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Abstract

A rather recent approach in programming parallel and distributed systems is that of coordina-
tion models and languages. Coordination programming enjoys a number of advantages such as the
ability to express different software architectures and abstract interaction protocols, supporting
multilinguality, reusability and programming-in-the-large, etc. However, most of the proposed
models and languages are data-driven in the sense that changes in the behaviour of the formalism
are triggered by detecting the presence and examining the nature of data values. In addition, more
often than not, the formalism does not clearly separate the computation components from other
related components, namely (and primarily) communication ones, but also synchronisation
components, etc. In this paper, we use a coordination model (IWIM) and language (MANIFOLD)
which are control-driven in the sense that the formalism’s change of behaviour is modelled as
state transitions triggered by means of raising events and detecting their presence, i.e., without
involving the actual data being manipulated. We illustrate the main features of this formalism and
we show how it can be used in supporting a variety of activities related to distributed and parallel
software engineering, and software architectures. Throughout, we place emphasis on the control-
driven nature of this formalism, discussing how that has helped us in modelling a variety of
scenarios. Finally, we also compare the formalism with other such formalisms highlighting the
differences between them. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Massively distributed and parallel systems open new horizons for large applications
and present new challenges for software technology. Many applications already take
advantage of the increased raw computational power provided by such parallel systems
to yield significantly shorter turn-around times. However, the availability of so many
processors to work on a single application presents a new challenge to software
technology: coordination of the cooperation of large numbers of concurrent active
entities. Classical views of concurrency in programming languages that are based on
extensions of the sequential programming paradigm are ill-suited to meet this challenge.

Furthermore, it has been recently recognised within the Software Engineering com-
munity, that when systems are constructed of many components, the organisation or
architecture of the overall system presents a new set of design problems. It is now
widely accepted that an architecture comprises, mainly, two entities: components (which
act as the primary units of computation in a system) and connectors (which specify
interactions and communication patterns between the components).

Exploiting the full potential of massive parallel systems requires programming
models that explicitly deal with the concurrency of cooperation among very large
numbers of active entities that comprise a single application. Furthermore, these models
should make a clear distinction between individual components and their interaction in
the overall software organisation. In practice, the concurrent applications of today
essentially use a set of ad hoc templates to coordinate the cooperation of active
components. This shows the need for proper coordination languages [1] or software
architecture languages [2] that can be used to explicitly describe complex coordination
protocols in terms of simple primitives and structuring constructs.

In particular, a coordination language should be able to support, among other things,
the following: distribution (no intrinsically global features), open endedness (dynamic
creation and connection of services), activity, reactivity and proactivity, multiparadigm
interoperability, fault tolerance, reusability and programming-in-the-large (i.e., provision
of constructs able to express software architectures). The above mentioned targets
should be met in ways that allow both time and space coordination to be expressed;
clearly separate the computation parts of an application from others (such as coordina-
tion or synchronisation ones); and support multilingual programming and perform
optimisations at all possible levels (including the coordination one).

A number of such coordination models and languages have evolved over the last few
years such as Linda and related formalisms based on the Shared Dataspace approach
[3-7], Gamma based on Multiset Rewriting [8], Linear Objects [9] based on Linear
Logic and the framework of Interaction Abstract Machines [10], UNITY and (various
types of) Skeletons based on functional programming [11-13], PCN and related
formalisms based on (concurrent) logic programming [14], the Programmer’s Play-
ground based on 1/0 abstractions [15], etc. As it should be expected, these formalisms
differ in a number of ways in their attempt to meet the above mentioned targets.
However, almost all of these formalisms share two common characteristics:

1. They are data-driven, in the sense that changing the current state of the computation
involves detecting the presence of data values and, possibly, examining their actual
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contents. Thus, data play the dual role of being information exchange channels

between the concurrently executing agents, as well as control triggering mechanisms

which change the state of the computation. This duality makes it often hard to build
programs that are easy to understand, implement and optimise and compromises
many of the above mentioned goals.

2. Furthermore, and to a certain extent as a consequence of the above problem, these
models do not offer a crystal clear separation between the computation component
and other types of components (such as communication and synchronisation ones)
that all together make up an application environment. In particular, both at a syntactic
(linguistic) and semantic level, the computation code is interspersed throughout a
program or a collection of associated modules with communication, coordination and
synchronisation code. As it should be expected, this further compromises the goals
that coordination models and languages have been set out to meet.

Many applications are by nature event-based (rather than data-driven) where software
components interact with each other by posting and receiving events, the presence of
which triggers some activity (e.g., the invocation of a procedure). Events provide a
natural mechanism for system integration and enjoy a number of advantages such as: (1)
waiving the need to explicitly name components, (i) making easier the dynamic addition
of components (where the latter simply register their interest in observing some
event(s)), and (iii) encouraging the complete separation of computation from communi-
cation concerns by enforcing a distinction of event-based interaction properties from the
implementation of computation components. Event-based paradigms are natural candi-
dates for designing coordination rather than programming languages; a ‘programming
language based’ approach does not scale up to systems of event-based components,
where interaction between components is complex and computation parts may be written
in different programming languages.

