object of set O

Ohit> Ororal Number of requests served from surrogate
servers of the region of the user/total number of
requests

X,YeR Closest timezones with mutual followers/with

highest centrality metric (HITS) values

18.4.1 For Every New Request in the CDN

The main idea is to check whether specific time has passed after the start of the
cascade, and then define to what extent the object will be copied. Initially, we check
whether it is the first appearance of the object. The variable o.timestamp depicts the
timestamp of the last appearance of the object in a request and helps in calculating the
timer related to the duration of the cascade. If it is the first appearance of the object,
the timer for the object cascade is initialized and o.timestamp takes the value of the
timestamp of the request. If the cascade is not yet complete (its timer has not surpassed
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a threshold), we check the importance of the user applying the Hubs Authorities
(HITS) algorithm and checking its authority score, as well as the viewership of the
object in the media service platform (Fig. 18.2).

For users with a high authority score, we copy the object to all surrogate servers
of the user’s timezone and to the surrogate servers serving the timezones of all
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Fig.

. if o.timestamp == 0 then

o.timer = 0;
o.timestamp = request timestamp;

: else if o.timestamp = 0 then

o.timer = o.timer + (request _timestamp - o.timestamp);
o.timestamp = request timestamp;
end if

. if o.timer > time_threshold then

o.timer = 0;
o.timestamp = 0;

. else if o.timer < time_threshold and user.authority_score > authority_threshold then

copy object o to surrogate that serves user’s V; timezone;
for all user V, that follows user V; do
find surrogate server n; that serves V)’s timezone;
copy object o to nj;
end for

. else if o.timer < time_threshold and o.IT; > IT;_threshold then

copy object o to surrogates n; that Subpolicy I decides;

. end if

18.2 Algorithm for every new request (timestamp, V;, o) in the CDN
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1: find X timezones where (user V; has mutual followers and they are closer to user’s V; time-
zone);

: find the Y C X that (belong to X and have the highest HITS score);

: for all timezones that belong to Y do

find surrogate server n; that serves timezone;

copy object o to n;;

: end for

e T I NI

Fig. 18.3 Subpolicy I

followers of the user (global prefetching). Otherwise, selective copying includes
only the surrogates that the subpolicy decides (local prefetching).

Centrality is measured with the HITS algorithm [17], a link analysis algorithm
that rates web pages. Twitter uses a HITS style algorithm to suggest to users which
accounts to follow [13], as well. A so-called good hub represents a page that points to
many other pages, whereas a good authority represents a page that is linked by many
different hubs. Memory usage issues for the very large graph dataset accommodated
led to calculation of HITS with the MapReduce technique. Subpolicy (Fig. 18.3)
checks the X closest timezones where a user has mutual friends and out of them,
the Y with the highest value of the centrality metric as an average. Highest value
of the metric means that the object is likely to be asked for more times. Copying is
performed to the surrogate servers that serve the above timezones.

18.4.2 For Every New Object in the Surrogate Server

Surrogate servers keep replicas of the web objects on behalf of content providers. In
the case that the new object does not fit in the surrogate server’s cache, we define the
time_threshold as the parameter for the duration that an object remains cached.

We check for items that have remained cached for a period longer than the
time_threshold and we delete those with the largest timestamp in the cascade. In
case there exist no such objects or all objects have the same timestamp, we apply
various policies for the removal of objects

e Least Recently Used (LRU) In the most straightforward extension of LRU for
handling nonhomogeneous-sized objects we prune the least recently used items
first. The algorithm keeps track of what was used when, to make sure that it discards
the least recently used item.

e Least Frequently Used (LFU) The algorithm keeps track of the number of times an
object is referenced in memory. When the cache is full and more room is required,
it purges the item with the lowest reference frequency. We simply employ an LFU
algorithm by assigning a counter to every object that is loaded into the cache. Each
time a reference is made to that object the counter is increased by one. When the
cache reaches capacity and a new object arrives, the system will search for the
object with the lowest counter and remove it from the cache.



