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a  b  s  t  r  a  c  t

Today  software  is the  main  enabler  of  many  of  the  appliances  and  devices  omnipresent  in our  daily
life  and  important  for  our  well  being  and  work  satisfaction.  It  is expected  that  the  software  works  as
intended,  and  that  the  software  always  and  everywhere  provides  us  with  the  best  possible  utility.  This
paper  discusses  the  motivation,  technical  approach,  and  innovative  results  of  the  MUSIC  project.  MUSIC
provides  a comprehensive  software  development  framework  for  applications  that  operate  in  ubiquitous
and  dynamic  computing  environments  and  adapt  to  context  changes.  Context  is  understood  as  any  infor-
mation about  the  user  needs  and  operating  environment  which  vary  dynamically  and  have  an  impact
biquitous computing
odel-driven development
iddleware
obile computing

on design  choices.  MUSIC  supports  several  adaptation  mechanisms  and  offers  a  model-driven  applica-
tion  development  approach  supported  by  a sophisticated  middleware  that  facilitates  the  dynamic  and
automatic  adaptation  of applications  and  services  based  on  a clear  separation  of  business  logic,  context
awareness  and  adaptation  concerns.  The  main  contribution  of  this  paper  is a holistic,  coherent  presen-
tation  of  the  motivation,  design,  implementation,  and  evaluation  of the  MUSIC  development  framework
and  methodology.
. Introduction

Software is today the main enabler of many of the appliances
nd devices omnipresent in our daily life and important for our
ell being and work satisfaction (Weiser, 1991). Software con-

rols our cars, planes, homes, businesses, and our mobile phones
nd extensively portable computers (Charette, 2009; ITU, 2009). It
s imperative to expect that the software works as intended, and
hat the software always and everywhere provides us with the
ighest possible utility, also when users move and the computing
nd communication environment varies dynamically. The software

evelopment practices of today mostly assume a more static view
f the user needs and operating conditions. In ubiquitous comput-
ng they must evolve to encompass adaptive applications made for
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intrinsic user and application mobility as well as context changes
at execution time.

This paper discusses the motivation, technical approach, and
results of the MUSIC project.1 The main goal of MUSIC was to
simplify the development of adaptive applications that will oper-
ate in open and dynamic ubiquitous computing environments and
adapt seamlessly and without user intervention in reaction to con-
text changes. The main innovations of MUSIC are a comprehensive
development framework that consists of a model-driven devel-
opment methodology (including a tool chain) for self-adaptive
context-aware applications as well as a corresponding extensible
context management and adaptation middleware supporting the
model-driven development.
Context is understood in a broad sense as any information about
the user needs and operating environment which may  vary dynam-
ically and impact the applications, and which can be monitored

1 Self-Adapting Applications for Mobile Users in Ubiquitous Computing Environ-
ments, supported by the European Union under research grant IST-035166 lasting
from October 2006 to March 2010.
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sing relevant hardware and software mechanisms. The MUSIC
olution supports a variety of adaptation mechanisms, such as
etting configuration and application parameters, replacing com-
onents and service bindings, and redeploying components on the
istributed computing infrastructure.

MUSIC was  not the first project addressing self-adaptation of
ontext-aware applications and most of the conceptual and algo-
ithmic groundings were available already. Thus, a substantial part
f the MUSIC results are derived from engineering research that
as tackled a well-defined problem and has carefully selected and
ombined existing solutions into a comprehensive development
ramework for self-adaptive systems. From a general perspective,
e claim that MUSIC has produced at least three key achievements

hat advance the state of the art in software engineering of adaptive
oftware:

clear separation of business logic, context awareness and adap-
tation concerns;
automated model-driven development methodology facilitat-
ing the design and implementation of context-aware adaptive
applications and enabling the re-use of modelling artifacts and
adaptive components;
seamless integration of dynamically discovered external services
and their quality of service properties into the adaptation man-
agement of component-based applications at run-time.

MUSIC is a successor of the earlier project MADAM.2 While
ADAM focused on mobile computing scenarios with an underly-

ng assumption of a closed world computing environment, MUSIC
argets ubiquitous computing environments that are character-
zed by inherent openness, heterogeneity, and dynamic service
iscovery and binding. MUSIC reuses many of the concepts and
undamental architectural decisions of MADAM, but refines and
xtends the framework with a range of new concepts and mech-
nisms, such as a substantially enhanced context management
iddleware facilitating the plug-in of new context sensors and rea-

oners, dynamic service discovery and binding of external services
s replacements for local components, and adaptation planning
eamlessly taking into account both local components and dis-
overed services and in a coordinated way driven by service level
egotiations and non-functional properties of local components.

The main contributions of this paper are a holistic, coherent pre-
entation of the MUSIC development methodology and framework,
s well as its evaluation based on trial development and testing
f a collection of context-aware and self-adaptive applications, as
esearched and developed by the MUSIC project.

The rest of this paper is organized as follows: the next section
ntroduces a motivating scenario and presents the key chal-
enges addressed by the MUSIC project. Then the overall technical
pproach, system architecture and model-based software devel-
pment methodology for facilitating the creation and operation
f self-adaptive applications are explained. After that we  present
he implementation of the tools and middleware environment pro-
ided by the project, followed by an evaluation of the framework
ased on the development and experimentation with a set of trial
pplications. Finally, we discuss related work and present conclu-

ions and an outlook to the future of frameworks for self-adaptive
pplications such as MUSIC.

2 Mobility and Adaptation-enabling Middleware, supported by the European
nion under research grant 004159 lasting from September 2004 to March 2007.
 and Software 85 (2012) 2840– 2859 2841

2. Motivation and challenges

As a further illustration of our understanding of the character-
istics of context-aware and self-adaptive software, let us consider
a scenario related to travelers on public transportation in urban
areas. It is staged in the metro system of a large city and involves
passengers using their mobile devices for assistance and entertain-
ment while traveling. Three applications are used in the scenario:

• TravelAssistant (TA) assists with itinerary planning and ticket pur-
chase, detects traveling delays and notifies the passenger if she
or he is affected by such delays. It makes use of external services
for itinerary planning, traffic information and maps.

• InstantSocial (IS) appears as a web  site supporting the shar-
ing of photos with other users of the application (Fraga et al.,
2008). However, instead of relying on a central Internet server,
it is served by a composition of services scattered across nearby
devices. As more users participate, this platform becomes more
robust, the number of shared content items increases and it
becomes more attractive for the users. Each participating device
instantiates a smaller or larger set of services depending on its
own resource situation and what is available from other devices.

• ChessMate is a chess playing program. It may delegate the
resource demanding reasoning component to another computer
in order to reduce the load on the handheld device.

The networked infrastructure of the train provides connectivity
between passenger devices and offers computing resources which
can be used by passenger devices to extend their computing capac-
ity. Kiosk computers which can be used by the public – e.g. travelers
– are placed in the station by the Metro Company. In addition
the Metro Company operates map  and itinerary planning services
which are used by TravelAssistant.