Thus, there exists a second class of coordination models and languages, which is
control-driven and state transitions are triggered by raising events and observing their
presence. Typical members of this family are MANIFOLD [16-18], which will be the
primary focus of this paper, but also ConCoord [19] and TOOLBUS [20]. Furthermore,
by advocating a somewhat liberal notion of what coordination actually is, we can also
include in this family software architecture or configuration languages such as Conic
[21], Durra [22], Darwin /Regis [23], POLYLITH [24] and Rapide [25]. Contrary to the
case of the data-driven family where coordinators directly handle and examine data
values, here, processes are treated as black boxes; data handled within a process is of no
concern to the environment of the process. Processes communicate with their environ-
ment by means of clearly defined interfaces, usually referred to as input or output ports.
Producer—consumer relationships are formed by means of setting up stream or channel
connections between output ports of producers and input ports of consumers. By nature,
these connections are point-to-point, although limited broadcasting functionality is
usually allowed by forming 1 — n relationships between a producer and n consumers
and vice versa. Certainly though, this scheme contrasts with the Shared Dataspace
approach usually advocated by the coordination languages of the data-driven family. A
more detailed description and comparison of these two main families of coordination
models and languages can be found in Ref. [26].
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In this paper, we use the generic model of communication Ideal Worker Ideal
Manager (IWIM) and a specific control-oriented event-driven coordination language
(MANIFOLD) based on this model {16—18]. The important characteristics of IWIM
include compositionality, inherited from the data-flow model, anonymous communica-
tion for both producers and consumers, evolution of coordination frameworks by
observing and reacting to events and complete separation of computation from commu-
nication and other concerns. These characteristics lead to clear advantages in large
concurrent applications.

In particular, we present by means of examples the way MANIFOLD can be used in
developing software environments for distributed and parallel systems. The rest of the
paper is organised as follows. Section 2 is a brief presentation of the coordination model
IWIM and associated language MANIFOLD. Sections 3 and 4 illustrate the usefulness
of the framework: Section 3 is focused on using MANIFOLD for distributed and parallel
programming, while Section 4 is concerned with software architecture and engineering
issues. The paper ends with some conclusions, comparison with related work and short
reference to our future activities.

2. The IWIM model and the language MANIFOLD

Most of the message passing models of communication can be classified under the
generic title of TSR (Targeted-Send /Receive) in the sense that there is some asymmetry
in the sending and receiving of messages between processes; it is usually the case that
the sender is generally aware of the receiver(s) of its message(s), whereas a receiver
does not care about the origin of a received message. The following example, describing
an abstract send—receive scenario, illustrates the idea:

process Prod: process Cons:

compute M1 receive M1

send M1 to Cons let PR be Ml ‘s sender
compute M2 receive M2

send M2 to Cons compute M using M1 and M2
do other things send M to PR

receive M
do other things with M

There are two points worth noting in the above scenario: (1) The purely computation
part of the processes Prod and Cons is mixed and interspersed with the communication
part in each process. Thus, the final source code is a specification of both what each
process computes and how the process communicates with its environment. (2) Every
send operation must specify a target for its message, whereas a receive operation can
accept a message from any anonymous source. So, in the above example, Prod must
know the identity of Cons, although the latter one can receive messages from anyone.
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Intermixing communication with computation makes the cooperation model of an
application implicit in the communication primitives that are scattered throughout the
(computation) source code. Also, the coupling between the cooperating processes is
tighter than is really necessary, with the names of particular receiver processes hard-
wired into the rest of the code. Although parameterisation can be used to avoid explicit
hardwiring of process names, this effectively camouflages the dependency on the
environment under more computation. Thus, in order to change the cooperation infras-
tructure between a set of processes one must actually modify the source code of these
processes.

Alternatively, the IWIM communication model aims at completely separating the
computation part of a process from its communication part, thus, encouraging a weak
coupling between worker processes in the coordination environment. IWIM is itself a
generic title (like TSR) in the sense that it actually defines a family of communication
models, rather than a specific one, each of which may have different significant
characteristics such as supporting synchronous or asynchronous communication, etc.

How are processes adhering to an IWIM model structured and how is their intercom-
munication and coordination perceived in such a model? One way to address this issue
is to start from the fact that in IWIM, there are two different types of processes:
managers (or coordinators) and workers. A manager is responsible for setting up and
taking care of the communication needs of the group of worker processes it controls
(non-exclusively). A worker on the other hand, is completely unaware of who (f
anyone) needs the results it computes or from where it itself receives the data to process.
This suggests that a suitable (albeit by no means unique) combination of entities a
coordination language based on IWIM should possess is the following:

+ Processes. A process is a black box with well defined ports of connection through
which it exchanges urits of information with the rest of the world. A process can be
either a manager (coordinator) process or a worker. A manager process is responsible
for setting up and managing the computation performed by a group of workers. Note
that worker processes can themselves be managers of subgroups of other processes
and that more than one manager can coordinate a worker’s activities as a member of
different subgroups. The bottom line in this hierarchy is atomic processes, which
may in fact be written in any programming language.

« Ports. These are named openings in the boundary walls of a process through which
units of information are exchanged using standard I /0O type primitives analogous to
read and write. Without loss of generality, we assume that each port is used for the
exchange of information in only one direction: either into (input port) or out of
(output port) a process. We use the notation p.i to refer to the port i of a process
instance p.

+ Channels. These are the means by which interconnectionsbetween the ports of
processes are realised. A channel connects a (port of a) producer (process) to a (port
of a) consumer (process). We write p.o — q.i to denote a channel connecting the port
o of a producer process p to the port i of a consumer process q.

« Events. Independent of channels, there is also an event mechanism for information
exchange. Events are broadcast by their sources in the environment, yielding event
occurrences. In principle, any process in the environment can pick up a broadcast
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event; in practice though, usually only a subset of the potential receivers is interested

in an event occurrence. We say that these processes are tuned in to the sources of the

events they receive. We write e.p to refer to the event e raised by a source p.

