
ORIGINAL ARTICLE

A pluggable middleware architecture for developing
context-aware mobile applications

Nearchos Paspallis • George A. Papadopoulos

Received: 30 November 2012 / Accepted: 3 July 2013 / Published online: 8 October 2013

� Springer-Verlag London 2013

Abstract The proliferation of powerful smartphone

devices provides a great opportunity for context-aware

mobile applications becoming mainstream. However, we

argue that conventional software development techniques

suffer because of the added complexity required for col-

lecting and managing context information. This paper

presents a component-based middleware architecture

which facilitates the development and deployment of

context-aware applications via reusable components. The

main contribution of this approach is the combination of a

development methodology with the middleware architec-

ture, which together bring significant value to developers of

context-aware applications. Further contributions include

the following: The methodology utilizes separation of

concerns, thus decreasing the developmental cost and

improving the productivity. The design and implementa-

tion of context-aware applications are also eased via the

use of reusable components, called context plug-ins.

Finally, the middleware architecture facilitates the

deployment and management of the context plug-ins in a

resource-aware manner. The proposed methodology and

middleware architecture are evaluated both quantitatively

and qualitatively.

Keywords Context-awareness � Middleware �
Reusability � Pluggability � Modularity �
Mobile devices � Separation-of-concerns

1 Introduction

With a global population penetration exceeding 67 % as of

2010, the mobile phone is considered the most prolific

technology to date [1]. An increasing subset of them are

smartphones—powerful mobile devices, capable of running

third-party applications—which are themselves credited as

one of the greatest technologies of the last decade [28]. The

advanced capabilities of these devices have also increased

user expectations; Improvement is especially sought in

areas such as context-awareness and self-adaptation.

However, enabling this kind of sophisticated functionality

on devices that are typically characterized by limited

resources and capabilities is a challenging engineering task.

This paper presents a pluggable and modular middleware

architecture which enables individual context providers (such

as a location sensor) and context consumers (such as an

interactive tourist guide) to be independently developed and

dynamically bound via a middleware layer. The architecture

allows attaching new peripherals to the device at runtime

(e.g., a Bluetooth-based GPS receiver) without requiring that

the dependent applications are restarted to take advantage of

the additional—or richer—context information. Further-

more, by separating the roles of context providers and con-

text consumers and also by adopting component orientation

[32], we facilitate code reuse in the form of reusable context

plug-ins. Additionally, the proposed middleware architecture

features modularity, which allows the developers to quickly

and easily configure the middleware according to the needs

of the deployed applications and the capabilities of the

deployment platform. Finally, the middleware behaves in a

resource-aware manner by dynamically activating and

deactivating context plug-ins on demand, and thus mini-

mizing the run-time resource consumption (e.g., battery drain

and memory use).

N. Paspallis (&)

UCLan Cyprus, 7080 Pyla, Cyprus

e-mail: npaspallis@uclan.ac.uk

G. A. Papadopoulos

University of Cyprus, 2109 Aglantzia, Cyprus

123

Pers Ubiquit Comput (2014) 18:1099–1116

DOI 10.1007/s00779-013-0722-7



The rest of this paper is organized as follows. Section 2

introduces our view on context-awareness and lists the

requirements for the proposed middleware architecture.

The pluggable and modular aspects of the architecture are

described in detail in Sect. 3, along with some implemen-

tation issues. The architecture is further illustrated via an

extensive case study application, described in Sect. 4,

followed by a qualitative and quantitative evaluation in

Sect. 5. The paper closes with conclusions and pointers to

future work in Sect. 6.

2 Requirements

The term of context-awareness was first studied [33] and

defined [31] just a few years after Weiser originally

documented his vision of ubiquitous computing [35]. At

that point, context was defined as ‘‘the location of use,

nearby people, hosts and accessible devices as well as

changes to these things over time.’’ At that point, context-

awareness was often viewed as merely location-aware-

ness, and the first context-aware applications were pre-

dominantly location-aware (e.g., the Active Badge [33],

the ParcTab [34], and the CyberGuide [19] projects). As

more researchers got engaged in the study of context-

aware applications though, its definition evolved [3]. One

of the most commonly referenced works defines context

as ‘‘any information that can be used to characterize the

situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction

between a user and an application, including the user and

application themselves’’ [6].

In relation to ubiquitous computing, context-awareness

is considered to be one of the main enabling technologies.

For instance, ubiquitous computing envisions a future

where the interaction with the users is minimized and

raised to a subconscious level, whenever possible. How-

ever, in order for computing systems to achieve this degree

of invisibility, they need to keep track of as much of the

contextual information as possible: available resources,

possible means of User Interfacing, the user preferences

and profile, as well as past user choices, user state, and the

physical environment.

This section presents a list of requirements, as identified

in the literature, which is relevant to the decisions that led

to the design of the middleware architecture described in

the following sections.

2.1 Functional requirements

The functional requirements are discussed first, as they are

more focused on the properties, which are specific to

context-awareness.

Application-specific context acquisition, analysis and

detection This requirement is about providing a uniform

and platform-independent interface for applications to

express their need for different context data without

knowing how that data are acquired [30, 36]. A consistent

and well-defined context access interface is an important

requirement for easing the development via separation-of-

concerns.

Context histories As context information is dynamically

generated and processed, new values continuously super-

sede previous ones. For example, when a new reading of a

GPS sensor is performed, the newly reported location is

used to replace the previous one. However, in many cases,

access to historical context values is needed as well. Dey

et al. [7] argue that maintaining a context history is an

important requirement in order to enable arbitrary context-

aware applications.

Support for multiple concurrent context-aware appli-

cations As modern mobile devices have become more

powerful, they are commonly used to run multiple appli-

cations in parallel. Providing support for concurrent con-

text-aware applications is thus a natural requirement.

Instead of employing multiple instances of the same con-

text sensors (e.g., sensors, widgets, components etc), it is

preferable that applications share the context information

as it is generated by a single source [10, 21].

Transparent distribution of context data In many cases,

the context information gathered and modeled in one

device is relevant to a wider scope. Furthermore, the dis-

tribution of context information should be as transparent as

possible in order to ease the development of distributed

context-aware applications [7]. There are many reasons

why this is important: From a functional perspective, in

some cases, the application logic itself requires context

distribution. For example, a communication application

might reveal the callee’s status (e.g., available, busy, or

unavailable), before a call is even attempted. From an

extra-functional perspective, context distribution is also

important as it can enable richer context information (from

multiple, distributed sensors) and better resource utilization

(sharing of common sensors installed only in a subset of

the devices requiring the corresponding context informa-

tion). For instance, a higher-precision GPS receiver

embedded in a car is preferred to a smartphone’s WiFi-

based location sensor when the user is driving.

Privacy of context information Privacy is one of the

most often cited criticisms of ubiquitous computing and is

considered one of the main barriers to its long-term success

[15]. As context frameworks have access to sensitive user

information (e.g., static information, like a user’s profile,

and dynamic information, like a user’s location), they

should strive to protect context data. This requirement is

particularly important in cases of context distribution and

1100 Pers Ubiquit Comput (2014) 18:1099–1116

123



context storage. It should be noted that while privacy is a

common concern in most computing systems, it requires

special attention in mobile and pervasive environments as

they introduce challenges not present in traditional desktop

computing.

Traceability and control of context-aware behavior As

context-aware systems typically employ self-adaptation

logic, which can be quite complex, there should be some

provision for allowing the developers (and the users) to

inspect the information flow—and whenever possible also

manipulate it—in order to provide users with adequate

understanding and control of the system and to facilitate

debugging [13]. Traceability significantly improves user

acceptance, as it was found that users are more tolerant

of—even imperfect—context-aware applications when

they understand that their autonomic behavior is rational

[12, 25].

2.2 Extra-functional requirements

The extra-functional requirements are not specific to con-

text-aware systems, but nevertheless, they discuss impor-

tant aspects that must be taken into consideration.

Code reuse By implementing the context-aware related

functionality (i.e., context sensing, processing, storing, etc)

outside the application, multiple applications can reuse the

same code, either one at a time or simultaneously. The

requirement for code reuse in the form of reusable software

components was identified as early as in [7].

Modularity As different applications and different

deployment platforms have different requirements and

capabilities respectively, a modular architecture is needed

to ensure that those and only those features are used, which

are explicitly needed in each case. A modular architecture

can enable this by allowing different variants of the system

to be deployed on varying platforms as needed. They also

provide the advantage of more resource-efficient custom-

ization according to the dynamic needs of the deployed

applications.