Fig. 1 shows a snapshot of the situation when a train is in the
station. The picture focuses on travelers Marie, Paul and Alice. Marie
and Paul are on board the train. They are both using InstantSocial
to share photos from a concert they both visited the previous night
with interested fellow passengers. Marie used TravelAssistant to
plan the trip on her way  to the station. Since it was  bright sunshine
outside, the display was  unreadable and the device first selected
the audio user interface, but switched to the GUI when inside the
station. Now it is running in the background monitoring progress
and listening for traffic information so it can alert and guide her
when she has to change trains and if any event occurs which might
cause deviation from the planned itinerary.

Marie’s mobile uses the train computer, as an extension of its
resources. When she launches InstantSocial, the full configuration
is chosen, with the resource demanding content repository (CR)
component deployed on the train computer.

The InstantSocial instance on Paul’s mobile is a thin client con-
figuration, using the content access (ca) service provided by Marie’s
instance to access the shared content. This was the initial choice of
the middleware, because when he started InstantSocial there were
already several instances with the full configuration offering the
content access service, so adding another one would not increase
the availability of the application significantly. Marie’s instance was
chosen because due to the assistance from the train computer, the
resource utilization on her device is low.

Paul is also using ChessMate to exercise his blind chess skills in
parallel with looking at photos. He started the game while waiting
for his train at the platform, with the chess playing component
deployed on his mobile device. The skill level available there is

lower than what Paul prefers, so when the train arrived he decided
to start InstantSocial to see if there were any interesting photo
sharing communities on the train. On board the train, his device
discovered the train computer, where a smarter chess playing
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Fig. 1. Situatio

omponent is available. This caused a reconfiguration of the appli-
ation such that now it is using the reasoning component on the
rain computer instead. As a result, the skill level of Paul’s opponent
as increased to the preferred level.

On the platform, Alice is planning her journey using TravelAs-
istant. She started the application on her mobile device while
escending to the station on the escalator, but when she passed

 kiosk computer on the platform, she accepted the suggestion
rom the application to take advantage of its larger and easier to
se display instead, and her device adapted accordingly. When she
alks away from the kiosk the user interface on the kiosk is stopped

nd the user interface returns to the mobile. When done with the
tinerary, Alice starts her media player to listen to music while wait-
ng for her train to arrive. The TravelAssistant is reconfigured again
nd switches to the background mode with the itinerary planned
t the kiosk, listening to traffic information. After a few stations,
he device discovers that there is an incident on the metro line
lanned for the next leg of Alice’s itinerary causing a delay, and
hat there is an alternative itinerary which will take her to her des-
ination station earlier. Alice is alerted about this and accepts the
ew itinerary.

This means that she has to change trains at the next station,
nd she uses TravelAssistant to navigate through the station to the
latform for the next train. Now TravelAssistant needs much more
esources, and since it is now in the foreground, the audio player is
econfigured to a pause configuration, keeping its state but using a
inimum of resources.
Developing applications that behave as illustrated above is con-

iderably more complicated than developing normal non-adapting
pplications. The reasons for this are:
The addition of self-adaptation capabilities to a system adds con-
siderably to the complexity. In many cases this may  be even more
challenging than developing the functionality of the system itself.
 the scenario.

• The business logic of applications must be designed in a way
that allows adaptation. There is a range of different adaptation
mechanisms that applications may  want to exploit, such as adapt-
ing a parameter value, the behavior, the deployment, the service
selection, etc. This choice of adaptation techniques adds to the
complexity.

• Self-adaptive systems may  be large and long lived, so established
engineering practices based on modularity, component reuse and
evolution should not be compromised.

• The applications must monitor the relevant context so that they
are aware of the changes that impact the adaptation.

• In most situations where adaptation is desirable, there are several
factors influencing the decision, and the balancing of the different
factors to make a good decision requires complex computations.

• When several applications are running concurrently in a device,
they are competing for the available resources, and thus their
adaptation should be coordinated.

• The additional computational burden of adaptation may  cause
problems related to e.g. performance, scalability, robustness,
usability, etc.

In conclusion, since none of the existing solutions for application
adaptivity provided all of the desired features and no develop-
ment methodology was  available that specifically targeted adaptive
applications in ubiquitous computing environments, the need for a
new comprehensive and coherent development and runtime sup-
port for self-adaptive applications became obvious.

3. The MUSIC solutions

To meet the challenges identified in the previous section, MUSIC

has developed a comprehensive software development framework
that enables automation of the adaptation of the software to
the varying user needs and operating conditions at runtime.
An overview of the MUSIC framework is given in Fig. 2. The
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Fig. 2. Overview of the MUSIC development framework.

evelopment of adaptive applications is alleviated by extensive
upport from the framework, including

a modelling language which supports separation of concerns such
that self-adaptation and business logic are addressed separately
to avoid the surge in complexity;
generic, reusable middleware components which automate con-
text monitoring and management, and adaptation;
tools which support the development of design models annotated
with context and adaptation concerns and transform them into
run-time knowledge available to the middleware.

The middleware implements a control loop which complies
ith the well-known MAPE (Monitor, Analyse, Plan, Execute) loop

n autonomic computing (Kephart and Chess, 2003). It monitors
he relevant context sensors, and when significant changes are
etected, it triggers a planning process to decide if adaptation is
ecessary. When this is the case the planning process finds a new
onfiguration that fits the current context better than the one that
s currently running, and triggers the adaptation of the running
pplication. To do this the middleware relies on an annotated QoS-
ware architecture model of the application available at runtime,
hich specifies its adaptation capabilities and its dependencies on

ontext information. This model corresponds to the “Knowledge”
omponent of the autonomic manager in the autonomic computing
lueprint. The planning process evaluates the utility of alternative
onfigurations, selects the most suitable one for the current con-
ext (i.e. the one with the highest utility for the current context
hich does not violate any resource constraints) and adapts the

pplication accordingly.
One of the unique features of MUSIC is that a number of differ-
nt adaptation mechanisms are supported, all included in a single
daptation framework, including parameter setting, component
eplacement and redeployment (Floch et al., 2006; Geihs et al.,
009a),  and service rebinding (Rouvoy et al., 2008).
 and Software 85 (2012) 2840– 2859 2843

3.1. Adaptation model

The QoS-aware adaptation model describes the relevant QoS
dimensions and how they are affected when varying the actual
configuration and the context. The selection of the most suitable
configuration is based on the evaluation of a utility function which
measures how well suited a configuration is for a given context
(Geihs et al., 2009a).  In this section we describe the model and show
how it is used by the middleware, using excerpts of the models of
the TravelAssistant and InstantSocial applications as examples. The
notation used in the examples is explained in Fig. 3.