390 I. Kilanioti and G.A. Papadopoulos

Table 18.2 Applied caching schemes

Name Primary key Secondary key

LRU Time since last access

LFU Frequency of access

SIZE Size Time since last access

e Size-adjusted LRU (SIZE) The optimization model devised in [1] to generalize
LRU is approximately solved by a simple heuristic and the policy is called Size-
adjusted LRU or SIZE. In this policy the objects are removed in order of size with
the largest object removed first. In case two objects have the same size, objects
longer cached since their last access are removed first. Objects in the cache are
reindexed in order of increasing values of S; - AT; and highest index objects are
greedily selected and purged from the cache until the new object fits in.

Varying algorithms depending on the caching scheme used (Table 18.2) are
depicted in Figs. 18.4, 18.5 and 18.6. The heuristics applied in our approach are
based on the following observations [15]: Users are more influenced by geographi-
cally close friends, and moreover by mutual followers, with the most popular users
acting as authorities. Social cascades have a short duration, and in our prefetching
algorithm we take into account the observation that the majority of cascades end
within 24 h. However, we introduce a varying time threshold for the cascade effect
and the time that an object remains in cache. Values given in the time threshold
variable also include 48 h, as well as threshold covering the entire percentage of
requests.

1: if o.size + current _cache_size < total _cache_size then

2 copy object o to cache of surrogate ry;

3: else if 0.size + current _cache __size > total _cache_size then

4 while o.size + current _cache_size > total _cache_size do

5: for all object o’ in current cache do

6 if (current timestamp - o' .timestamp) + o’ .timer > time_threshold then
7 copy ¢ in CandidateList;

8

: end if
9: if CandidateList.size>0 and CandidateList.size = total _cache_size then
10: find o’ that o’ .timestamp is maximum and delete it;
11: else if CandidateList.size==0 or CandidateList.size==total _cache_size then
12: use LRU to delete any object o0 € O;
13: end if
14: end for
15: end while
16:  put object o to cache of surrogate ny;
17: end if

Fig. 18.4 VariationA—Algorithm for every new object o in the surrogate server ny
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1: if o.size + current _cache_size < total _cache_size then

2 copy object o to cache of surrogate r;;

3: else if o.size + current _cache_size > total_cache_size then

4 while o.size + current _cache_size > total _cache_size do

5: for all object o’ in current_cache do

6 if (current timestamp - o .timestamp) + o' .timer > time_threshold then
7 copy o' in CandidateList;

8

end if
9: if CandidateList.size>0 and CandidateList .size = total _cache_size then
10: find o’ that o’ .timestamp is maximum and delete it;
11: else if CandidateList.size==0 or CandidateList.size==total_cache_size then
12: use LFU to delete any object 0 € O;
13: end if
14: end for

15:  end while
16:  put object o to cache of surrogate ny;
17: end if

Fig. 18.5 VariationB—Algorithm for every new object o in the surrogate server ny

1: if o.size + current _cache_size < total _cache_size then

2 copy object o to cache of surrogate ry;

3: else if 0.size + current _cache _size > total _cache_size then

4 while o.size + current _cache_size > total _cache_size do

5: for all object o’ in current_cache do

6 if (current timestamp - o' .timestamp) + o' .timer > time_threshold then
7 copy ¢ in CandidateList;

8

end if
9: if CandidateList.size>0 and CandidateList .size = total _cache_size then
10: find o’ that o’ .timestamp is maximum and delete it;
11: else if CandidateList.size==0 or CandidateList.size==total _cache_size then
12: use SIZE to delete any object o € O;
13: end if
14: end for
15: end while
16:  put object o to cache of surrogate r;
17: end if

Fig. 18.6 VariationC—Algorithm for every new object o in the surrogate server ny

Prinicipally we check whether specific time has passed after the start of cascade
and, only in the case that the cascade has not ended, define to what extent the object
will be copied (algorithm for every new request). This check is also performed
in algorithm for every new object, where we define the time_threshold. The latter
roughly expresses the average cascade duration, as it defines the duration that an
object remains cached.
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18.5 Experimental Evaluation

For the experimental evaluation, we used a stand-alone CDN simulator for CDNs.
The configuration of the simulation values is depicted in Table 18.3. For the extraction
of a reliable output, we had to conclude to a specific network topology, as well as
make assumptions regarding the input dataset. The simulator takes as input files
describing the underlying CDN and the traffic in the network, and provides an output
of statistical results, discussed in the next Section.