Separation-of-concerns Separation-of-concerns is a

requirement that enables a more disciplined and efficient

method for developing context-aware applications [7, 10].

For instance in [22] and in [23], the concerns of context-

awareness and self-adaptiveness are treated independently

of the standard business logic of the application. As the

developers are allowed to focus on individual concerns of a

developed context-aware system at a time, the overall

development and maintenance tasks are rendered easier,

faster, and more cost efficient.

Dynamic behavior Many context-aware frameworks use

specialized context sensing components, which are used as

wrappers around hardware sensors or OS libraries (e.g.,

context widgets [5] and context plug-ins [24]). Arguably,

when these are deployed on mobile devices which are

characterized by limited battery resources, it should be

possible to dynamically activate or deactivate them as

needed. This should be done according to the actual run-

time needs of the deployed applications, while at the same

time minimizing resource consumption.

Resource efficiency The requirement for resource effi-

ciency refers to the ability of context-aware frameworks to

operate on lightweight devices while imposing only a small

footprint on resources such as CPU, memory, and battery.

This requirement is particularly important for small,

mobile devices which are characterized by limited

resources because of space, shape, and weight constraints.

A additional number of extra-functional requirements

were also identified in the literature, such as ease of

building, platform independence, lightweight architecture,

support for mobility, ease of deployment and configuration,

uniform development support, evolution, scalability,

adoption of existing patterns and standards and fault tol-

erance. While these requirements are not explicitly dis-

cussed in this paper, they were taken into consideration

during the design and the evaluation of the development

methodology and the middleware architecture [20].

3 Middleware architecture

This section presents the middleware architecture which

enables the deployment and management of context-aware

applications. These applications consist of context pro-

viders and consumers that are independently developed and

dynamically composed—via a middleware layer—to form

context-aware applications. The proposed architecture

allows for dynamically adding and/or removing context

providers (such as a Bluetooth-based GPS sensor) at run-

time, without requiring that the dependent applications

(such as an interactive walking tour application) are

restarted in order to take advantage of the additional—or

richer—context information. Furthermore, by separating

the roles of context providers and consumers, and also by

building on top of a component-oriented architecture [32],

code reuse is facilitated in the form of reusable context

plug-ins. Also, by monitoring the plug-ins’ metadata—

which encode their provided and required context types—

the middleware intelligently and autonomously activates

and deactivates context plug-ins as needed, and thus opti-

mizing their resource consumption (e.g., battery drain,

memory use, etc.). Finally, the architecture of the mid-

dleware itself is modular, allowing for alternative variants

of it which can better match the requirements and proper-

ties of the target domain.

The single most important functional requirement of

the middleware architecture is quite straightforward,

Pers Ubiquit Comput (2014) 18:1099–1116 1101

123



providing application-specific access to context informa-

tion. To this end, the architecture was designed to provide

support for collecting, storing, organizing, and accessing

context information. Additional requirements, such as

interoperability, inference of inter-dependencies of con-

text, and support for context distribution, are also

important. These functional requirements have led to the

implementation of a comprehensive context model and an

elaborate Context Query Language (CQL), which, how-

ever, are only briefly described here (more details are

available in [9, 26, 27]).

3.1 Pluggability

In order to accommodate the requirements detected in Sect.

2, a basic guideline was adopted: The developers must be

able to ‘‘independently develop and deploy context pro-

viders and context consumers.’’ In other words, the concern

of developing context-aware applications is separated into

the concerns of developing context producing and context

consuming components. This has led to the adoption of a

pluggable architecture, where the context providers are

designed and developed as dynamically pluggable com-

ponents which are capable of independent deployment and

activation. These components are referred to as context

plug-ins. On the other side, the context-aware applications

act as context clients and are only loosely coupled with the

context providers.

To support such separation-of-concerns, a middleware-

based system is defined. This system acts as an intelligent

context hub: It collects, stores, processes context data, and

makes it available to context clients. It should be noted that

in this system’s architecture, the context providers and the

context consumers are loosely coupled, interacting with

each other only through the middleware based on their

context dependencies. This enables developers to build

their own context plug-ins or reuse existing ones, as per the

proposed developmental methodology.

While some context plug-ins can be pure context pro-

viders (i.e., context sensor plug-ins), others may also

require input of—typically—primitive context data and

thus be considered as both context providers and con-

sumers (i.e., context reasoner plug-ins).

The context types provided and—optionally—required

by each context plug-in are explicitly defined at design-

time and read by the middleware during installation. This

information is used to resolve the context dependencies of

the plug-ins. Furthermore, based on the context types that

the deployed context-aware applications need, the mid-

dleware dynamically activates an appropriate subset of

context plug-ins. The corresponding mechanisms are

described in Sects. 3.1.2 and 3.1.3.

3.1.1 Context plug-ins

In our model, context plug-ins are software components

which are defined and deployed independently (as per

Szyperski’s definition [32]). These components provide a

contractually specified interface, which allows them to

interact with a central entity in the middleware (i.e., the

context manager).

While the actual context sensing and context reasoning

are a core responsibility of the plug-in developer, synthesis

of plug-ins and lifecycle control is automatically handled

by the middleware. To enable these, the plug-ins need to

• Realize an interface that allows them to communicate

context data to and from the middleware, and

• Specify the provided (mandatory) and required

(optional) context types as static metadata.

Concerning the former, the interface is heavily depen-

dent on the actual implementation and the underlying

platform. In the two Java-based implementations discussed

in this paper, i.e., OSGi (Open Service Gateway initiative)

and Android (see Sect. 3.3), this is realized via a standard

Java interface (i.e., the IContextPlugin).

Concerning the latter, the semantics (i.e., syntax of the

metadata) of the context dependencies are standardized as

per the adopted context model [26, 27], but the place of

annotation is again dependent on the underlying platform

(e.g., the metadata is stored in the file MANIFEST.MF in

the case of OSGi, and in the file AndroidMani-

fest.xml in the case of Android).

The context plug-in lifecycle is defined as a simple

automaton with three states:

• Installed where all static dependencies (e.g., software

libraries and/or hardware components) of a plug-in are

resolved,

• Resolved where a plugin is Installed and all its context

dependencies are resolved (note that, by definition,

context sensors have no context dependencies, and thus

they are always resolved),

• Active where a plug-in is Resolved and active and

generating context data (note that a plug-in might be

Resolved, but not activated because its provided

context data are not needed at the time).

The context plug-ins define their provided context types

in addition to their required ones. In this respect, context

sensors are automatically considered resolved, while con-

text reasoners are considered resolved only when their

context dependencies are satisfied. For instance, a context

reasoner plug-in, which produces context type A and

requires context type B, cannot be resolved unless there is

at least one plug-in installed—and resolved—offering

1102 Pers Ubiquit Comput (2014) 18:1099–1116

123



context type B. Similarly, a plug-in offering a context type

C is activated only when there is at least one active context

consumer in need of that context type. As changes to the

required and provided context types are dynamic, transi-

tions back from Active to Resolved and possibly to

Installed are also feasible. When a plug-in’s state

transitions to Active, then a special activate method

is automatically invoked by the middleware. Similarly,

when its state transitions out of the Active state, the

deactivate method is invoked (i.e., Inversion-of-Con-

trol pattern).

The rationale for these context plug-in-specific states

is the following: When a context plug-in is installed and

resolved (in OSGi terms) or simply installed (in

Android terms), it should only be activated when that

would be useful. But, if the plug-in is not resolved (in

terms of context dependencies), then activating it would

not yield any context data as the required input would

never be provided (or worse, it could yield erroneous

data). Similarly, when no context client requires the

context types provided by a specific plug-in, then acti-

vating it would not have any impact to the system,

except for resource consumption. Thus, by introducing

these specialized states, it is possible to optimize the

resources consumed by the context plug-ins by activat-

ing those, and only those plug-ins, which are absolutely

necessary.

In practice, it is assumed that the developers implement

their plug-ins so that when they are activated, they allo-

cate their required resources, and when they are deacti-

vated, they de-allocate them. For example, if the context

plug-in is used to generate ‘‘location’’ context types via

input from a GPS device, then activating the plug-in

would result in turning the GPS sensor on and deacti-

vating it would result in turning it back off. Consequently,

by only activating the location plug-in when an actual

context-aware application needs location context infor-

mation, it is possible to conserve significant resources (in

this case, battery).