An application is modeled as a component framework, which
describes an abstract composition of functionalities expressed as
a set of typed Roles collaborating through Ports. The latter repre-
sent either functionality provided to or required from collaborating
roles. The typed roles can be dynamically configured with con-
forming role realizations (i.e. implementations) and deployed on
different nodes at runtime. A port has a Type defining the function-
ality represented by the port in terms of interfaces and protocol.
Components implement ports, and a component can be used in
a role if the ports match (same type). For example, in the model
for the TravelAssistant application depicted in Fig. 4 there are two
roles typed UI and Ctrl respectively. The UI role, representing the
user interface, has one port providing the UI functionality. The Ctrl
role has a port requiring the UI functionality which is connected to
the providing port of the UI role.

Applications may  be distributed on several devices. In this case
a master node is in charge of the adaptation reasoning and instructs
the adaptation of the other nodes, called slaves. The master node
is usually a handheld device carried by the user. Master nodes dis-
cover slave nodes dynamically and include them in their adaptation
domain if the master runs applications which may  make use of the
slave. Slave nodes run a scale-downed version of the middleware.
In the TravelAssistant model the deployment annotation of the UI
role specifies that this component may  be deployed either on the
handheld or on a slave node. In the scenario, the kiosk computer
is set up as a slave, and when Alice approaches it, her smartphone,
which is set up as a master, discovers it and includes it in its adapta-
tion domain. This enables the configuration with the user interface
deployed on the slave.

Properties and property predictor functions associated with the
ports specify how to compute the QoS properties and resource
needs of components and compositions. The predictor functions
are expressed as expressions over the properties of the context and
components in collaborating roles, and in the case of composite
components, also the properties of the components in their inner
roles.

The relevant properties for the TravelAssistant model depicted
in Fig. 4 are declared at the top of the figure. The UI type is annotated
with the properties distinguishing the alternative implementa-
tions of this type. It has three alternative implementations, nmlGUI
which is the normal graphical UI for the smartphone touchscreen,
AudioUI which is for outdoor use when light conditions makes it dif-
ficult to read the smartphone screen, and BigUI which is suited for
a larger screen. The associated property predictors reflect this. The
question mark in the property predictor for nmlGUI and audioUI
indicates that this property is configurable by the middleware.

The meaning – and significance – of a context change is defined
by the developer, e.g. the developer can deem some context
changes as less significant in the sense that they will not trigger
the planning process, while others will. The developer specifies
the context dependencies indirectly in the property predictors and

the utility functions; see Section 4.1 for details. In practice, the
context-aware behavior of an application is expressed by means
of properties that depend on available context parameters. These
dependencies are defined by the application developer as part of the
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daptation model. In the TravelAssistant example for instance the
ight and the vibration properties are used to characterize both the
oftware and the context. As a context property, vibration expresses

 user preference available from the user profile, while as a software
roperty it expresses whether the software uses vibration to alert
he user or not.

The utility function compares the properties of a configuration of

he application with the properties of the current context and com-
utes a utility value expressing how well suited the configuration is

n the current context. The utility function is provided by the devel-
per and is typically expressed as a weighted sum of dimensional

UI Ctrl

ta :  Tra velAss istan t

Itine

<deplo ymen t>

mast er, 

sla ve;

Tra vel

Assistan t
Itinerary

Ctrl

name Rep r. Con text 

Prope rties audio boo l 

ligh t flo at Ambie nt 

ligh t

vibration boo l User profile 

cost float 

Resou rces sc ree n {small, big  }      

UI

<pred ictors>

audio = UI.audio ,

vib ratio n =  UI. vib ration

cost  = Itin erary.c ost

<prope rtie s>

audio,

vib ratio n,

cost ,

screen ;

<utility>

utility = (Uaudio + Uvib +  Ucost)/3

Type s

Rea lisatio ns

Fig. 4. Partial annotated architecture mode
n the examples.

utility functions where the weights express user preferences (i.e.
relative importance of a dimension to the user). A dimensional util-
ity function measures user satisfaction in one property dimension.
For example, the utility function of the TravelAssistant application
sums the utility of the audio, vibration and cost properties using
the same weight for all properties.

A prominent feature of MUSIC is its combination of component-

based software engineering with service-oriented architectures
(SOA) to allow applications on mobile devices to adapt to and ben-
efit from discoverable services in their proximity. Note that these
services may  be provided by other MUSIC nodes as well as – via

rary

Itinerary UI

<prope rtie s>

audio,

vib ratio n,

screen ;

nmlG UI 

:UI

audioUI:  

:UI

bigGUI:  

:UI

descrip tion

Usin g spo ken dialog ?

Lig ht st reng th in  the  en vir onmen t

Using vibration to alert the  user?

Cost of  use

Size of the s cree n

<pred ictors>

audio = false,

vib ratio n = ?,

screen  = small;

<pred ictors>

audio = true ,

vib ratio n = ?,

screen  = small;

<pred ictors>

audio = false,

vib ratio n = false,

screen  = big

Itinerary

<cla ssisfication >

Itinerary

<prope rtie s>

cost ;

l for the TravelAssistant application.
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Fig. 5. Partial annotated architectur

tandard protocols – by nodes that do not run the MUSIC mid-
leware (see Section 3.3.3). Ports at the border of an application
epresent services provided or required by the application. Ser-
ices are described by types, and their QoS levels are described by
roperties, in the same way as for components.

TravelAssistant uses an itinerary planning service provided by
he metro operating company. As illustrated in Fig. 4, this is mod-
led by the port typed Itinerary at the application border. There may
e different versions of this service available at runtime, differing

n cost of use as indicated by the property annotation of the service
ype. The middleware takes care of the discovery and publication of
ervices and notifies clients about changes in properties. The clas-
ification annotation associated with the service type instructs the
iddleware about how to discover services of this type.
The InstantSocial application from the scenario provides a more

ophisticated example of the use of services. Different instances
f this application provide services to and use services from each
ther to create a shared photo gallery distributed on the partici-
ating devices while seeking to distribute the computational load

n accordance with the resource situation on the devices. A partial
odel for InstantSocial is depicted in Fig. 5.
The model defines two component types, UI (user interface)
nd CR (content repository). The content repository component is
esponsible for maintaining and providing access to an inventory
f available content in all the participating devices and for provid-
ng access to it. CR instances act both as consumers and providers
el for the InstantSocial application.

of the membership (ms) service. When a new CR instance is cre-
ated, it will use the membership service provided by an existing
instance to become included in the common distributed content
repository, and later possibly provide this service to another new
instance. CR instances also implement partial replication of con-
tent to ensure a certain stability of the federated repository even
when participants leave. There are two  alternative realisations for
the application, labeled IsFull and IsMini. IsFull includes both the
UI and the CR components, and thus contributes to the implemen-
tation of the shared photo gallery, while IsMini includes only the
UI component and relies on using the content access (ca) service
provided by another IS instance.