e Network Topology There follows a short description of the process defining the

nodes in the topology. These nodes represent the surrogate servers, the origin
server, and the users requesting the objects (Fig. 18.7). For an in-depth analysis you
can refer to [15]. To simulate our policy and place the servers in a real geographical
position, we used the geographical distribution of the Limelight network [14]. For
the smooth operation of the simulator the number of surrogate servers was reduced
by a ratio of 10 %, to ultimately include 423 servers (Table 18.4). Depending on
the closer distance between the surrogate region defined by Limelight and each of
the timezones defined by Twitter (20 Limelight regions, 142 Twitter timezones),
we decided where the requests from each timezone will be redirected. The popu-
lation of each timezone was also taken into consideration. The INET generator [4]
allowed us to create an AS-level representation of the network topology. Topol-
ogy coordinates were converted to geographical coordinates with the NetGeo tool
from CAIDA [5], a tool that maps IP addresses and Autonomous System (AS)
coordinates to geographical coordinates [22], and surrogate servers were assigned
to topology nodes.
After grouping users per timezone (due to the limitations the large dataset imposes),
each group of users was placed in a topology node. We placed the user groups in
the nodes closer to those comprising the servers that serve the respective timezone
requests, contributing this way to a realistic network depiction.

e Number of Requests 1 million requests were considered sufficient, with the number
of objects being the dominant factor increasing the memory use of the simulation
tool. Also similar concept approaches use similar number of requests ([23] on a
daily basis and [21]), and same number of distinct videos for generation of requests.

Table 18.3 Simulation characteristics

Number of nodes in the topology 3500

Redirection policy Cooperative environment (closest surrogate)
Number of origin servers 1

Number of surrogate servers 423

Number of user groups 162

Bandwidth 100 Mbit/s
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We define the regions with surrogate servers (Limelight)

We define the number of surrogate servers in every region (Limelight — 10% reduction)

We assign surrogate servers for serving request in every time zone

We convert the topology coordinates into geographical coordinates (NetGeo)

.

We assign the surrogate servers to nodes in the topology

Fig. 18.7 Methodology followed

Table 18.4 Distribution of servers over the world for the experimental evaluation

City Servers City Servers
Washington DC 55 Toronto 12
New York 43 Amsterdam 20
Atlanta 11 London 30
Miami 11 Frankfurt 31
Chicago 37 Paris 12
Dallas 19 Moscow 10
Los Angeles 52 Hong Kong 8
San Jose 37 Tokyo 12
Seattle 15 Changi 5
Phoenix 3 Sydney
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e Cache Size The requests generated from the generator follow a long-tail distribu-
tion, thus 15 % of the whole catalog size was considered to be sufficient.

e Threshold Values Experimenting was conducted for time thresholds of 24 h and
48 h, as well as for the time threshold that covered all the requests. The thresh-
old for media service viewership was set at 402.408 (average media viewer-
ship in the dataset). The authority threshold score was tested for various values
(0.006/0.02/0.04).

18.6 Main Findings

The statistic reports produced by the simulator are used to evaluate the proposed
policy. There follows a short explanation of the metrics used in our experiments for
the extraction of statistical results.

18.6.1 Client Side Metrics

They refer to activities of clients, i.e., the requests for objects.

e Mean Response Time indicates how fast a client is satisfied. It is defined as

M-1
2 1
i=0
M
where M is the number of satisfied requests and #; is the response time of the

ith request. It starts at the timestamp when the request begins and ends at the
timestamp when the connection closes.

18.6.2 Surrogate Side Metrics

They are focused on the operations of the surrogate servers.

e Hit Ratio: is the percentage of the client-to-CDN requests resulting in a cache hit.
High values indicate high quality content placement in the surrogate servers.

e Byte Hit Ratio: is the hit ratio expressed in bytes, counting the corresponding bytes
of the requests. High values indicate optimized space usage and lower network
traffic.
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18.6.3 Network Statistics Metrics

They run on top of TCP/IP and concern the entire network topology.

e Active Servers refers to the surrogate servers being active serving clients.

e Mean Utility of the Surrogate Servers is a value that expresses the relation between
the number of bytes of the served content against the number of bytes of the
pulled content (from the origin server or other surrogate servers). It is bounded
to the range [0, 1] and provides an indication about the CDN performance. High
net utility values indicate good content outsourcing policy and improved mean
response times for the clients.