After a plug-in is installed (and assuming its context

dependencies are resolved and is activated), it is registered

by the context middleware which tracks its provided and

required context types. Additionally, when context clients

connect to the context middleware and inquire context

data, the latter also records data about these clients and

their required context types.

At run-time, the required and provided context types are

processed by the context manager, which uses this infor-

mation to resolve and activate the plug-ins as needed. In

particular, the resolution mechanism is triggered when the

provided context changes, i.e., every time a new plug-in is

installed, or an existing one is uninstalled. The activation

mechanism, on the other hand, is triggered when the

required context changes, i.e., when a new context client is

activated or an existing one deactivated. The result of this

process is to activate those—and only those—context plug-

ins that are resolved and offer context types needed by

active context clients.

A two-phase approach is followed: The plug-ins are first

resolved and then activated as needed. The corresponding

algorithms used in these mechanisms are presented in the

following two subsections.

3.1.2 Resolution mechanism

The resolution mechanism is responsible for marking plug-

ins as resolved or unresolved. Resolved are those plug-ins

which either have no context dependencies, or their

dependencies are offered by some other resolved plug-ins.

It should be noted that when a plug-in is marked as

resolved, it is implied that it can be instantaneously acti-

vated and start producing events of its provided context

type. As it is evident from this definition, an iterative

algorithm is a straightforward approach for realizing the

resolution mechanism. This mechanism is depicted in

Algorithm 1.

The resolution mechanism defines three data structures:

First, the all plug-ins are a set, which includes all the

installed plug-ins. As it was mentioned earlier, the exe-

cution of this algorithm is triggered by changes to this set.

The second data structure, resolved, is a subset of the

all plug-ins set and contains the plug-ins which are

marked as resolved. Finally, the last data structure,

provided, is a map which associates each context type

to a list of context plug-ins. Each of these lists includes

those, and only those, plug-ins that are known to provide

the corresponding context type and are known to be

resolved.

Regarding the algorithm, it consists of two phases: In

the first phase, it makes sure that each resolved context

plug-in is marked as accordingly (i.e., it is included in the

[resolved] set). To achieve this, it repeatedly checks each

unresolved plug-in to see if there is a change in its

dependencies. If it is found to be resolved, it is marked as

such. Otherwise, when a complete iteration of the unre-

solved plug-ins is completed without a change, it is

assumed that all resolved plug-ins have already been

marked. This part of the algorithm always terminates,

because there is only a limited number of unresolved

plug-ins, and at least one of them is shifted to the

Pers Ubiquit Comput (2014) 18:1099–1116 1103

123



resolved set in each iteration—with the exception of

the last one.

The second phase achieves a symmetric goal: It ensures

that all plug-ins, included in the resolved set, are still

resolved. To achieve this goal, an iterative process is used

again, where each plug-in that is marked as resolved is

checked against its dependencies. If it is found to be

unresolved, it is unmarked (i.e., it is deleted from the

resolved set), and the process repeats until a full iter-

ation is completed without changes. This part of the

algorithm also always terminates, because there is only a

limited number of plug-ins in the resolved set, and at

least one of them is deleted from that in each loop.

3.1.3 Activation mechanism

While the resolution mechanism is triggered by changes to

the availability of context plug-ins, the activation mecha-

nism is triggered by changes to the context needs. As

context-aware applications start and stop, they register and

unregister for context notification with the middleware. For

this purpose, a mapping for each needed context type is

maintained, pointing to a list of registered clients. Context

clients, which require periodic, synchronous access to

context, are required to register their context needs with the

middleware. Asynchronous subscribers to context data are

also registered, implicitly while placing their queries. This

approach allows the middleware to be aware of the actual

context needs of all the applications and thus be able to

intelligently activate and deactivate the plug-ins on

demand. The details of this mechanism are presented in

Algorithm 2.

This algorithm leverages four data structures: First,

provided is a map of all provided context types to a list

of resolved plug-ins providing them (i.e., this data structure

is identical to the corresponding data structure used in the

resolution mechanism). The second data structure (nee-

ded) is a similar one, mapping—however—needed con-

text types to the corresponding requestors. In this case, the

keys are context types, and the values are lists of objects,

corresponding to the context clients. Next, the resolved

is a set containing all plug-ins that are marked as resolved,

and finally, active is a set containing all plug-ins that are

marked as being active. Naturally, the active set is a

subset of resolved as that was defined in the resolution

mechanism. Updating these data structures is the main goal

of this mechanism.

After an initialization phase where all unresolved plug-

ins are removed from the set of active plug-ins, the acti-

vation algorithm spans two phases, just like the resolution

one. In the first phase, all the plug-ins to be activated are

selected by iterating the needed context types and selecting

from the ones providing the corresponding context type.

After the appropriate plug-ins are selected for the given

context type, the ‘‘needed’’ data structure is also updated

with any new context types possibly needed by the newly

activated plug-ins. This loop is repeated until no changes

are detected.

It should be noted that the select operation defined in

line 8 of Algorithm 2 can be as basic as selecting all the

plug-ins providing the corresponding context type CT, or, it

can be quite complex featuring intelligent selection of a

subset of the plug-ins based on their resource consumption

and their Quality of Context (QoC) properties. In [24], we

implemented, tested, and evaluated the simple selection

method, showing how the resource consumption is

improved. Providing more elaborate implementations for

the selection operator is a promising future direction, with

a potential for further resource utilization, that is currently

being investigated.

1104 Pers Ubiquit Comput (2014) 18:1099–1116

123



In the second phase of the algorithm, each plug-in that is

marked as active is checked against the needed context

types. If none of its provided context types is needed by the

active context clients, then it is unmarked, and any context

requirements it possibly has are removed from the nee-

ded map. This process is repeated until no new changes

are detected.

At the end of this algorithm, the states of the plug-ins are

checked, and their lifecycle is adjusted accordingly. For

instance, any active plug-ins that were unmarked are

deactivated and any inactive ones that were marked are

activated. From a technical point-of-view, the changes in

the plug-ins’ lifecycle are enabled via corresponding

methods defined in the plug-ins, realizing the Inversion-of-

Control paradigm.

3.2 Modularity

The context middleware is a component-based framework

itself, consisting of a main, central component—the Con-

text Manager—and a few secondary ones, including the

Context Model, the Context Repository, and the Context

Query Processor. The internal structure of the context

middleware architecture is illustrated in Fig. 1.

3.2.1 Main services

As the main component in the architecture, the context

manager enables the core functionality of the context

middleware: It receives, stores, processes, and, eventually,

Fig. 1 The modular

architecture of the context

middleware

Pers Ubiquit Comput (2014) 18:1099–1116 1105

123



forwards context information from context providers to

context consumers. It externalizes—via delegation—three

main services:

The IContextAccess is the basic service enabling

access to context information. The queries can be either

synchronous or asynchronous. In the first case, simple

context types—or conditional context queries—are used to

specify the desired context data. Similarly, in the latter

case, either a context type is specified so that the inquirer is

notified whenever a change is sensed, or a more complex

CQL-based query [9] is used to specify the conditions

under which the inquirer should be notified.

The IContextManagement service aims at facili-

tating the extension of the context middleware. For this

reason, it provides the functionality for monitoring the

required context types, which vary as a result of the

inquiries placed by the deployed applications, as well as

the provided context types, which are reported by the

installed context plug-ins. This is central, for instance, for

adding support for context distribution.

The IContextSimulation is a utility service, used

for enabling testing and debugging. In particular, this service

allows external components to get access to the flow of all

context information, intercept it, and even simulate arbitrary

context events (with assistance from the context manage-

ment service). This was used, for instance, for building a

scenario engine for testing context-aware applications [18].

Finally, the IContextPlugin is the only externally

needed service, which is used to enable the dynamic binding

of context plug-ins to the middleware (see Sect. 3.2.3).

On the other hand, the context manager also features one

optional and two mandatory internal services:

The IContextQuery service defines support for

processing queries expressed in the CQL. However, simple

context-aware applications are often realized using the

plain context access API only, which provide access to

requested context types filtered only by timestamp. For this

reason, this service is defined as optional, and thus allow-

ing for the formation of lighter configurations when needed

(e.g., for resource-constrained devices).