This example demonstrates the capability of a group of MUSIC
master nodes to do coordinated adaptations of a service based sys-
tem distributed over the corresponding adaptation domains. The
coordination is facilitated by the QoS-aware service publication and
discovery mechanism. When the middleware publishes a service
it includes the properties computed by the property predictors of
the providing application. If the properties change, as a result of a
context change or/and a reconfiguration on the provider side, the
clients are notified. When MUSIC applications use services provided
by non-MUSIC service providers, it is assumed they behave in the

same way. In the example, the property annotations and the util-
ity function are designed to balance the burden of providing the
shared photo gallery in accordance with the resource situation on
the participating devices.



2 ystems and Software 85 (2012) 2840– 2859

p
r
t
c
p
e
t

(
t
m
c
a
t
d
t
t
P
fi
t
a
r
i
t

t
i
a
fi
i
c
h
t
l
r

t
t
m
t
o
t

3

m
a
r
c
o
s
m
t
v
a
p
l
a
M
f

Modelling

Variability ModelDomain Model

Context &
Resource Model

Service

Ontology

Context

Provider

Transformation &
Deployment

Testing & Validation

Operation

Properties & Utility

function

Architectural

constraints

Distribution

Services

Architecture

Analysis

Required step

Optional step

Legend
846 S. Hallsteinsen et al. / The Journal of S

Component realizations are either Atomic or Composite.  A Com-
osite Realization is itself an abstract composition and allows for
ecursive decomposition. Often there are dependencies between
he choices of realisations in different roles in a composition. This
an be expressed by Constraints,  which are predicates over the
roperties of the constituting components of a composition, in
ffect restricting the possible combinations of component realiza-
ions (Geihs et al., 2009a).

The user of a master node may  start (instantiate) and stop
remove) MUSIC applications, causing the set of running applica-
ions inside the adaptation domain to change and be adapted by the

iddleware in accordance with these user actions, relevant context
hanges, and resource constraints, seeking to maximize the over-
ll utility at any time. Adaptation planning will be triggered during
he launch of the application and at run-time when the middleware
etects a significant change in the execution context. In this case
he middleware evaluates the suitability of all feasible configura-
ions in the current execution context by computing the Predicted
roperties and the expected utility of the evaluated application con-
guration (Brataas et al., 2007; Geihs et al., 2009a),  and reconfigures
he applications accordingly. The overall utility of the set of running
pplications is computed as a weighted sum of the utilities of the
unning applications, where the weights reflect the relative prior-
ties of the applications. These priorities are controlled by the user
hrough the user profile.

In a ubiquitous and service-oriented computing environment,
here will typically be churn of devices and service providers caus-
ng adaptations. If a slave node or a service provider fails during an
pplication reconfiguration, the completion of the planned recon-
guration might become impossible. In this case a new adaptation

s triggered to overcome this temporary situation. Integrity con-
erns of application state due to loss of application components
osted by the failing slave node must be handled by the applica-
ion itself. If a master node fails, the corresponding applications are
ost. Slave nodes will eventually learn about the failure and discard
unning components they are hosting for the failed master node.

Serving external clients also consumes resources in the adapta-
ion domain. Therefore whether or not to publish a service outside
he adaptation domain is also decided at runtime by the adaptation

iddleware. For example, a node running InstantSocial may  select
he ISfull configuration to ensure availability, despite being short
n resources, while deciding not to publish its membership service
o avoid the burden of serving as an entry point for new entrants.3

.2. Model-driven development methodology

MUSIC was the first project that delivered a development
ethodology facilitating specifically the development of adaptive

pplications in open, heterogeneous ubiquitous computing envi-
onments. In order to support application developers during the
reation of the application adaptation model and the deployment
n the middleware, the MUSIC solution provides methodology
upport in accordance with the model-driven software develop-
ent paradigm. Using a specific UML-based modelling notation,

he application developer is enabled to specify the application
ariability model, context elements and data structures, as well
s service functionalities and QoS properties at an abstract and
latform-independent level. The necessary source code to pub-
ish the application’s adaptation capabilities, context dependencies,
nd variability features with regard to external services to the
USIC middleware is automatically generated by model trans-

ormations. This eases the development of adaptive applications

3 This is not included in the example model in Fig. 5.
Fig. 6. Overview of the MUSIC development methodology.

to a large extent, as the application developer can concentrate
on the application adaptation model and is not confronted with
implementation details of the adaptations. The modelling support
and code generation facilities provided by MUSIC focus on the
adaptation capabilities of an application. A general model-driven
development approach for the functional parts of the applications
is well covered by the current state of the art in software engi-
neering. Therefore, it is not addressed specifically by the MUSIC
methodology.

The MUSIC methodology provides a well-documented step-
by-step guideline for the development of adaptive applications.
Fig. 6 shows an overview. The main tasks are adaptation analy-
sis, adaptation modelling, model transformation and deployment,
and testing and validation. Each of these tasks consists of several
sub-tasks, as described briefly below. A comprehensive descrip-
tion of the methodology is given in (Geihs et al., 2009b). More
details and tutorials can be found in public project deliverables at
ist-music.berlios.de.

3.2.1. Analysis
In order to be aware of possible resource and context dependen-

cies and necessary adaptations, the application developer needs to
first get a rough understanding of the execution environment. For
this purpose MUSIC provides a collection of example resources and

context elements that support the developer to establish an ini-
tial list of resource and context dependencies of the application.
This initial list will be leveraged to specify the resource and con-
text model as part of the domain model later on. Furthermore, the

http://ist-music.berlios.de/
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pplication developer has to be aware of the different nodes con-
tituting the distributed execution environment and has to get an
verview of potential external services available in the execution
nvironment. On this basis, a developer performs a requirements
nalysis resulting in a use case model. With help of the use case
odel part-functionalities4 that are influenced by changes in the

xecution context have to be identified.
Subtasks of the analysis are:

build initial list of resource and context dependencies;
identify the kind of nodes constituting the distributed execution
environment;
identify potential services available in the execution environ-
ment;
perform use case modelling for requirements analysis.

For example, consider the InstantSocial application from the
cenario. An interesting QoS characteristic of the application is the
vailability, which is a measure of the likelihood that content con-
inues to be available. The resource utilization,  which is a measure
f how much of the available resources are in use on the device,
nd the number of instances of the content repository component
urrently constituting the shared repository, is relevant context.
elevant resources for the adaptation are memory, CPU and net-
ork bandwidth.

.2.2. Modelling
The part-functionalities identified during the analysis are the

tarting point for the application adaptation model which manifests
he core of our adaptation approach. The application developer is
xpected to build the adaptation model. It captures the application
ariability, i.e. it specifies alternative architectural configurations
or the application and how different realizations for the part-
unctionalities can be configured. This is called compositional
daptation. In addition, the adaptation model can express other
ypes of adaptations such as parametric and deployment adapta-
ion as well as adaptation by binding to an external service.