We conducted a multitude of experiments (55 for each caching scheme and time
threshold combination). Table 18.5 presents the average values of four parameters
for six cases of testing. The lowest mean response times appear for the cases of the
time threshold covering all requests for all caching schemes. We observe that LFU
scheme outperforms LRU and SIZE in terms of mean response times and hit ratios
achieved.

e Hit Ratio To begin with, Fig. 18.8 illustrates how the hit ratio of the requests
is affected by modifying the number of timezones with highest centrality met-
ric examined. The caching scheme of LFU appears to perform better than the
LRU scheme. LRU and LFU offer comparable results, whereas they both outper-
form SIZE. We come to the conclusion that there is a realistic room for perfor-
mance improvement by implementing various web caching characteristics in a
CDN infrastructure, even though the social cascading mechanisms have already
been activated to improve its performance.

e Mean Utility of the Surrogate Servers For a fixed number of 10 closest timezones
with mutual followers LRU scheme appears to depict the highest mean utility of
the surrogate servers, followed by LFU and SIZE (Fig. 18.9).

Table 18.5 Average metric values for X = 10 timezones of close mutual friends

Mean response Hit ratio (Avg, %) | Active servers Mean utility

time (Avg, 1072 (Avg, %)

s)
LFU—24-h 1.1383 32.81 326 96.01
LFU—48-h 1.1352 33.08 325 96.01
LFU—all-h 1.1112 34.69 324 96.01
SIZE—24-h 1.1541 32.10 327 95.94
SIZE—48-h 1.146076 32.03 326 95.98
SIZE—all-h 1.1274 33.17 326 96.00
LRU—24-h 1.1412 32.12 326 95.99
LRU—48-h 1.1377 3242 325 96.02
LRU—all-h 1.1181 34.16 325 96.04
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Servers for X = 10 closest timezones with mutual followers for LRU, LFU, and SIZE

e Active Servers For a fixed number of 10 closest timezones with mutual followers
LFU appears to use less active servers after the first timezone of highest centrality
in the scenario of time threshold covering all the requests. SIZE depicts higher
values of active servers for the cases of 5 and 10 timezones examined (Fig. 18.9).

e Mean Response Time For the most representative case of all requests for LRU and
LFU schemes, the trade-off between the reduction of the response time and the
cost of copying in servers is expressed with a decrease of the mean response time
as the timezones increase, and a point after which the mean response time starts
to increase again (Figs. 18.10 and 18.11). This decrease in the mean response time
occurs with approximately five timezones out of the 10 used for LRU scheme
(for a fixed number of closest timezones with mutual followers), and with seven
timezones for LFU. After this point the slight increase in the mean response time
is attributed to the delay for copying content to surrogate servers. The cost for
every copy is related to the number of hops among the client asking for it and
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the server where copying is likely to be made, according to the Put function. We
observe that SIZE depicts a poor performance, since it does not take advantage of
the frequency skew.

18.7 Conclusions

CDN infrastructures rapidly deliver multimedia content cached on dispersed geo-
graphical servers to Web browsers worldwide. The growing demands for quick and
scalable delivery, also due to HTTP traffic increase, can be satisfied with efficient
management of the content replicated in CDNs. Specifically, we need Web data
caching techniques and mechanisms on CDNs, as well as policies recognizing the
patterns of social diffusion of content, to ensure satisfying performance in a con-
stantly changing environment of continuing data volume growth.
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In the present work, we further extended a dynamic policy of OSN content
prefetching implemented with temporal and other contextual parameters, to depict
how various caching schemes can affect the content delivery infrastructure. Band-
width-intensive multimedia delivery over a CDN infrastructure is experimentally
evaluated with realistic workloads, that many works in the related literature lack.
While recognizing that we used one media service and one OSN platform for our
experimentation, we believe that our results are generally applicable, with a poten-
tially high impact for large-scale systems where traffic is generated by online social
services and microblogging platforms. We aim to generalize our proposed policies
in the future, to deal with multiple OSN platforms, as well as mobile CDN providers.
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