The IWIM model supports anonymous communication: in general, a process does
not, and need not, know the identity of the processes with which it exchanges
information. This concept reduces the dependence of a process on its environment and
makes processes more reusable. Using IWIM, our example can now take the following
form:

process Prod: process Cons:

compute M1 receive M1 from in port Il
write M1 to out port 01 receive M2 from in port I2
compute M2 compute M using M1 and M2
write M2 to out port 02 write M to out port 01

do other things
receive M from in port Il
do other things with M

process Coord:

do other things

create the channel Prod.0l — Cons.Il
create the channel Prod.02 — Cons.I2
create the channel Cons.0l1 — Prod.Il
carry on doing other things

Note that in the IWIM version of the example, all the communication between Prod
and Cons is established by a new coordinator process Coord which defines the required
connections between the ports of the processes by means of channels. Note also that not
only Prod and Cons need not know anything about each other, but also Coord need not
know about the actual functionality of the processes it coordinates.

In general, there are five different ways to model a communication channel C in
IWIM, depending on what happens when either of the two ends of the channel (referred
to as its source and sink) breaks connection with the respective (producer or consumer)
process and what happens to any units pending in transit within C:

- Both ends of C have type S (synchronous connections). In this case, there can never
be any pending units in transit within C and a channel is always associated with a
complete producer—consumer pair.

Both ends of C have type K (keep connections). In this case, the channel is not

disconnected from either end if it is disconnected from the other end.

+ Both ends of C have type B (break connections). In this case, once the channel is
disconnected from one end, it will automatically also get disconnected from the other
end.
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+ The source of C has a B and its sink has a K type connection. If a BK channel is
disconnected from its consumer then it is also automatically disconnected from its
producer but not vice versa.

- The source of C has a K and its sink has a B type connection. If a KB channel is
disconnected from its producer then it is also automatically disconnected from its
consumer but not vice versa.

Note that the last four channel types effectively model variations of asynchronous
communication. Note also that any units pending within a channel which has been
disconnected from either end will remain there and resume their flow once the channel
is reconnected to some other process.

MANIFOLD is a coordination language which can be seen as a concrete version of
the IWIM model just described where:

1. each of the basic concepts of process, port, event and channel corresponds to an
explicit language construct;

2. communication is asynchronous and raising and reacting to events (or signals)
enforces no synchronisation between the processes involved. Thus, MANIFOLD
realises all but the SS (synchronous) types of IWIM channels.

3. The asynchronous channels of IWIM are called streams in the language and represent
a reliable and directed flow of information. Once a stream is established between a
producer process and a consumer process, it operates autonomously and transfers the
units from its source to its sink. The sink of a stream is suspended only if no units are
available for its consumption and resumes once the next unit becomes available for
consumption. The source of a stream is never suspended because the infinite buffer
capacity of a stream is never filled.

4. The separation between communication and computation, i.e., the distinction between
workers and managers, is more strongly enforced.

Activity in a MANIFOLD configuration is event-driven. A coordinator process waits
to observe an occurrence of some specific event (usually raised by a worker process it
coordinates) which triggers it to enter a certain stafe and perform some actions. These
actions typically consist of setting up or breaking off connections of ports and channels.
It then remains in that state until it observes the occurrence of some other event which
causes the preemption of the current state in favour of a new one corresponding to that
event. Once an event has been raised, its source generally continues with its activities,
while the event occurrence propagates through the environment independently and is
observed (if at all) by the other processes according to each observer’s own sense of
priorities.

In this section, we have deliberately presented MANIFOLD from the point of view of
its underlying model (namely IWIM). More information on the actual language can be
found in Refs. [16,17,27,18] and in the introduction of this special issue. We will also
have the opportunity to present a number of features that the language supports, while
describing the examples in the main part of this paper.

The purpose of the next two sections is to present a number of techniques which
model a variety of activities related to the development of distributed and parallel
systems using MANIFOLD. The aim here is twofold: (i) to further illustrate the
capabilities of this coordination formalism in playing the role of a coordination
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framework for distributed and parallel systems (at least as we perceive such a role to
be), and (ii) to present a number of techniques that we are developing in using the model
to design and implement non-trivial but also typical applications such as fault tolerant
systems and distributed multimedia environments.

We believe that a control-driven or event-driven coordination language such as
MANIFOLD can be used in application domains where, traditionally, either data-driven
or control-driven coordination languages are being used, but not both. The former
domain is concerned primarily with parallelising programs, whereas the latter one is
more interested with issues related to modelling software architectures. To illustrate this
dual capability of MANIFOLD, we split the main part of the paper in the above
mentioned two sections.

3. Coordinating activities in distributed and parallel systems
3.1. Fault tolerance

Fault tolerance is an important aspect of distributed and parallel systems. A number
of techniques have evolved over the years in providing applications with fault tolerance
such as N modular redundancy, backward error recovery, etc. However, one may notice
that the issues related to developing and testing an environment for fault tolerance are
really orthogonal to those related with the actual computation the environment will
produce. Nevertheless, when an ordinary language is used those issues are intermixed,
making the development of both the computation and the fault tolerant parts more
difficult.