The adaptation model specifies all possible application variants
nd their context dependencies. Furthermore, it contains a utility
unction that is used by the middleware at run-time to compute
he utilities of different application configurations. One of the fun-
amental assumptions of the MUSIC project was that ubiquitous
omputing environments are inherently dynamic and heteroge-
eous. This applies in particular to context sensors and external
ervice offers. New sensors and service instances may  be discovered
hile others disappear; they may  be semantically equivalent but

heir syntactical interfaces may  vary substantially; data representa-
ions may  be different and conversion routines are needed in order
o map  values from one representation to another. In other words,

iddleware and applications have to cope with the dynamics and
eterogeneity. Bridging the heterogeneity and reasoning about
ompatibilities requires a domain model that captures the relevant
omain knowledge and enables reasoning about the relationships
f domain artifacts. Therefore, the model-driven approach of MUSIC
ncorporates a domain ontology which serves exactly these pur-
oses. In the current version of the MUSIC middleware prototype
he ontology is used to generate on-the-fly conversion plug-ins for
eterogeneous data representations of context sensor data and ser-
ice parameters, possibly building a chain of successive conversions

f there is no direct conversion available. More elaborate mismatch
epairs, such as mapping semantically equivalent service types, are
onceivable but have not been implemented so far.

4 With part-functionality we refer to an application function that would typically
e  realized by a component as part of the application’s component composition.
 and Software 85 (2012) 2840– 2859 2847

Subtasks of the modelling step are:

• build a domain model that provides semantic information on the
execution domain with respect to the context and resource enti-
ties as well as the service landscape; this comes into play during
model transformation and application runtime;

• build an adaptation model that specifies application variants and
their dependencies on the context and resources.

In summary, the main research innovations and contributions
of the MUSIC modelling approach are a comprehensive applica-
tion adaptation modelling methodology that enables various types
of application variability and seamlessly integrates into the adap-
tation models information on context dependencies (as described
above), objective functions (based on utility functions) and exter-
nal heterogeneous service offers (that can be dynamically detected
and used possibly instead of application components). The adap-
tation model, augmented by information from the domain model,
is then processed by a model transformation, as described in the
following section.

3.2.3. Model transformation and deployment
With the help of appropriate transformation tools, source

code is generated from the adaptation model that publishes the
adaptation capabilities of an application, context artifacts and data-
structures for resource and context elements to the middleware.
The platform-independent application variability model and the
domain model serve as input to the model transformation. In gen-
eral, it is not possible to completely model utility functions and
property predictors using UML. Therefore, we do not intend to auto-
matically generate the complete source code for such functions
– except for property predictors for performance properties that
can be covered by the property prediction framework of MUSIC
and can be evaluated completely with the help of a minimal set
of specifications. For the remaining property predictors and the
utility function, only container classes will be generated. The appli-
cation developer has to fill in the “gaps” in the generated source
code fragments. The transformation tool also generates component
skeletons automatically.

To enable the application to run on the MUSIC middleware the
application has to be packaged and deployed on the target device.
After the necessary components and context sensors are available,
the developer proceeds to create the package that will be deployed
on the middleware. In summary, subtasks of transformation and
deployment are:

• build model transformations that generate application code frag-
ments;

• generate source code fragments for utility functions and property
evaluators;

• manage the packaging and deployment on the target device.

3.2.4. Testing and validating
After the application has been deployed on the target device it

has to be tested if it adapts to changes in the execution context
in the desired manner. For this purpose the application developer
may  use a context simulator that is part of the MUSIC tool set, i.e.
the so-called MUSIC Studio.

This involves the following subtasks:

• testing the application’s functionality without adaptations;
• simulating context changes and testing the application’s adapta-
tion behavior.

The development of adaptive applications cannot be done fol-
lowing a strict waterfall model. Instead we  recommend an iterative
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evelopment approach. In particular when creating the different
odels, it is very likely that there will be a need to revisit mod-

ls that were built in earlier steps. Following an iterative and
ncremental development approach the models will be refined and
xtended in several iterations.

.3. Middleware architecture

An overview of the MUSIC Middleware architecture is depicted
n Fig. 7 including its adaptation control loop. As will be discussed
elow, this loop can be seen as an instantiation of the MAPE-K
odel, which has already been introduced earlier in this section, for

he domain of mobile and ubiquitous computing. The figure shows
he main components of the middleware, represented as rounded
ectangles, and their mapping to the elements of the MAPE-K
odel. The managed system includes the applications, as indicated

y the arrows connecting the MAPE loop to the application layer, a
ell as the computing and communication infrastructure they are

xecuting on and the context in which they are used, as indicated
y the arrows connecting the loop to the System services layer.

A main goal of the MUSIC project was to provide a widely
pplicable framework for the development of adaptive systems.
herefore an important concern during the design of the middle-
are architecture was to allow the customization of the framework

o application or application domain specific needs and to different
xecution environments, both hardware and software wise. This is
chieved by adopting a layered architecture in combination with

lug-ins. The lower layers provide abstraction from the underlying
echnology. The built-in components are replaced by – or comple-

ented with – technology specific plug-ins. The latter plug into
ell-defined interfaces in the middleware and can be provided
are architecture.

as part of applications. Plug-ins are shown in the figure as square
rectangles.

3.3.1. Kernel
The Kernel derives its name from the Microkernel pattern

(Buschmann et al., 1996) and implements an abstraction of the
underlying component model of the software being managed,
including basic operations for creating, killing, connecting and dis-
connecting components. It can be seen as a substrate on which the
MUSIC framework is instantiated on a device. The Kernel addresses
two  major concerns, namely to enable the management of appli-
cations built on different component models, and to enable the
dynamic (re-)configuration of the middleware itself. The compo-
nent model specific parts of the Kernel are isolated in a Capsule,
and it may  embed several capsules at a time, supporting different
component models.

3.3.2. System Services

The System Services component abstracts the computing and
communication infrastructure, and supports its use by both mid-
dleware and application components, as well as access to its state
and its configuration capabilities. More specifically the System Ser-
vices component is responsible for

• discovering other devices and the services they provide;
• binding to and communicating with remote components and ser-

vices;

• publishing local components and services and allowing clients

on remote nodes to use them. These capabilities enable both
distributed applications and the distribution of the MUSIC mid-
dleware;
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monitoring of the state of the resources of the hosting device and
its communication infrastructure;
access to the state of and to configuring the resources of the
master node and slave nodes in the adaptation domain.

The design of the System services uses the plug-in mechanism
o enable easy integration with different underlying technologies,
or example SOAP or RMI  for remote binding, and UPnP or SLP for
iscovery, and to interface with native APIs to access the resources
n a device, for example the CPU, the memory or the battery level.
rovided with necessary plug-ins for standard protocols, the Adap-
ation middleware may  take into account both services provided
y other MUSIC nodes and services provided by non-MUSIC nodes
i.e. nodes not running the MUSIC middleware) as eligible bindings
or service dependencies.