The IContextModel service is mandatory and pro-

vides the required functionality for enabling transformation

operations, as well as for identifying relationships between

context entities, both at run-time. While the default imple-

mentation is realized using ontologies (offering a powerful,

yet resource-demanding context model), simpler hardcoded

implementations are also available (offering less flexibility

and adaptability but with a much lighter resource footprint).

The IContextRepository service is also manda-

tory, and it provides the functionality needed for storing

historical context values. The context data are initially

provided (and accessed) in the form of objects, which are

then serialized so they can be stored. The actual

implementation of the context repository can include the

use of an underlying DBMS system and feature a cache

system as needed. This service facilitates the customization

of the middleware to the targeted platform. For instance, in

the Android port of the middleware, the natively built

SQLite database is utilized for realizing the repository.

3.2.2 Core functionality

The core functionality of the context manager includes the

binding with context providers and the servicing of context

clients. Context plug-ins, for instance, are bound to

IContextAccess and IContextManagement, as

well as to the IContextPlugin service. Through the

first two, the plug-ins can access additional context data

and report new context information. The latter is used by

the middleware for controlling when the plug-ins are

started or stopped.

When a new context-aware application is started, it

naturally registers its interest for certain context types. It

does so by using the IContextAccess service, either

implicitly (i.e., by registering for asynchronous notifica-

tion) or explicitly (i.e., by specifying context types of

interest). This information is used by the context manager,

which continuously and dynamically decides which plug-

ins must be activated (see Sect. 3.1.3).

The context manager also uses a repository for the

purpose of storing context data for long-term use. To

facilitate various implementations of such a repository, the

IContextRepository internal service is defined. By

default, all context data are stored in the repository and

become subject to querying. Certain policies control the

garbage collection of outdated data.

3.2.3 Architectural variability

Besides its core functionality, the middleware architecture

also facilitates extending its functionality for context

visualization, simulation, testing, and distribution. Fur-

thermore, alternative realizations can be provided for

realizing the roles of the context model, the repository, and

query processor. An example illustrating this variability is

shown in Fig. 2.

This example illustrates two alternative realizations of

the IContextModel, two more realizations of the

IContextRepository, and a single optional realiza-

tion of the IContextQuery interface.

For instance, the context model can be backed by an

ontology, requiring a more elaborate codebase for handling

XML and OWL-based documents. But, when simpler

applications are used and/or a more lightweight platform is

targeted, a simplified, object-based implementation of the

model can be a better match (albeit harder to maintain).

1106 Pers Ubiquit Comput (2014) 18:1099–1116

123



Similarly, the context repository can be customized to

the targeted platform. For instance, in embedded devices, a

small codebase footprint is essential, rendering a custom,

object-based repository the favored solution. On the other

hand, platforms such as Android feature built-in databases,

making them ideal for building the repository on them.

Finally, the fact that the CQP is an optional compo-

nent—along with the interchangeability of the context

model and the repository—increases the modularity of the

system: Different configurations of the framework can be

easily produced and finetuned to the targeted platforms and

their resource profiles. For instance, when only time-based

context queries are needed, then the CQP bundle can be

omitted altogether, and a lightweight implementation of the

context cache can be used. On the other hand, when more

demanding context queries are needed and the deployment

system is sufficiently resourceful, the context query pro-

cessor can be included along with a more elaborate

implementation of the context repository, such as one

based on a full-scale Database Management System

(DBMS).

Besides the modularity inside the context middleware

boundaries, the offered services also facilitate extending it

with additional functionality. For instance, the base archi-

tecture can be augmented with context distribution func-

tionality The prototype implementation of this architecture,

discussed in the next subsection, features such optional

components, extending its capabilities with a SIP-based

context distribution system as well as with a swing-based

context simulator.

3.3 Implementation

3.3.1 OGSGi-based implementation

The proposed pluggable and modular architecture was

originally implemented on OSGi Alliance’s Java-based

service platform (commonly referred to as OSGi) [8, 10].

The adoption of a standardized framework results in a

smoother learning curve for new adopters and was selected

to make the framework more appealing to the developers.

OSGi supports a simple—yet powerful—component

lifecycle, which allows for dynamic installation, update,

resolution and activation of components. This is illustrated

in Fig. 3, which depicts both the original OSGi component

lifecycle, along with the extensions, namely C_INSTAL-

LED, C_RESOLVED, and C_ACTIVE, added to accom-

modate the mechanisms described in Sects. 3.1.2 and 3.1.3.

Multiple OSGi implementations are already available,

and the context middleware architecture prototype imple-

mentation was tested on many of them (including Equinox

and Knopflerfish). Using a special porting of OSGi on the

Dalvik virtual machine, the architecture has also been

ported and tested on the Android platform.

3.3.2 Android-based implementation

The OSGi-based codebase was initially ported to Android,

but not natively; rather, the full middleware layer and all

the plug-ins were bundled in a single package, making little

use of the underlying Android architecture. A more recent

realization of the middleware aimed at realizing the same

architecture and mechanisms described in Sect. 3, while

making full use of the Android architecture and services.

Finally, since the middleware aims for mobile and per-

vasive computing environments, the codebase was kept as

small and as portable as possible. As of version 0.5.0 of the

middleware (OSGi-based implementation), the context

management system bundle had a size of 162 kb (this

includes the sub-components of the context model, context

repository, and CQP). Furthermore, to keep the code as

portable as possible, the middleware was implemented

using J2SE version 1.4, which is supported by many JVMs

built for mobile devices. The package containing the

required libraries and runtime for the Android implemen-

tation, as of version 0.2.0, was just 60 kb. The source code

Fig. 2 Variability of the context middleware architecture

Pers Ubiquit Comput (2014) 18:1099–1116 1107

123



of both the OSGi- and Android-based implementations is

available under the LGPL open-source license (at the

BerliOS and Google code repositories respectively. 1,2)

4 Case study: context-aware media player

To facilitate the evaluation of the proposed development

methodology and its complementary middleware architec-

ture, we present a case study application to describe the

process followed to develop it, as well as how the middle-

ware is used to run it. This case study builds on the OSGi-

based implementation. While the CaMP is not a complex

application, it was specifically selected to emphasize the

development methodology and the use of the middleware.

4.1 Developing the context-aware media player

The Context-aware Media Player (CaMP) application

extends a typical media player application with the ability

to be aware of when the user is entering—or exiting—their

office, so that it can automatically resume—or suspend—

the media playback accordingly. From a functional per-

spective, CaMP is a rather trivial context-aware applica-

tion, which simply needs to be asynchronously notified of

when the user enters or exits the room (i.e., where CaMP is

deployed). In this respect, separating the concern of its

business logic (i.e., media playback) from that of its con-

text-aware behavior (i.e., automatically resuming or sus-

pending the media playback) is straightforward.

CaMP consists of a main component, which makes use

of the Media Stream and the Media Player components.

The first one is used to access a media stream (e.g., a URL

of an online music streaming service), and the latter is used

to convert the media stream to audible music, played on the

device’s speakers. It should be noted that the latter also

includes methods for resuming and suspending the media

playback, which are controlled by the CaMP component.

Finally, the CaMP component—and, consequently, CaMP

application—has a dependency on the context type speci-

fied by the entity type Environment|room and the

specific scope UserInTheRoom. These three compo-

nents are all packaged in a single OSGi bundle. This

architecture is illustrated in Fig. 4.

4.1.1 Developing the user-in-the-room context plug-in

As plug-ins are common OSGi bundles, the first step is to

define their manifest file, which is the one specifying the

static dependencies of the plug-in (i.e., which libraries are

required). These dependencies are defined as per OSGi’s

and Declarative Service’s standard practice, pointing to

the needed libraries both inside and outside the

middleware.

Since context plug-ins are also controlled by the

Declarative Services specification, the next step is the

specification of the service descriptor file. This XML-for-

matted descriptor specifies which services are provided

and, also, which ones are required by the plug-in. By

default, context plug-ins provide one service: the ICon-

textPlugin, discussed earlier in Sect. 3.1. Furthermore,

the service descriptor includes optional parameters which,

in this case, are used to specify the context types offered by

the plug-in. In the case of context sensors, only provided

context types are specified, while in the case of context

reasoners—such as the User-in-the-room plug-in—the

required context types are also specified.