Using a coordination language like MANIFOLD for fault tolerance is ideal. The
elaborated constructs that MANIFOLD supports, the philosophy that port-to-port con-
nections are secure, the event control-based state transitions the language advocates and
its dynamic reconfiguration features are well suited to the development of generic fault
tolerant frameworks that can cover all dimensions of fault tolerance: software failures,
processor (device) failures, communications failure, etc. In the sequel, we are presenting
the principles of such a fault tolerant generic framework based on the well known TMR
(Triple Modular Redundant) algorithm [28]. The basic idea is the following: Each one of
the three modules executes separately and passes its result to a voter module which, after
getting results from all three modules, decides on the actual outcome of the computation.
The most important parts of the code follow promptly.

manifold Producer( ) import.
manifold AtomicVoter( ) import.

manifold Vote( )
{
event rec_from_1, rec_from 2, rec_from_3,
tuple_rec, not_rec, get_from 1, get_from_ 2,
get_from_3, repeat.
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process prodl is Producer (manifold, event get_from_1).
process prod2 is Producer (manifold, event get_from_2).
process prod3 is Producer {(manifold, event get_from 3).
process Voter is AtomicVoter( ).

stream KB reconnect prodl — voter.
stream KB reconnect prod2 — voter.
stream KB reconnect prod3 — voter.

begin: (activate(prodl,prod2,prod3,voter), post(repeat)).

repeat: (prodl — toutl, prod2 — tout2, prod3 — tout3,
guard(toutl, transport,rec_from_1), alarm(toutl,
30, not_rec),
guard(tout2, transport,rec_from_2), alarm(tout2,
30, not_rec),

guard(tout3, transport,rec_from 3), alarm(tout3,
30, not_rec)).

rec_from_1&

rec_from_2&

rec_from_3: ((toutl—, tout2 -, toutld — ) — voter,
raise(get_from_1, get_from 2, get_from_3),
terminated(self)).

not_rec: {exception handling).

tuple_rec.voter: post(repeat).

}

manifold Producer (manifold Module, event get_from).
{

event received, repeat.

process produce is Module.

stream KB Producer — produce.

begin: (activate (produce),
post (repeat)) .

repeat: (produce — Producer,
guard (input, transport, received)) .

received: (input — output,
terminated(self)).

get_from: post(repeat).
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In our framework, all four entities (the three modules and the voter) are black boxes
communicating with their environment by means of port connections. In particular, there
exists one manifold for each entity plus a global coordinator. Each manifold monitoring
a module receives the next datum and forwards it to its output port. It then suspends (by
means of executing the terminated (self) operation which never terminates) until
it receives a message get_from_1 (or 2 or 3) from the voter in which case it repeats
the process. The voter after setting up the required initial stream connections suspends
waiting to receive three values from the respective modules or the elapse of 30 s
(arbitrary value which may change at will) signifying that something has gone wrong at
either the software level or the hardware level (e.g., breaking up of some communication
link). This is achieved by means of setting appropriate guards which monitor activity in
a port (e.g., the expression guard (port_id, transport, passed) posts the event
passed if a unit has passed through the port port_id). In the latter case, some
appropriate exception handling takes place; this may involve removing the faulty
component and /or activating a new one, possibly on another processor (see also next
example). Upon receiving the three values, the voter manifold passes them on to the
actual voter for processing. The actual voter then sends a rec_received message to
the manifold voter and the latter repeats the process. Note here that streams have been
set up as KB reconnect since they are broken from and reconnected back to the voter
every time a triplet of data must be received (other more efficient techniques for
communicating data, than the ‘wave forwarding’ one used here, can also be supported).

Note the following: (i) being black boxes, the three modules and the voter may be
written in any language, or indeed in different ones; (ii) changes in the actual
computation performed by these modules do not affect in any way the coordination and
synchronisation parts of our apparatus - thus, it is possible to change the logic, of the
voter, incorporate deliberately wrong values in the modules (‘fault injection’), etc., (iii)
the framework presented above is itself fault tolerant - communication is secured (thanks
to MANIFOLD's philosophy), any breaking of communication links or hardware faults
can be detected (by means of incorporating suitable device drivers which raise error
signals to whose presence the MANIFOLD apparatus reacts appropriately) and, in fact,
all modules run on different machines to minimise the possibility of total collapse
resulting from hardware failure. This last functionality is achieved by means of suitable
directives set in an associated ‘config.map’ file like the following:

{host hostl afrodite.cs.ucy.ac.cy venus.cs.ucy.ac.cy}
{host host2 zeus.cs.ucy.ac.cy}

{host host3 atlas.cs.ucy.ac.cy}

{host host4 venus.cs.ucy.ac.cy}

{arch anyRS RS/6000}

{locus voter_task Shostl}

{locus prodl_task Shost2}

{locus prod2_task Shost3}

{locus prod3_task SanyRS}

where task instances (i.e., executable files), one for each incarnation of a voter or a
producer process, run on a number of IBM RS/6000 machines. In particular, the
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scenario above says that voter_task will run on the machine afrodite of the
domain cs.ucy.ac.cy. and if this machine is not available, voter_task will run
on venus. In contrast, prod3_task will run on any available machine of the given
architecture, whereas the other tasks will run on the particular machines as specified.

In similar ways, we can model other fault tolerant schemes. The second example
shows the principles of implementing backward error recovery, another popular fault
tolerant technique.

manifold variable import.
manifold Producer( ) import.
manifold Consumer( ) import.

manifold Main( )
{
event error.
auto process state is variable.
auto process producer is Producer.
auto process consumerl (port out sstate, event error)
is Consumer.
auto process consumer2(port in rstate) is Consumer.

stream KB reconnect producer — *.

begin: (producer — consumerl, consumerl.sstate — state,
terminated(self)).
error.consumerl: (producer — consumer?2,
state — consumer2.rstate).