Providing access both to the current state of and operations to
onfigure devices, the System services can be seen as participating
oth in the monitoring and execution tasks of the MAPE-K model. In
rder to simplify the development and use of plug-ins, we chose to
roup all aspects of a resource or technology in one plug-in rather
han separating the monitoring and execution aspects as in the

APE-K model.
The Bundle manager is responsible for defining the set of appli-

ations to be managed by a MUSIC middleware instance, and the
omposition plans and component variants available for assem-
ling them. This can be done manually by a user through the
UI component, or automatically by other applications through

he Bundle manager interface. The deployment unit, called bun-
le, is a JAR file that may  contain both code and model elements.

 MUSIC bundle is a flexible deployment unit, which allows
undling and deploying individual components and composition
lans as well as full applications, thus enabling downloading of
eta-information (plans) separately from code. When bundles are

nstalled or removed on a node, this will be detected by the middle-
are, and will trigger updating of the affected models and possibly

daptation. This provides powerful support for component reuse
nd evolution of deployed applications and components.

The GUI component implements a graphical user interface for
anaging the MUSIC middleware and the adaptive applications.

t allows the user to install and remove bundles using the Bundle
anager, to start or stop applications using the Adaptation middle-
are, and to edit the user profile using the Context middleware.

.3.3. Context middleware
The Context middleware is responsible for monitoring the con-

ext and detecting and analysing context changes, as well as
roviding access to context information both to other components
f the MUSIC Middleware and to the applications. It encapsulates
he diversity of context information and maintains the Context
odel,  storing and providing uniform access both to the current

tate and history. Thus, with respect to the MAPE-K model, the Con-
ext middleware can be viewed as covering both the M and part of
he A tasks, and maintaining part of the K.

Context is understood in a wide sense and includes the software
eing managed and the hardware and network infrastructure it
xecutes on, as well as the user and its surroundings. The state
f the hardware and software infrastructure is monitored by the
ystem services, but made available as context information by the
ontext middleware.

When the Context middleware detects a change that might
ecessitate adaptation, it triggers the Adaptation middleware to
gure out and implement an appropriate reaction. The Adaptation

iddleware notifies the Context middleware about what con-

ext information is relevant for the adaptation of the currently
unning application. For instance, changes to context properties
entioned in utility functions or property predictors of deployed
 and Software 85 (2012) 2840– 2859 2849

applications cause a re-evaluation, and possibly adaptation of these
applications. Thus, the context-aware behavior of the applications
is realized by the coordinated work of both the Context middleware
and the Adaptation middleware (described below).

The Context middleware is designed as a pluggable architecture,
where individual context plug-ins are modeled as independent
components, explicitly defining their runtime dependencies on
each other via context types. This architectural design is motivated
by the need to cope with the openness and dynamic nature of the
envisaged ubiquitous computing environment. It supports the on-
the-fly integration of newly discovered sensors, following a new
“sensor as a service” design principle. The activation of the plug-ins
is implemented using an automated mechanism which monitors
the varying context needs of the applications and starts and/or
stops the plug-ins accordingly, thus achieving significant resource
savings (Paspallis et al., 2008).

There are two kinds of context plug-ins, Context sensors and Con-
text reasoners. Context sensors monitor directly observable context,
for example reading hardware sensor data, while Context reasoners
analyses data from several Context sensors or other Context rea-
soners and derive higher level context information. For example,
a Context reasoner could trigger adaptation planning only when
there is major differentiation in the network signal strength trend
(as it is computed by the corresponding context plug-ins) rather
than on every small change in the signal strength. This leads to
both cleaner code – in terms of simpler, more expressive utility
functions – as well as more efficient runtime operation – in terms
of less workload in the Adaptation middleware.

3.3.4. Adaptation middleware
The Adaptation middleware is responsible for adapting the soft-

ware in response to changes in the context, as detected by the
Context middleware, or by changes in the availability of compo-
nent realisations or external services, detected by the Kernel or
the System services. It groups middleware components depending
heavily on the Adaptation model,  which is a runtime representation
of the annotated architecture model provided by the application
developer. The Adaptation model is represented as types and plans
within the middleware. A plan represents a realization of a given
type, and thus can be bound to a role or a port with a matching type.
There are different kinds of plans representing different variability
mechanisms. An atomic plan represents a realization of an atomic
component and describes its ports and associated property predic-
tors, implicit dependencies on the hosting platform (e.g. platform
type and version), and a reference to the code, which realizes the
component. A composition plan represents an abstract composition
of components. Also in this case the plan describes its ports and
associated property predictors, but in addition the internal struc-
ture in terms of roles and ports and the connections between them.
A variant plan represents a possible setting of the configuration
parameters of a parameterized component.

The Adaptation controller coordinates the adaptation and basi-
cally implements the A, P and E tasks of the MAPE-K model. It first
calls the Adaptation reasoner to search the set of possible configura-
tions of the managed system for the best fit with the current context
(A). If this is different from the current configuration it invokes the
Configuration planner is to derive a script for the reconfiguration
to the preferred configuration (P). The script is handed over to the
Configuration executor, which executes the script using operations
offered by the System Services and the Kernel (E).

In order to avoid that an adaptation is immediately followed by
a new adaptation, the Adaptation controller will be suspended for

a short period of time after an adaptation has been performed. The
length of this suspension period is configurable at runtime.

Unlike in most other systems where the reasoning method
is fixed, the reasoning algorithm in the MUSIC middleware is a
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luggable component, allowing the tailoring of the middleware
o different needs. We  have implemented several variants with
ifferent properties: (i) The “brute force” variant combines the
odels of all running applications into one model and enumerates

ll possible configurations. This ensures always an optimal config-
ration, but scales poorly due to the combinatorial explosion of the
umber of configurations. (ii) The “serene greedy” variant (Scholz
nd Mehlhase, 2010) reasons separately on each application and
ssumes that resources are shared between applications following
he “greedy” principle. It also suppresses reasoning on applications
hich are not directly affected by the triggering change. This algo-

ithm performs and scales much better, but when resources are
carce, it will not always find the optimal solution. (iii) The adapta-
ion reasoning can be delegated to a more powerful remote node in
rder to speed up the computation and reduce the load on the mas-
er node. (iv) On PCs or servers it is also possible to use a reasoner
ased on constraint programming, where the adaptation model is
ewritten as a constraint programming problem which is solved
y a general purpose constraint solver (see Section 5.2 for further
etails regarding performance and scalability).

It has also been considered to translate the model into an exten-
ional representation of the mapping from context to configuration,
nabling a much more efficient lookup of the optimal configuration
n a given context. However, this would require the re-computation
f the mapping when variants appear and disappear. As such events
re assumed to be quite frequent in the kind of environments we
re targeting, this idea was discarded.

Replacing or relocating components at runtime requires to
anage their lifecycle with operations to stop and launch the

omponents, to connect and disconnect them, and to set configu-
ation parameters. Every application component must implement
n interface to support this lifecycle according to the application
equirements. For example, if the application needs to maintain
tate, the developer must implement this interface in a way that
nsures the retrieval and storage of the component state. This inter-
ace and lifecycle is based on the Component configurator pattern
Schmidt et al., 2000).