Fig. 3 Extended OSGi

component lifecycle state

diagram

1 MUSIC, https://developer.berlios.de/projects/ist-music/.
2 RSCM, http://code.google.com/p/rscm/.

1108 Pers Ubiquit Comput (2014) 18:1099–1116

123

https://developer.berlios.de/projects/ist-music/
http://code.google.com/p/rscm/


The context middleware provides two abstract classes

that can be extended (using standard object-oriented

inheritance) to realize context sensor and context reasoner

plug-ins. Besides realizing the fundamental functionality

specified in the IContextPlugin interface, the class

defined as AbstractContextPlugin also provides

predefined methods for firing context events, as well as for

intercepting incoming context data. When the plug-in’s

context sensing logic is implemented, it uses this method to

communicate context events to the middleware. Plug-in

realizations also implement the activate and deac-

tivate methods, which are automatically controlled by

the middleware (discussed in Sect. 3.1.3), so that the

sensing is resumed when activated and suspended when

deactivated.

4.1.2 Reusing the bluetooth and motion sensor plug-ins

The Bluetooth sensor plug-in monitors and reports if a

predefined Bluetooth device (e.g., a smartphone carried by

the user) is near her or his office (simple detection by the

adapter fixed on the workstation computer is sufficient as

typical Bluetooth adapters have a small range of just a few

meters). In this way, this plug-in senses whether the

specified smartphone, and consequently its owner, is

nearby with relatively high accuracy.

The motion sensor plug-in, on the other hand, monitors

and reports the motion activity sensed in a room. This is

achieved by periodically taking pictures using a Web

camera and comparing them, pixel-by-pixel. When two

consecutive pictures are found to have significant differ-

ences (e.g., over 10 % of their pixels are changed), then a

context event is raised. The actual percentage of difference

(i.e., the delta of the pictures) is used to characterize the

accuracy of the event; as a larger delta implies a higher

probability, there is actual motion in the room.

To facilitate reusability of software components, public

repositories are used. A context plug-in repository is a

public directory listing existing, reusable plug-ins that can

be used as off-the-shelf components. The attributes of the

plug-ins (e.g., supported platforms, limitations, etc) are

also listed along with the plug-ins. One such repository was

implemented in the scope of the MUSIC project and is

available at its Web site.

4.1.3 Binding with the middleware

Having acquired the three plug-ins to be used by the CaMP,

the next step is to bind the application to the middleware.

Just like all OSGi bundles, CaMP defines a manifest and a

service descriptor. The former is a typical manifest file, and

the latter is a simple expression of CaMP’s dependency on

the context access service. Notably, the context access

service can be defined as optional, which enables the

application to be deployed and launched even in the

absence of the context middleware (or the context plug-

ins). This is possible, because in the case of the CaMP

application, the context-aware behavior is treated as addi-

tional rather than a required functionality.

Finally, the code implementing CaMP’s context-aware

behavior is shown in listing 1 (some details were omitted or

simplified to avoid cluttering). Note that the only link to the

requested context information is established via the speci-

fied entity and scope parameters. In other words, the

component has a logical dependency only on the context

type and not on any specific context plug-in. This allows

seamless replacement of alternative plug-ins providing the

same context type.

Fig. 4 The context-aware

media player business logic

Pers Ubiquit Comput (2014) 18:1099–1116 1109

123



When connected to (or disconnected from) the context

middleware, the setCtxtAccess/unsetCtxtAc-

cess methods are automatically invoked by the Declar-

ative Services run-time system. When the first method is

invoked, the application uses the context access service

reference to register itself for asynchronous notification of

the specified entity/scope pair. When the second method is

invoked, the application uses the same service reference to

cancel the previous registration. This behavior allows the

context middleware to be aware of the context needs of the

application and thus automatically handles the lifecycle of

the corresponding plug-ins.

When context events of the requested type are created,

those are communicated via the middleware to the CaMP

application via the contextChanged method. In this

case, this method is simply used to extract the boolean

value abstracting whether the user is in the room or not.

Based on the value encoded in the received event, the

media player is started (i.e., resumed) or stopped (i.e.,

suspended) accordingly.

4.1.4 Deploying the context-aware media player

The three context plug-ins and the CaMP application are all

packaged as individual JAR-based OSGi bundles, which

are installed along with the context middleware—which is

also an OSGi bundle itself.

Once the plug-ins are installed, they are automatically

discovered by the middleware which registers their meta-

data and attempts to resolve them (see Sect. 3.1.2). When

the CaMP application is started, the context access service

is bound with it, and the former subscribes for notification

of relevant context events. This triggers the context mid-

dleware to reevaluate the offered and needed context types,

and activate the three plug-ins as needed (see Sect. 3.1.3).

The appearance of the application’s tabs is shown in

Fig. 5. The first tab shows the media player and its manual

controls (a single button, which resumes or suspends the

playback). The latter provides an under-the-hood view of

the plug-ins for demonstration purposes. At the top, the

Bluetooth sensor viewer shows that the plug-in is active

and that it has discovered a Bluetooth device identified as

‘‘nearchos@cs.ucy.ac.cy.’’ The second viewer shows that

the motion sensor plug-in is also active and further displays

a histogram with the recent motion values reported (two of

them exceeding the threshold). Finally, the user-in-the-

room sensor viewer at the bottom simply displays a bool-

ean value indicating whether the predefined user is detected

at present or not. While the application runs, the user can

enter or exit their room, with the application adapting

accordingly based on the changing context detected by the

plug-ins. More details about the CaMP, as well as addi-

tional configurations of the application, are described in

[21].

Fig. 5 Screenshots of the

context-aware media player

1110 Pers Ubiquit Comput (2014) 18:1099–1116

123



5 Evaluation

The evaluation of the proposed architecture and its proto-

type implementations consists of both quantitative and

qualitative analysis. The former was performed by exper-

imentally studying how the middleware was used by

developers implementing context-aware applications. The

latter was achieved through the analysis of the require-

ments identified in Sect. 2 with respect to the proposed

middleware architecture.

5.1 User-based, quantitative evaluation

This section describes how the middleware architecture

was quantitatively analyzed and evaluated. This was

achieved by collecting and evaluating feedback received

from developers who used both the middleware and a

companion methodology [22] to produce context-aware

applications. The evaluation comprises two parts: First, the

experience of developers working on pilot applications [8]

was collected and analyzed. Second, a number of under-

graduate students were instructed the development meth-

odology and the use of the middleware. Then, they were

asked to use them to build context-aware applications as

part of some lab assignments in a course on context-aware

systems. Their feedback was collected through question-

naires and analyzed to identify the strengths and weak-

nesses of the proposed approach [22].

While this form of evaluation was somewhat limited in

terms of numbers of participants, it has nevertheless

achieved to provide valuable insight concerning the

advantages and limitations of the proposed methodology

and the underlying middleware architecture. Inevitably, the

formality of such quantitative evaluation is limited as a

result of the lack of standard evaluation methods in relation

to context-aware applications, as it was also argued in [12].

5.1.1 Evaluation by developers

The first form of evaluation was performed with developers

implementing a number of pilot applications in the context

of the MUSIC project. The developed pilot applications

require context data not only for direct use by them, but

also for allowing an adaptation middleware to select and

apply the optimal application variant. In this regard, the

developers of the pilot applications were often able to use

the context middleware in a seamless way (i.e., by using

basic context types provided by plug-ins that were already

bundled with the MUSIC middleware, such as the resource

sensors). In some cases, however, the pilot developers had

to develop their own custom plug-ins. These developers

had long programming experience and were familiar with

OSGi-based middleware architectures.

The pilot developers were asked to compare the devel-

opment of a context-aware application using the proposed

model and middleware versus using an ad hoc development

approach. Two of them stated that they would use the

proposed solution again if they needed to develop more

context-aware applications, and the other two said they

would use it again unless the targeted applications were too

simple, in which case they would use an ad hoc approach.

All four of them agreed that the tasks for developing a

plug-in were of low-to-medium complexity and that the

hardest concept was the design and realization of the

context model.

5.1.2 Classroom-based evaluation

As part of an undergraduate course at the University of

Cyprus, the students were asked to implement context-

aware applications by following the methodology pre-

sented in this paper and by using the provided middleware

framework. These applications were constructed by real-

izing the business logic of the application and by producing

new, or reusing existing, context plug-ins as per the pro-

posed methodology. With these, the students formed and

deployed their applications by integrating the appropriate

components (i.e., plug-ins and business logic) with the

middleware. Finally, they presented their applications and

provided their feedback by answering some questionnaires.