In the above program, a producer initially sends its output to a consumer for further
processing. The latter one periodically sends in the form of a tuple its state to the
variable state (which is another manifold as far as the language is concerned). Upon
detecting an error (whether software or hardware), consumerl raises an appropriate
signal and the main coordinator switches the output of consumerl to the backup
consumer2. At the same time, the most recently saved state of consumer1 is fed
into consumer?2 and computation falls back to the last error-free point. Again, as in the
previous example, producer is completely unaware of such dynamic changes and,
more generally, this fault tolerant policy does not affect, in any way, the actual
computation work performed by the three processes and, thus, it can be changed without
the need to modify the internals of the processes involved. The program can be made
more tolerant to hardware and communication faults by choosing to place every
manifold involved (including the ‘variable’ state) on different processors; this can be
achieved as indicated in the description of the previous example.
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The above scenario supports single fault tolerance in the sense that only one
catastrophic failure of a consumer process can be handled. However, it is also possible
to model a more dynamic scenario involving many levels of fallback. It is beyond the
scope of this paper to address such issues as the tradeoff between the frequency of state
savings and the incurred overhead, or ways to handle the so called domino effect
whereby, the fallback of one process to a previous state causes other processes to do the
same. However, we note that these issues are primarily coordination rather than
computation issues. Thus, we believe that it would be more appropriate to model them at
the MANIFOLD level and in this way have the ability to modify the fault tolerant policy
without affecting the computation code in any way.

3.2. Incremental software development

Traditionally, coordination languages are used to ‘glue together’ existing compo-
nents, thus, enhancing reusability. Although MANIFOLD can of course play this central
role, it can do even more. The well-defined elaborate interfaces between the components
that can be specified by means of the plethora of primitives the language supports, and
the control-driven change of state it advocates, make the language suitable for ‘creative
development’ of completely new software environments. The main concern in such a
development is how to resolve quickly and efficiently issues such as proper communica-
tion and synchronisation between the concurrently executing components; usually the
pure computation part of the code is not that hard to develop and debug if it is free from
other concerns.

MANIFOLD can assist this process of development by separating completely the
computation from all the other parts of the code. Such a to-be-created environment can
be viewed as a number of initially large black boxes. MANIFOLD’s constructs like port
connections and raising of events can be used to set up well-defined interfaces between
the boxes which, initially, can be just mock-ups of the actual computation parts of the
application. Gradually, the black boxes split into smaller ones and again the same
process of first establishing well-defined communication and synchronisation patterns
before producing the computation part is followed. Indeed, optimisation tests (as, for
instance, in determining communication costs) can also be performed by modifying
these patterns without any negative effects arising from the computation part being still
unknown. Eventually, or in parallel with this process, the black boxes are filled with the
actual computation part which would be mainly sequential and thus, easier to debug.

As an example, we consider the case of a control module processing the output
produced by a set of workstations which is transferred from the latter to the former via a
communication subsystem. Results of this processing are displayed by the workstations
after their transfer back to them. A possible specification of the three main entities
comprising this apparatus is the following:

CONTROL MESSAGE_HANDL WORKSTATION
Input Unit Input Unit Manager
Output Unit Output Unit Tools

Proc Unit Handler Viewer



G.A. Papadopoulos / Parallel Computing 24 (1998) 1137-1160 1149

An initial configuration in MANIFOLD is the following one:

manifold CONTROL( ) import.
manifold MESSAGE_HANDL( ) import.
manifold WORKSTATION( ) import.

process control 1s CONTROL( ).
process handler is MESSAGE_HANDL( ).

process wsl is WORKSTATION( ).
process ws2 is WORKSTATION( ).
process ws3 is WORKSTATION( ).

manifold Main( )
{
begin: (activate(control,handler,wsl,ws2,ws3),
control —» handler —» ( »wsl, -2 ws2, >ws3),
(wsl = ,ws2 = ,ws3 —» ) - handler - control) .

(set up event communication to define precisely the
communication patterns to be employed)

Later on, the module WORKSTATION can be further refined as follows:

manifold MANAGER import.
manifold TOOLS import.
manifold VIEWER import.

process manager is MANAGER({ ).
process tools is TOOLS( ).
process viewerl is VIEWER( ).
process viewer2 is VIEWER( ).

export manifold WORKSTATION( )
{
begin: (activate (manager, tools,viewerl,viewer2),
manager — tools = ( — viewerl, = viewer2),
(viewerl — ,viewer2 — ) — tools = manager).
{set up event communication to define precisely the
communication patterns to be employed)
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Etc. for the other components. Note that any subcomponent can be defined in more or
less detail at will. Note also that different connections between replicated components
(such as workstations or viewers) can be employed to determine what is the most
efficient and effective configuration.

4. Software architecture and software engineering issues
4.1. Anonymous communication via S / W multiplexers

MANIFOLD supports point-to-point communication between concurrently executing
agents. However, often it is desirable for a number of agents to communicate with each
other in a conferencing mode, i.e., whatever output one produces is replicated to all
other agents. This functionality is useful in applications such as teleconferencing. In
coordination models which use a common shared communication medium, this can be
done trivially by having each agent post information to the medium while the rest of the
agents retrieve it. However, this simple scenario is not without its disadvantages: the
information is usually physically replicated to the private memory of all agents
accessing the public forum (whether they are actually participating in this particular data
exchange or not); furthermore, since the shared medium is public and insecure, there is
no guarantee that the information to be exchanged is not lost, intercepted, forged or
altered in any other undesirable way. To solve these problems, sophisticated techniques
must be employed [7]. MANIFOLD however can address these issues without encoun-
tering the above mentioned problems.