In the case of a distributed adaptation domain, an adaptation
ay  require reconfiguration both on the master node and on the

laves. In this case the Configuration planner splits the script into
atches for each node and the Adaptation controller distributes
hem to the local Configuration executor on each node. This design
as chosen in order to avoid excessive use of remote calls, which

re known to be far more costly than local calls.
Slaves may  serve several masters. To manage the sharing of

he resources of the slaves a special-purpose protocol is used. The
daptation controller will query the slaves about the resources they
re willing to share before invoking the adaptation reasoning, and
fter the completion of the reconfiguration it will inform the slaves
bout the estimated change in estimated resource usage. A slave
ill only engage in this protocol with one master at a time. In the

urrent implementations, the slaves share their resources accord-
ng to a first come first serve policy. However, as long as they adhere
o the protocol, they may  use any policy they want.

The SLA manager implements a custom, lightweight, MUSIC-
pecific SLA negotiation and agreement framework that enables
LA negotiation among MUSIC nodes. Together with the ability
f the service publishing and discovery mechanisms to sup-
ort QoS properties, this facilitates the coordinated adaptation of
ervice-based systems distributed on several adaptation domains
s discussed in Section 3.1.  Even if it is specific to MUSIC, the nego-
iation framework is extensible based on the plug-in mechanism,

hich provides means for adding specific client-side negotiation

apabilities based on alternative protocols. In particular, with the
urpose of negotiating with external, non-MUSIC service providers,
he MUSIC middleware can be extended with client plug-ins which
s and Software 85 (2012) 2840– 2859

comply to a specific standard, e.g. WS-Agreement (Andrieux et al.,
2007).

The Profile manager manages distributed adaptation domains,
where a master device also controls the adaptation of a number of
slave nodes. Nodes are set up manually as master or slave at start-up
of the middleware or at runtime by means of the GUI (see below).
Slave nodes publish a service that allows the master to discover
them, access the state of their resources, and instantiate compo-
nents on them. The Profile manager on the master dynamically
selects the slaves to include in the adaptation domain. The selec-
tion algorithm is implemented by a plug-in, the Profile reasoner,
allowing application developers to provide an application domain
specific algorithm. The default algorithm is to include all discov-
ered slaves. The actual deployment of components is decided by
the Adaptation reasoner based on the Adaptation model.

4. Implementation

Proof of concept prototypes was  considered an important and
indispensable part of the MUSIC work programme in order to show
the feasibility of the conceptual design, as described in the previ-
ous section. This section discusses implementation aspects of the
MUSIC framework and methodology.

4.1. Modelling language

The Unified Modelling Language (UML) was chosen as a founda-
tion for the adaptation modelling. A newly developed MUSIC UML
Profile provides a range of stereotypes and associated tagged values
to specify the application architecture, its variation points, compo-
nent and service properties, their context dependencies and the
links between the domain model and the adaptation model. The
profile contains three packages extending the UML2.1 meta-model,
i.e. Types, Realizations, and MiddlewareExtensions.  In the following
we briefly describe these packages, and for one package, i.e. for
Realizations, we  provide a diagram including more detailed expla-
nations. This should suffice to understand the principles of our
modelling language approach. Further details can be found in the
deliverables of Work Package 6 at ist-music.berlios.de.

Types: This package contains modelling concepts for compo-
nent type, property type, application type and service type. They
are modeled as UML  classes. For a property type it is important to
know whether it refers to a resource or a context entity. A specific
isResourcePropertyType tag is used as an indication. An application
type is a specialization of a component type.

Realizations: An excerpt of the UML  profile for modelling real-
izations is shown in Fig. 8. The stereotype «mRealization» is used in
the profile as super-class of the realization stereotypes, but it will
never be used explicitly in an adaptation model. The realization
details of a component type or an application type are contained in
the stereotypes «mAtomicRealization» or «mCompositeRealization».
A composite realization represents a variation point for the adap-
tation reasoning, as explained above in Section 3.

In case of a type being realized by a discovered service, a differ-
ent set of information is needed and declared in the stereotype
«mServiceInfo». Moreover, in case of parametric adaptation the
realization may  vary depending on the value of some applica-
tion parameter. This is modeled in stereotype «mRealizationVariant»
specifying the range of parameter values. Deployment of com-
ponents to nodes can also be specified using a stereotype
«mRoleDeployment», which is not shown in the diagram for the sake

of clarity.

A property predictor is modeled as a UML  class, where refer-
ences to the related property type, involved context entities, role,
etc. are included as tagged values. A utility function is modeled as a

http://ist-music.berlios.de/
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pecialization of property predictor, whereby the value of the prop-
rtyType tag is ignored. Note that the model transformation will
enerate only source code fragments for property predictors and
tility functions. These fragments need to be completed manually.
o facilitate this step, pseudo-code and implementation guidelines
an be inserted as a comment into the model.

A context query is associated with a context-related prop-
rty type. Such queries can be modeled both as UML  classes
nd as UML comments. A resource query is associated with a
esource-related property type. Tagged values are used to specify
he context/resource entity, scope of the context information, its
epresentation, etc.

Middleware extensions:  In the current version of the modelling
anguage this package mainly supports the modelling of context
lug-ins that encapsulate context sensors and reasoners. If more
elf-adaptation features of the middleware itself were to be added
o the MUSIC framework, this package would be extended by the
orresponding modelling concepts.

.2. Tools

In order to take full advantage of model-driven development,
ppropriate tool support is a must. Tools are required to create the
pplication adaptation model, generate source code, test and val-
date, etc. The MUSIC Studio is a suite of tools integrated together
o help the application developer in creating adaptive applications
ased on the MUSIC middleware. This integrated tool environment

s another innovative contribution of the MUSIC project. The suite

ontains a mix  of selected pre-existing (preferably) open source
ools as well as custom developed tools for the MUSIC project.
he MUSIC Studio is embedded into the Eclipse development

Project Environment
OWL2JavaTrans

forma�on

CQLEditor

UML2JavaTrans
forma�on

Modell ing

Context
Simula�on

PropertyPredict
orMeasurem. Visualiza�onSta�cVali da�on

Fig. 9. MUSIC Studio Overview.
 for modelling realizations.

environment and exploits EMF  and several related tools. Fig. 9
shows the constituents of the MUSIC Studio.

The MUSIC Studio project environment assists the developer in
setting up a project for developing MUSIC applications and compo-
nents, and includes templates and wizards which set up all required
files for a project involving the full tool chain of the MUSIC Studio.

The Modelling tool is needed for creating and editing UML mod-
els of MUSIC applications, based on the newly developed MUSIC
UML profile. Many UML  tools could be used here. However, in
accordance with the general open source policy of MUSIC, the open
source modelling tool Papyrus is preferred.