The aim of those questionnaires was to evaluate the

strengths and weaknesses of the methodology and the

middleware.

As the students had limited programming experience in

general and no experience with OSGi, they were first

provided a quick introduction to OSGi. Next, they were

given an introduction to the middleware architecture and a

tutorial on how to develop context plug-ins using the

proposed methodology. Eventually, they were asked to

complete a practical lab assignment, in three steps:

• Describe a context-aware application specify its busi-

ness and context-aware logic, and identify the required

context types and corresponding plug-ins.

• Realize the context plug-ins develop some plug-ins

from scratch and also reuse some existing ones

(perhaps developed by other students).

• Implement the application’s business logic Use the

context data provided by the developed (or reused)

plug-ins and deploy all of them on the middleware.

This structured approach has helped teach the students

the basics of context-aware applications, as well as the

benefits of component orientation. By getting hands-on

experience with the development of context-aware appli-

cations, they were able to better grasp the complexity

inherent in their development. Also, they were able to

Pers Ubiquit Comput (2014) 18:1099–1116 1111

123



experience the benefits of COTS-based development via

the reuse of existing context plug-ins.

Once the assignments were completed, the students were

asked to fill-in an anonymous survey, providing input about

the advantages and disadvantages of the development

methodology and the middleware architecture they used.

It should be noted that the participants did not consider a

point-of-reference (e.g., a competing development plat-

form) when they evaluated the approach proposed in this

paper. Rather, their feedback compares the proposed

approach to ad hoc development.

In summary, the collected feedback shows that

• Almost all of the students (11 of 12) would prefer to use

the proposed development approach and the provided

middleware—partly or completely—rather than an ad

hoc approach, if they needed to develop more context-

aware applications.

• Most tasks related to the development of the plug-ins

were of low-to-medium complexity (except the task of

creating the context model which was of medium-to-

high complexity).

• On average, the students spent approximately 23 h in

preparation (i.e., studying the material and the exam-

ples) and another 20 h for coding (of both the plug-ins

and the business logic of the application), signifying a

rather quick and smooth learning curve.

The complete details of the questions in this survey,

along with the summary of the answers they provided, are

available in [20].

5.2 Requirement-driven, qualitative evaluation

This section evaluates the requirements identified in Sect. 2

by revisiting them and evaluating the proposed development

methodology and middleware architecture against them. It

should be noted that as many alternative implementations

are possible—depending on assumptions about how context

information is queried, interpreted, etc.—it is not feasible to

present a straightforward and extensive quantitative com-

parison (beyond, for instance, the one presented in the pre-

vious section). Therefore, the analysis in this section is

mostly qualitative rather than quantitative, except where

feasible. The following paragraphs discuss some functional

and extra-functional requirements individually, arguing to

which extend they have been addressed in the development

methodology and middleware architecture. In some cases,

directions for improvement are also proposed.

5.2.1 Evaluation of functional requirements

Functional are those requirements, which deal directly with

features explicitly related to context-awareness.

Application-specific context acquisition, analysis and

detection This fundamental requirement is addressed by the

middleware architecture, which offers a dedicated context

access service (see Sect. 3.2.1). The context-aware appli-

cations use it to request or register for their desired context

types and let the middleware attend to the tasks of acqui-

sition, analysis, and triggering. Furthermore, the context

access service also supports a rich context query language

[9], which allows context filtering based on predefined

conditions. This empowers the developers to specify

complex context queries rather than implementing complex

context filtering logic inside their applications.

Context histories Providing access to historical context

information is important because it enables advanced

context reasoning methods, such as location prediction or

WiFi signal strength prediction (for examples, refer to

[21]). The proposed middleware architecture enables stor-

ing historical context data through a dedicated context

repository service. Past context data are accessed via the

context access service. Context data corresponding to

specific time periods can be accessed simply by specifying

time conditions.

Support for multiple concurrent applications The sup-

port for multiple concurrent, context-aware applications is

an important requirement, especially as modern mobile

devices are powerful enough and feature multi-task oper-

ating systems (such as the Android platform). Both the

development methodology and the middleware architecture

were designed to accommodate this requirement. The

resulting methodology and the middleware architecture

split the context-aware applications into context providers

(i.e., context plug-ins) and context consumers (i.e., appli-

cations). The middleware uses a variant of the Blackboard

architecture to connect the context providers to the context

consumers in a seamless and dynamically adaptable man-

ner. In theory, any number of context providers can be

bound to the middleware, servicing any number of context-

aware applications. In practice, these numbers are limited

by the actual resource constraints of the device, but in this

case, the middleware is not the bottleneck.

Transparent distribution of context This requirement is

accommodated in two ways. First, the context model

allows for globally valid, unambiguous references to con-

text information [26]. Transformation from-and-to locally

valid and globally valid context information (from both a

semantic and a representational point-of-view) is also

automatically undertaken by the context model [27]. Sec-

ond, the middleware architecture provides functionality

that allows third-party components to inquire the locally

provided and required context types. This allows the

implementation of context distribution systems, which

access this information, and use it to form an extended,

federated context space. For instance, a SIP-based

1112 Pers Ubiquit Comput (2014) 18:1099–1116

123



implementation of such context distribution system was

implemented [2].

Privacy of context information Privacy concerns are

raised in the case of context distribution, and also in the

case where a mobile device is stolen or lost. As the context

distribution system is treated in this paper as an external

component, the main effort is placed on protecting the

privacy in the latter scenario. In this case, the main step

toward user privacy protection would be the realization of a

password-protected, context repository system with data

encryption, preventing unauthorized access to the user’s

data. While the implementation of such a system was

beyond the scope of the work described in this paper, it

should be noted that once available, such alternative con-

text repository could be easily integrated with the mid-

dleware, as discussed in Sect. 3.2.3.

Traceability and control The original scope of this

requirement was to allow the end-users understand the

behavior of context-aware applications, enabling them to

manually intervene when needed. The rationale for this

functionality is to allow the end-users to trust the autono-

mous context-aware logic, and thus adopt the technology.

However, the development methodology and the accom-

panying middleware architecture proposed in this paper

primarily aim at facilitating the developers into designing

and implementing complex context-aware applications,

easier and more efficiently. The actual context-aware

behavior, as well as the end-user’s ability to control it, still

remains largely in the hands of the developers. However,

limited support for traceability is provided, either through

specialized plug-in viewers (as shown in Fig. 5), or via the

use of context viewers. In both cases, the user views the

context values at run-time. It should be noted, however,

that the context viewer was primarily designed for simu-

lation and testing purposes, and is not really intended for

use by the end-users, although custom context monitors

and controllers are of course supported, as illustrated in the

CaMP case study (see Sect. 4).

5.2.2 Evaluation of extra-functional requirements

Extra-functional requirements deal with general features,

not necessarily explicit to context-awareness. While some

of these requirements are adequately handled by the

underlying OSGi framework, others require much more

elaborate handling.

Code reuse Enabling code reuse was one of the key

goals of the proposed middleware architecture. Adopting a

model, which treats context providers as independent and

pluggable components, greatly facilitates this goal. The

developed components are treated as black boxes, where

their internal functionality is hidden, and only their context

offerings and context requirements are explicitly defined as

metadata. These metadata are also used for publishing the

plug-ins in component repositories, further facilitating code

reuse.

Modularity The requirement of modularity was another

important goal in the design of the middleware architec-

ture. Allowing an architecture that can be easily configured

to match the needs and constraints of different platforms is

an important feature, especially in the context of mobile

and ubiquitous computing, which are characterized by high

heterogeneity and variability. The modularity of the

architecture enables different configurations of the mid-

dleware, both lighter for resource-constrained devices and

more powerful for demanding applications, as it was dis-

cussed earlier in Sect. 3.2.

Separation-of-concerns The separation-of-concerns is a

popular method for easing the complexity of a problem by

breaking it down to smaller, simpler ones. Furthermore,

when the individual pieces are independent, then they can

be developed in parallel by individual developers. With

this rationale, the development methodology described in

[22] separates the development of context-aware applica-

tions into the tasks of developing the context providers and

the context consumers. The former are mostly realized as

context plug-in components and are highly reusable. The

latter are typically context-aware applications or middle-

ware components and are only loosely coupled with the

context providers. This approach has also the advantage

that the applications can be more easily tested and

debugged, because these tasks can be performed at the

level of the individual components.