We now present a solution to the following scenario. An agent wants to join a
conferencing session and be able to both talk and listen to all other agents. However, we
do not require each agent to know the ‘addresses’ or ‘ids’ of the other agents.
Furthermore, we want to route information directly to the agents concerned without
unnecessary re-routing and use of centralised information relay nodes. In addition, this
goal should be met in a way that would not force each agent to repeat the
connection /disconnection process for every other agent engaged in the conferencing
session.

The following code implements the scenario just described.

event leave.
manifold Session{event) import.

manifold Connect (process pl, process p2)
{
begin: (pl —p2, p2 = pl,
terminated(self)).
leave.pllleave.p2:
}
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manifold Participate(proess me)
{

ignore join.me.

begin: while true do
{
begin: terminated(self).
join. *other: Connect (me,other).
}.

leave.me:

manifold User( )

{
event remove_me.
begin: (Participate(self),
raise(join),
Session(remove_me),
terminated(self)).
remove_me: raise(leave).
}

A few remarks are again in order. Session represents the actual conferencing
session between each participant and the rest of the world; its definition is described
elsewhere and, for all that matters, it can be implemented in MANIFOLD itself or some
other programming language. The only aspect of Session relevant to the rest of this
discussion is that it takes as a parameter, an event which it will raise when it wishes to
terminate the session between the participant and the rest of the conferencing group.
Connect is a simple manifold, which takes a pair of processes as parameters, and
connects the output port of the first process to the input port of the second process and
vice versa, thus establishing to and from communication between the two processes.
Upon detecting the presence of a 1eave signal, raised by either of the two processes on
behalf of which it has established mutual connections, and signifying the wish of the
signal’s producer to leave the session, Connect breaks off the stream connections
between these two processes. Participate is a monitoring manifold; there exists one
such manifold for every participant in a conferencing session. It is responsible for
detecting the arrival of new participants and creating a Connect process to set up
additional stream connections between every newly arrived participant and the process
that Participate monitors. More to the point, it recurs within a loop, initially
suspended, waiting for the arrival of a join signal raised by some participant-to-be
process, other than the one that it monitors. Upon detecting such a signal, it spawns a
Connect process passing to the latter as parameters the ids of both its own process that
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it monitors and the process that raised join. Participate will exit the loop and
terminate when it detects the presence of the signal leave, raised by the process it
monitors. Finally, User represents a participating party. Upon commencing execution,
it will activate a Participate process which will be responsible for connecting this
party to any other participant that will possibly arrive in the future. It will also raise the
signal join, thereby making the other participants connect to this party, and enter the
conferencing session. When the remove_me signal is raised by Session, the corre-
sponding User process itself raises the signal 1eave, for the benefit of its monitoring
process Participate, and terminates.

Note that the joining and leaving of participants is done in a distributed and
asynchronous fashion. There is no centralised control, either for the setting up of the
stream connections or the forwarding of data between the participants, and each member
of the conferencing group is responsible for connecting itself to the newly arriving
processes. Furthermore, the actual conferencing part of the code, namely Session, is
completely unaware of the dynamic changes that take place in its environment.
Elementary graceful withdrawal of participants is guaranteed by the default behaviour of
a stream connection which is BK, meaning that even when the producer breaks up a
stream connection, the stream will still remain connected to the arrival side, thus
allowing the consumer to retrieve any units of information pending within the stream.
More sophisticated control over the data distributed via the set up streams is possible by
installing guards on the input/output ports of the processes involved, and thus monitor-
ing the status of stream connections in order to act accordingly. Finally, we note that
data travel directly to the participating parties, and the only broadcasting operations are
those for raising a couple of events, which is a very cheap operation in MANIFOLD.

4.2. Hybrid coordination of S /W And H / W components

The next example shows how MANIFOLD can be used to coordinate objects which
are not necessarily software modules, i.e., they could be hardware devices, and which do
not necessarily produce discrete data, i.e., they could produce video or audio streams of
continuous data. Imagine the following rather generic scenario: A control module is
connected to a sensors module and both are connected to a display device. The sensors
module outputs simulated changes in various readings produced by sensor devices and
the control module, based on these readings, regulates the operation of certain devices.
Both modules send some data to the display device for presentation in suitable forms.
The outline of part of the code is shown below.

manifold SENSORS port in heating, flow.
port out temperature, volume, concent.
elsewhere.

manifold CTRL_MOD port in temperature, volume, concent.
port out value,valve.
elsewhere.
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manifold DISPLAY port in heating, flow,

level, temperature.
elsewhere.

concentration,

manifold Main( )

{
process comp_sensors is SENSORS.
process comp_control is CTRI_MOD.
process comp_display is DISPLAY.

begin: (activate(comp_sensors, comp_control,
comp_display),
comp_sensors. temperature —
(—+comp_control.temperature,
— comp_display.temperature),
comp_sensors.volume — ( — comp_control.volume,
— comp_display.volume),
comp_sensors.concent —
(— comp_control.concent,
— comp_display.concentration),
comp_control.value = ( = comp_sensors.heating,
— comp_display.flame),
comp_control.valve - ( — comp_sensors. flow,

terminated (self)) . — comp_display.flow),
}

event send_values.

manifold Compute_Sensors port in il, 1i2.
port out ol, o2, o3.
{atomic. event send_values}.

manifold SENSORS( )
{
process sensors {il, i2Jol, o2, o3) is Compute_Sensors.
begin: (activate(sensors),
heating — sensors.il,
flow— sensors.i2,
sensors.ol — temperature,
sensors.o2 — volume,
sensors.o3 — concent
terminated (self)).

...{detect various events and react accordingly)...
death.sensors: halt.

1153



1154 G.A. Papadopoulos / Parallel Computing 24 (1998) 1137-1160

#include WP_interface.h’
void Compute_Sensors( )
{
AP_FEvent send_values;
int flow,volume, concent;
float heating, temperature;
int i1,1i2,0l1,02,03;

il=AP_PortIndex( il % ;
1i2=AP_PortIndex( 12 ') ;
0l =AP_PortIndex( vl ');
02=AP_PortIndex( ©2 ") '
03 =AP_PortIndex( 03 ’);

AP_InitHeaderEvent (send_values, send_values ') ;

while (1)

{
heating=AP_PortGetUnit (il);
flow=AP_PortGetUnit (i2);

{compute temperature, volume and concentration)

AP_Raise(send_values) ;
AP_PortPutUnit (ol, temperature) ;
AP_PortPutUnit (o2, volume) ;
AP_PortPutUnit (03, concentration) ;

{handle events)

if (termination_condition_satisfied) return;

}

{similar code for the other two modules)

The main points that the above code attempts to highlight are the following. There is
a main coordinator which sets up the stream connections between the three modules. It
is completely irrelevant as far as the coordinator is concerned, what type of values these
modules produce or what their own nature actually is. For every such module we have
two entities: a MANIFOLD monitoring process (like SENSORS) responsible (among
other things) for the module’s proper connection with the rest of the world and the
actual computation process (like Compute_Sensors) which in this case is a C
program. Note that this program is ‘MANIFOLD compliant’ meaning that by using the
AP_interface.h environment it is able at the C (or indeed any other language) level
to receive from or send to ports data, raise events or detect their presence, etc. This need
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not be the case; an ordinary program (i.e., any Unix-level process) would still be able to
communicate with its environment, albeit with a significantly less rich functionality.

Note that our framework can evolve by adding or removing components without
affecting the state of affairs. For instance, assume that at some point in time we want to
reforward some of the displayed data to a printing device. The user could execute a
manifold process like the following one:

manifold send_to_printer(port out source, manifold
printer_id)
{
begin: source — printer_id.

}
and invoke it as follows:

send_to_printer (comp_display.level,printer_id),
send_to_printer (comp_display.temperature,printer_id).

This would create additional streams to the printing device; upon termination of printing,
the connections can be broken up without affecting the rest of the information flow
between the other modules.

5. Conclusions. Related and further work

Malone and Crowston [29] characterise coordination as an emerging research area
with an interdisciplinary focus. They observe that coordination has been and is a key
issue in many diverse disciplines other than Computer Science. Although tackling
coordination problems in operating systems, parallel programming, and databases (to
name but a few) has a long history in Computer Science, the notion of coordination as a
research area and coordination languages as a serious topic are rather recent develop-
ments. Nevertheless, a number of models and systems have already appeared for
coordination. Many of them deal with some particular aspect of coordination, or
coordination in a specific and somewhat limited context.

One of the best known coordination languages is Linda [3,5] which uses the so called
generative communication model based on the Tuple Space (which is itself an instance
of the Shared Dataspace model). The Tuple Space is, at least conceptually, centrally
managed and contains all pieces of information that processes want to communicate.
The Tuple Space exists outside the lifespan of the processes constituting a computation
which are treated as black boxes. Accessing the Tuple Space is achieved by means of
only four simple primitives which effectively constitute a ‘coordination assembly
language’. However, this simplicity is also Linda’s weak point. The ‘vanilla’ model
does not support point-to-point communication nor does it guarantee any form of
security while accessing the Tuple Space which is a public forum. This has led to a



1156 G.A. Papadopoulos / Parallel Computing 24 (1998) 1137-1160

number of extensions [4,7] that try to address these issues and ameliorate the associated
problems. Furthermore, the programming style encouraged by Linda and associated
models suggests using shared dataspace access primitives directly in the computation
code. This mixes communication code with computation code. Finally, there is no clear
separation between workers and managers as in IWIM.

The metaphor of Interaction Abstract Machines [10] and its underlying formal
computational model of Linear Objects [9], present a paradigm for abstract modelling of
concurrent agent-oriented computation. The operational semantics of the agents and their
interactions are given in terms of the proof theory of Linear Logic whereas the ‘property
driven communication’ the model employs is analogous to MANIFOLD’s port connec-
tions.

Gamma [8] is another coordination model based on non-deterministic multiset
rewriting. It provides a framework in which programs can be expressed with a minimum
of explicit control and where, ideally, efficient execution schedules for such high-level
program specifications can be found automaticaily.

All the above models have in common the use of a shared, open, unrestricted data
structure (whether it is called Tuple Space, Blackboard, MultiSet, etc.) as an appropriate
medium for communication in a distributed or parallel data-driven system. But, this
shared medium also becomes a synchronisation mechanism during the concurrent
execution of the processes involved in a computation. Whatever coordination primitives
each model uses are mixed throughout the program with computation code. Communica-
tion via the shared common medium is by no means secured (at least as far as the
‘vannila’ versions of each model are concerned) and it is also difficult to optimise these
models so that data go only to the destinations that actually need them.