Dynamic behavior Dynamic updates are enabled by

allowing new context plug-ins to be installed and acti-

vated at run-time. As the context providers and the con-

text consumers are only loosely coupled, it is possible to

have applications replace their context-aware logic at run-

time in a seamless manner. This is naturally supported by

the underlying OSGi framework, which allows for

dynamic installation (or un-installation) and activation (or

deactivation) of components. This important feature

allows mobile context-aware applications to take advan-

tage of richer context information when it becomes

available, and rolling back to basic context data use when

it becomes unavailable. For instance, when in a car, a

high-fidelity GPS sensor can be activated, while when

indoors, a less precise WiFi-based location sensor can be

used.

Resource efficiency Accommodating resource efficiency

is achieved in two ways: First, by adopting a modular,

light-weight architecture, which minimizes the resources

consumed by the platform itself. Second, by using an

intelligent mechanism to activate and deactivate the con-

text plug-ins as needed (see Sect. 3.1.3 and also the

experimental results presented in [24]).

Pers Ubiquit Comput (2014) 18:1099–1116 1113

123



5.3 Related work

Context-aware systems have been the object of extensive

research in recent years. Here, we discuss related work and

compare it to our approach.

Unlike approaches, which aim at realizing the full extend

of their context-aware logic inside the applications (e.g.,

CML [12, 14] and COSMOS [4, 29]), or approaches that

focus on specific domains like ad hoc network topologies

(e.g., EgoSpaces [17]), the presented middleware architec-

ture aims at providing a flexible and customizable solution,

which the developers can customize or extend as needed

(similar to the approaches taken by the Context Toolkit [7]

and the Aura’s Context Information Service [16]).

The COSMOS approach is a component-based frame-

work for managing context information in ubiquitous,

context-aware applications. The basic structuring concept

in COSMOS is the node, which can be thought of as similar

to a context sensor or a context reasoner plug-in. Unlike

plug-ins though, the nodes correspond to context types, and

they are used to define logic hierarchies which are in turn

used to define the context-aware behavior. On the other

hand, the context plug-ins defined in our approach are

software entities that can be installed/uninstalled and also

activated/deactivated.

By providing a uniform abstraction of context infor-

mation (i.e., the context node), COSMOS supports the

composition of context information from low-level sensors

to high-level policies. At the lowest level, context nodes

reify hardware capabilities, software resources, or embed-

ded sensors. At a higher level, context nodes reuse or

develop composition operators to infer advanced context

information. Evidently, this is similar to the context sens-

ing and reasoning hierarchy proposed in [22]. However, the

use of node-based context-aware logic is limited to run-

time access by a single application only and does not

facilitate activation or deactivation of the actual hardware

sensors. In contrast, the proposed pluggable architecture

facilitates sharing of context information among concurrent

applications. Furthermore, it allows for automatic activa-

tion and deactivation of the plug-in components which is

an important advantage for applications deployed on

resource-constrained devices. As stated in [29], the core

motivation of COSMOS is to isolate context management

policies from applications and to enforce their reuse.

Because context policies are themselves reflected as con-

text nodes, they can be reused in different contexts.

However, as the nodes in COSMOS correspond to finer-

grained concepts (such as operators), reusing them can be

quite elaborate. In contrast, the context plug-ins are well-

defined components, as per the OSGi specification, with

added context-specific annotations making them easier to

reuse.

The CML is an extensive software engineering frame-

work for enabling context-aware pervasive computing. The

authors presented their view of context-awareness as a

technique which enables pervasive computing by allowing

applications and systems to act autonomously on behalf of

users [11]. Henricksen and Indulska argue that their

framework achieves this goal while also addressing three

basic challenges that they identified: analysis of applica-

tion’s context requirements, acquisition and management

of the relevant context data, and, finally, design and

implementation of suitable context-aware behavior.

Unlike the current state-of-the-art, our approach offers a

methodology and a middleware architecture for develop-

ing, deploying, and maintaining context-aware applica-

tions. This methodology separates the design and the

development of context producers (i.e., sensor and reasoner

plug-ins) from that of context consumers (i.e., context-

aware applications). Furthermore, the underlying middle-

ware handles a number of common functionalities such as

lifecycle support for the plug-ins, context aggregation,

context storing, and a rich query language. It also facilitates

the development of autonomous, context-aware applica-

tions in which the decisions are taken using an elaborate

hierarchical process. One of the most important advantages

of the presented architecture is its modularity, which

facilitates the formation of various instantiations matching

the capabilities and the needs of the deployment environ-

ment. Also, unlike the related work, the proposed archi-

tecture allows for dynamically added/removed context

sensors, and additionally, it facilitates their dynamic acti-

vation. As it was experimentally shown in [24], this ability

provides significant resource optimization.

6 Conclusions and future work

The primary goal of the work described in this paper was to

provide software engineering support for the development

of context-aware applications. In this respect, a pluggable

and modular middleware architecture was presented,

enabling the development and deployment of context-

aware, mobile applications. It was shown that this archi-

tecture features multiple benefits, including platform

independence and resource optimization.

The proposed middleware architecture differs from

related approaches because it was designed with the aim of

being comprehensive, allowing the development of arbi-

trary context-aware applications. At the same time, a broad

set of requirements were identified and used to guide the

design and development of the methodology and the mid-

dleware, resulting in a highly dynamic and modular archi-

tecture. For instance, unlike the current state-of-the-art, the

proposed middleware implements a pluggable architecture,

1114 Pers Ubiquit Comput (2014) 18:1099–1116

123



which allows the applications to take advantage of richer or

more efficient context providers as they dynamically

become available, even while moving about in space.

The pluggable and modular middleware architecture is

presented in a case study application, the Context-aware

Media Player. This case study illustrates the methodology

used for developing context-aware applications, and the

mechanisms are used for interfacing it with and deploying

it on the middleware architecture. Based on this, the pro-

posed architecture is evaluated against the identified

requirements. In addition to this qualitative approach, the

middleware architecture is also evaluated quantitatively, in

the scope of a controlled experiment where selected

researchers and the students of a course used them to

develop context-aware applications and classified them

favorably compared to ad hoc development approaches.

Acknowledgments The authors acknowledge the partial financial

support given to this research by UCLan Cyprus and the EU (6th

Framework Programme, contract number 35166).

References

1. ITU-international telecommunication union (2010) Measuring

the information society: the ict development index. http://www.

itu.int/ITU-D/ict/publications/idi/2010

2. Angeles-Pina C (2008) Distribution of context information using

the session initiation protocol (SIP). Master of science thesis,

KTH Information and Communication Technology

3. Brown PJ, Bovey JD, Chen X (1997) Context-aware applications:

from the laboratory to the marketplace. IEEE Pers Commun

4(5):58–64. doi:10.1109/98.626984

4. Conan D, Rouvoy R, Seinturier L (2007) Scalable processing of

context information with COSMOS. In: Proceedings of the 7th

IFIP international conference on distributed applications and

interoperable systems (DAIS’07), vol 4531. Springer, Paphos,

pp 210–224

5. Dey AK (2000) Providing architectural support for building

context-aware applications. Ph.D. thesis, Georgia Institute of

Technology

6. Dey AK (2001) Understanding and using context. Pers Ubiqui-

tous Comput 5(1):4–7

7. Dey AK, Abowd GD, Salber D (2001) A conceptual framework

and a toolkit for supporting the rapid prototyping of context-

aware applications. Hum Comput Interact 16(2):97–166

8. Floch J, Fra C, Fricke R, Geihs K, Wagner M, Lorenzo J, Sola-

dana E, Mehlhase S, Paspallis N, Rahnama H, Ruiz PA, Scholz U

(2012) Playing music building context-aware and self-adaptive

mobile applications. Softw Pract Exp J. doi:10.1002/spe.2116

9. Fra C, Valla M, Paspallis N (2011) High level context query

processing: an experience report. In: Proceedings of the 8th IEEE

workshop on context modeling and reasoning (CoMoRea’11) in

conjunction with the 9th IEEE international conference on per-

vasive computing and communication (PerCom’11). IEEE

Computer Society, Seattle, Washington, USA

10. Hallsteinsen S, Geihs K, Paspallis N, Eliassen F, Horn G, Lore-

nzo J, Mamelli A, Papadopoulos GA (2012) A development

framework and methodology for self-adapting applications in

ubiquitous computing environments. J Syst Softw 85(12):

2840–2859

11. Henricksen K, Indulska J (2004) A software engineering frame-

work for context-aware pervasive computing. In: Proceedings of

the 2nd IEEE annual conference on pervasive computing and

communications (PerCom’04), pp 77–86. IEEE Computer Soci-

ety, Orlando, Florida, USA

12. Henricksen K, Indulska J (2006) Developing context-aware per-

vasive computing applications: models and approach. Pervasive

Mob Comput 2(1):37–64

13. Henricksen K, Indulska J, McFadden T, Balasubramaniam S

(2005) Middleware for distributed context-aware systems. In:

Proceedings of the 7th international conference on distributed

objects and applications (DOA’05), LNCS, vol 3760. Springer,

Agia Napa, pp 846–863

14. Henricksen K, Indulska J, Rakotonirainy A (2006) Using context

and preferences to implement self-adapting pervasive computing

applications. Softw Pract Exp 36(11–12):1307–1330

15. Hong JI (2005) An architecture for privacy-sensitive ubiquitous

computing. PhD thesis, University of California, Berkeley

16. Judd G, Steenkiste P (2003) Providing contextual information to

pervasive computing applications. In: Proceedings of the 1st

IEEE international conference on pervasive computing and

communications. IEEE Computer Society, Dallas-Fort Worth,

Texas, USA, p 133

17. Julien C, Roman G (2006) EgoSpaces: facilitating rapid devel-

opment of context-aware mobile applications. IEEE Trans Softw

Eng 32(5):281–298

18. Kakousis K, Paspallis N, Papadopoulos GA, Ruiz PA (2010)

Testing self-adaptive applications with simulation of context

events. In: Proceedings of the 3rd DisCoTec workshop on con-

text-aware adaptation mechanisms for pervasive and ubiquitous

services (CAMPUS’10) in conjuction with the 10th IFIP inter-

national conference on distributed applications and interoperable

systems (DAIS), electronic communications, vol 28. EASST,

Amsterdam

19. Long S, Kooper R, Abowd GD, Atkeson CG (1996) Rapid pro-

totyping of mobile context-aware applications: the cyberguide

case study. In: Proceedings of the 2nd annual international con-

ference on mobile computing and networking. ACM, Rye,

pp 97–107

20. Paspallis N (2009) Middleware-based development of context-

aware applications with reusable components. PhD thesis, Uni-

versity of Cyprus

21. Paspallis N, Achilleos A, Kakousis K, Papadopoulos GA (2010)

Context-aware media player (CaMP): developing context-aware

applications with separation of concerns. In: Proceedings of the

IEEE Globecom 2010 workshop on ubiquitous computing and

networks (UbiCoNet 2010). IEEE Digital Library, Miami, Flor-

ida, USA, pp 1–6

22. Paspallis N, Eliassen F, Hallsteinsen S, Papadopoulos GA (2009)

Developing self-adaptive mobile applications and services with

separation-of-concerns. In: Nitto ED, Sassen A, Zwegers A (eds)

At your service: service-oriented computing from an EU per-

spective. MIT Press, Cambridge, pp 129–158

23. Paspallis N, Papadopoulos GA (2006) An approach for devel-

oping adaptive, mobile applications with separation of concerns.

In: Proceedings of the 30th annual international computer soft-

ware and applications conference (COMPSAC ’06), vol 1. IEEE

Computer Society Press, Chicago, pp 299–306

24. Paspallis N, Rouvoy R, Barone P, Papadopoulos GA, Eliassen F,

Mamelli A (2008) A pluggable and reconfigurable architecture

for a context-aware enabling middleware system. In: Proceedings

of the 10th international symposium on distributed objects,

middleware, and applications (DOA’08), LNCS, vol 5331.

Springer, Monterrey, pp 553–570

25. Paymans TF, Lindenberg J, Neerincx M (2004) Usability trade-

offs for adaptive user interfaces: ease of use and learnability. In:

Pers Ubiquit Comput (2014) 18:1099–1116 1115

123

http://www.itu.int/ITU-D/ict/publications/idi/2010
http://www.itu.int/ITU-D/ict/publications/idi/2010
http://dx.doi.org/10.1109/98.626984
http://dx.doi.org/10.1002/spe.2116


Proceedings of the 9th international conference on intelligent user

interfaces. ACM, Funchal, pp 301–303

26. Reichle R, Wagner M, Khan M, Geihs K, Lorenzo J, Valla M, Fra

C, Paspallis N, Papadopoulos GA (2008) A comprehensive

context modeling framework for pervasive computing systems.

In: Proceedings of the 8th IFIP international conference on dis-

tributed applications and interoperable systems (DAIS’08),

LNCS, vol 5053. Springer, Oslo, pp 281–295

27. Reichle R, Wagner M, Khan MU, Geihs K, Valla M, Fra C,

Paspallis N, Papadopoulos GA (2008) A context query language

for pervasive computing environments. In: Proceedings of the 5th

IEEE workshop on context modeling and reasoning (CoMo-

Rea’08) in conjunction with the 6th IEEE international confer-

ence on pervasive computing and communication (PerCom’08),

pp 434–440. IEEE Computer Society, Hong Kong. doi:10.1109/

PERCOM.2008.29

28. Romero JJ (2011) Smartphones: the pocketable pc. IEEE Spec-

trum. Available online at http://spectrum.ieee.org/telecom/

wireless/smartphones-the-pocketable-pc

29. Rouvoy R, Conan D, Seinturier L (2008) Software architecture

patterns for a context-processing middleware framework. IEEE

Distrib Syst Online 9(6):1

30. Salber D, Dey AK, Abowd GD (1999) The context toolkit: aiding

the development of context-enabled applications. In: Proceedings

of the SIGCHI conference on human factors in computing sys-

tems. ACM, Pittsburgh, pp 434–441

31. Schilit BN, Adams NI, Want R (1994) Context-aware computing

applications. In: Proceedings of the 1st workshop on mobile

computing systems and applications (WMCSA’94). IEEE Com-

puter Society, Santa Cruz, CA, pp 85–90

32. Szyperski C (1997) Component software: beyond object-oriented

programming. Addison-Wesley Professional

33. Want R, Hopper A, Falco V, Gibbons J (1992) The active badge

location system. ACM Trans Inf Syst 10(1):91–102

34. Want R, Schilit B, Adams N, Gold R, Petersen K, Goldberg D,

Ellis J, Weiser M (1996) The parctab ubiquitous computing

experiment. In: Mobile computing, the springer international

series in engineering and computer science, vol. 353. Springer,

Berlin, pp 45–101

35. Weiser M (1993) Hot topics: ubiquitous computing. IEEE

Comput 26(10):71–72

36. Yau SS, Karim F, Wang Y, Wang B, Gupta SKS (2002) Re-

configurable context-sensitive middleware for pervasive com-

puting. IEEE Pervasive Comput 1(3):33–40

1116 Pers Ubiquit Comput (2014) 18:1099–1116

123

http://dx.doi.org/10.1109/PERCOM.2008.29
http://dx.doi.org/10.1109/PERCOM.2008.29
http://spectrum.ieee.org/telecom/wireless/smartphones-the-pocketable-pc
http://spectrum.ieee.org/telecom/wireless/smartphones-the-pocketable-pc

	A pluggable middleware architecture for developing context-aware mobile applications
	Abstract
	Introduction
	Requirements
	Functional requirements
	Extra-functional requirements

	Middleware architecture
	Pluggability
	Context plug-ins
	Resolution mechanism
	Activation mechanism

	Modularity
	Main services
	Core functionality
	Architectural variability

	Implementation
	OGSGi-based implementation
	Android-based implementation


	Case study: context-aware media player
	Developing the context-aware media player
	Developing the user-in-the-room context plug-in
	Reusing the bluetooth and motion sensor plug-ins
	Binding with the middleware
	Deploying the context-aware media player


	Evaluation
	User-based, quantitative evaluation
	Evaluation by developers
	Classroom-based evaluation

	Requirement-driven, qualitative evaluation
	Evaluation of functional requirements
	Evaluation of extra-functional requirements

	Related work

	Conclusions and future work
	Acknowledgments
	References