In Ref. [15], while describing another coordination mechanism based on 1/0
abstractions, a number of desirable properties that coordination models should possess
are listed. These properties are active and reactive communication, connection-oriented
and user-specifiable configuration and support for a variety of communication schemes
such as implicit, direct, multiway, and use of continuous streams. It is worth mentioning
here that IWIM and MANIFOLD support all these schemes as first class citizens. In
addition, IWIM and MANIFOLD support complete separation of computation from
coordination concerns and a control-driven specification of system transformations,
which unlike 1/0 abstractions, is, in our opinion, more appropriate for coordination
programming.

Note that in IWIM and MANIFOLD, unlike in many other coordination models and
languages, a component is oblivious not only to bindings produced by other components
but also to whether or not communication is taking place at all or what type of
communication this is. This frees the programmer from having to establish when it is the
best moment to send and /or receive messages. And of course, the language enjoys the
ability for dynamic system reconfiguration without the need to disrupt services or the
components having mutual knowledge of structure or location - point-to-point or
multicast communications can be configured independently of the computation activity
and mapped appropriately onto the underlying architecture.

Furthermore, the stream or channel connections that IWIM and MANIFOLD support
as the basic mechanism for communication between computation components, provide a
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natural abstraction for supporting continuous datatypes such as audio or video and make
this coordination model and its associated language ideal for coordinating the activities
in, say, distributed multimedia environments. We are currently exploiting this character-
istic of MANIFOLD in a recently commenced research project where the language will
be used to manage and coordinate, among other activities, the data produced or
consumed by media servers.

MANIFOLD is a typical member of the control-driven family of coordination models
[26]. Although many of the concepts found in MANIFOLD have been used in other
control-oriented coordination languages, MANIFOLD generalises them into abstract
linguistic constructs, with well-defined semantics that extends their use. For instance, the
concept of a port as a first-class linguistic construct representing a ‘hole’ with two
distinct sides, is a powerful abstraction for anonymous communication: normally, only
the process q that owns a port p has access to the ‘private side’ of p, while any third
party coordinator process that knows about p, can establish a communication between g
and some other process by connecting a stream to the ‘public side’ of p. Arbitrary
connections (from the departure sides to the arrival sides) of arbitrary ports, with
multiple incoming and multiple outgoing connections are all possible and have well-de-
fined semantics. Also, the fact that computation and coordinator processes are absolutely
indistinguishable from the point of view of other processes, means that coordinator
processes can, recursively, manage the communication of other coordinator processes,
just as if they were computation processes. This means that any coordinator can also be
used as a higher-level or meta-coordinator, to build a sophisticated hierarchy of
coordination protocols. Such higher-level coordinators are not possible or are hard to
define in many other coordination languages and models.

MANIFOLD advocates a liberal view of dynamic reconfiguration and system consis-
tency. Consistency in MANIFOLD involves the integrity of the topology of the
communication links among the processes in an application, and is independent of the
states of the processes themselves. Other languages, such as Conic [21], limit the
dynamic reconfiguration capability of the system by allowing evolution to take place
only when the processes involved have reached some sort of a safe state (e.g.,
quiescence). MANIFOLD does not impose such constraints; rather, by means of a
plethora of suitable primitives, it provides programmers the tools to establish their own
safety criteria to avoid reaching logically inconsistent states. Furthermore, primitives
such as guards, installed on the input and/or output ports of processes, inherently
encourage programmers to express their criteria in terms of the externally observable
(i.e., input/output) behavior of (computation as well as coordination) processes.

Structuring of programs is another area where MANIFOLD is prepared to allow the
programmer to have more freedom (but also responsibility) than other members of the
control-driven family of coordination languages. For instance, ConCoord [19] enforces a
hierarchical evolution of coordinator and computation processes, where each coordinator
process is responsible for monitoring the activities of a group of computation processes
forming a domain. Interprocess communication is distinguished between being either
interdomain or intradomain and the ports of a coordinator are only used to define
bindings between computation processes belonging to different domains. MANIFOLD
on the other hand, does not impose any such specific hierarchy; instead, the programmer
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has the ability (but also the responsibility) to define different forms of process
hierarchies by means of restricting observability of raised events to specific groups of
processes.

In contrast to a rather extensive repertoire of coordination constructs, MANIFOLD
does not support ordinary computational entities such as data structures (with the
exception of tuples), variables, conditional or loop statements, etc. (although for
programming convenience, they actually do exist in the language as syntactic sugar).

We are currently evaluating further the model for a number of areas related to
coordination programming. In Ref. [30], we extend the model to handle real-time
constraints. The derived model is used along with some of the techniques described in
this paper in the development of a distributed muitimedia environment and also in the
specification of software architectures [2]. In Ref. [31], we show how MANIFOLD’s
underlying computational model (namely IWIM) can be applied to the Shared Dataspace
family of coordination languages. Furthermore, in Ref. [32], we explore the possibility
of applying MANIFOLD to the fields of groupware and workflow management.

Finally, one notices that there are some interesting similarities between IWIM and the
family of Module Interconnection Languages [33]. However, MILs are less liberal than
IWIM and MANIFOLD (or most other coordination languages for that matter). They
require considerable prior agreement between the developers of different modules - e.g.,
all modules may have to be written in the same programming language or module
interfaces should describe the other modules with which they interact. Furthermore, the
interrelationships formed in MILs between components are essentially static, whereas in
IWIM and MANIFOLD the interconnections change dynamically under program con-
trol. Nevertheless, an interesting line of research would be to examine whether IWIM
can be used as the basis for a formal analysis of MILs’ functionality.
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