The CQL Editor provides editing support for the Context Query
Language (CQL) developed as part of the context management
infrastructure (Fra et al., 2011). CQL is an XML-based language
whose syntax is described by an XML  Schema Definition (XSD). This
means that most existing XML  editors that understand XSDs, can
provide basic CQL support.

The UML2JavaTransformation tool transforms variability mod-
els created with the Modelling tool to a representation useable by
the MUSIC middleware. We employ the widely used MOFScript
transformation builder to develop transformation scripts for the
transformation of the application variability model to Java source
code.

The OWL2JavaTransformation tool transforms the MUSIC Service
Ontology, expressed in OWL, to Java code (see Fig. 9). In general,
there is a choice of suitable third party (open source) tools available
for this transformation. In any case, they need to be customized for
the MUSIC modelling and transformation requirements.

The MUSIC Static Validation tool checks MUSIC application mod-
els in order to detect errors and omissions. The main goal is to
ensure that developers have filled in what is needed for a working
adaptation model. It helps catching design errors that are intro-
duced in the code and would otherwise be manifested during
runtime execution, such as those related to the property evaluation
(including utility functions). Examples of validation are: whether
the related context values or property values are defined, whether
the context value types and property value types are correct, and
whether required files are correctly defined. Moreover, it may be
needed to enable early testing of the values of property predictor

functions. There is a special tool for this, called the PropertyPredic-
torMeasurement tool.

The Context Simulation tool is part of a prototype test and simula-
tion environment that enables developers to observe and analyze
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he effects of context changes and adaptations, and so carry out
daptation tuning. A Visualization tool provides easy to grasp visual
nformation on the state of the middleware and applications and
heir operations.

.3. Middleware implementation

The reference implementation of the MUSIC middleware was
uilt upon readily available technologies, thus letting the con-
ortium focus on implementing the distinctive features of the
roject. In particular, Java and the OSGi component framework
ere selected as the foundation of the prototype implementation

n order to meet the most relevant requirements for the MUSIC
mplementation:

Open source implementation aligned with a general open source
strategy for the MUSIC project.
Suitability for resource-constrained devices,  i.e. embedded and
mobile devices.
Multi-platform support for a range of devices (smartphones, PDAs,
laptops, PCs) and operating systems.
SOA support to dynamically discover and integrate services.

The Java version J2SE 1.4 was selected as a base but it is con-
trained to the common subset with Java ME  CDC in order to assure
ompatibility of the implementation with both Java frameworks.
USIC is also available on Android, supporting the Dalvik VM.
OSGi has established itself as the dynamic module system for

ava. It is a service-oriented component framework. The success of
SGi may  be attributed to its relative simplicity, efficiency, open-
ess, and portability. In particular, OSGi

is a standard, consolidated (R1 in 2000) and in constant evolu-
tion (at the time of writing the latest revision was  R4.3 from
September 2011)
was designed for resource-constrained devices
offers a service-oriented, component-based middleware
supports deployment on-the-fly
provides remote management
includes a useful set of standard services
is available in several open source implementations.

OSGi offers a class-loading mechanism to dynamically
oad/unload modules (bundles in the OSGi terminology). This
eature is particularly interesting to support the plug-ability of
he MUSIC architecture. Plug-ability is required to tackle the het-
rogeneity in communication and service discovery technologies.
t also allows the integration of an extensible set of customized
ontext sensors and adaptation algorithms.

The MUSIC middleware is structured in different components
bundles) collaborating together by importing and exporting Java
ackages, and by providing and consuming services. The middle-
are can be deployed in a heterogeneous execution environment

n top of OSGi as depicted in Fig. 10.  The portability of the reference
mplementation is based on the Java slogan “Write once, run any-
here”. MUSIC also tries to minimize the mobile fragmentation that

omplicates the development of applications in mobile devices. In
act, MUSIC offers a common framework for mobile devices and
on-mobile devices.

The reference implementation can be hosted by any device sup-
orting Java 1.4, Java ME  CDC (e.g. phoneME Advanced) or Android.

specially the advent of Android OS turned out to be a great oppor-
unity to extend the installation base for MUSIC. The middleware
nd two applications are now available for free in the Android mar-
et.
Fig. 10. The reference implementation of the MUSIC middleware.

In order to be widely acceptable and stimulate the largest pos-
sible uptake, the MUSIC reference implementation is based on
open standards, implemented in Java and released under an open
source license not preventing commercial reuse, while requiring
new extensions to the MUSIC framework itself to be released as
open source. In this way, the development of the framework will
continue, driven by its users, long after the end of the MUSIC
project.

5. Evaluation

The implementation of the MUSIC development framework
described in the previous section has been used for an evaluation of
our approach based on trial development and testing of the devel-
oped adaptive software. In this section we describe the trials and
discuss the findings in relation to the challenges stated in Section
2.

5.1. Experimentation

In an effort to confirm the values of the MUSIC development
methodology and framework, we used both an internal and exter-
nal experimental evaluation approach. In addition the framework
has been used in several follow-on projects by different MUSIC
partners.

The internal experiment included the development and testing
of a collection of trial applications by developers from the MUSIC
partner organizations. This collection includes the TravelAssistant
and the InstantSocial applications used as examples in this paper.
In addition there is the PRM, the Conferencing, the FirstAid and the
Satcom applications. PRM is an assistant for people with reduced
mobility requiring assistance by metro staff to get on and off the
train. It allows the staff to track the location of the passenger and to
exchange messages with them. It demonstrates the context distri-
bution capabilities of the framework, letting the passengers share
their location with metro staff. Conferencing and FirstAid is a pair of
applications aiming to assist when passengers are injured or suffer
indisposition during travel and where medical first aid is required.
It assists both with first aid instruction and with establishing con-
tact with the metro staff and with locating and establishing contact

with people with relevant medical competence in the vicinity. The
SatCom application is unrelated to the travel scenario. It assists
satellite antenna installers with aligning the antennas, dispatching
jobs to installers, and navigation to customer sites.
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The experience of the application developers regarding the use
f the modelling language and tools was collected using ques-
ionnaires. Nine developers with experience ranging from 4 to 13
ears participated. The functioning and performance of the mid-
leware were tested in the lab running test scenarios realized
hrough simulated context changes. During the tests the correct-
ess of the adaptation behavior was checked and data for various
erformance parameters were collected and analyzed. At the end
f the project the trial applications were demonstrated success-
ully to a group of journalists in and around the Paris Metro during
egular day-time operating hours. The journalists participated in
he demo by using the trial application on devices handed out to
hem.

In addition to the trial applications, a few artificial applications
ere created to test certain aspects of performance and scalability.
oth in the lab tests and the demonstration we  used the “serene
reedy” variant of the planning algorithm.

Further details regarding these experiments and the demo can
e found in public project deliverables at ist-music.berlios.de.

One external experiment was done at the University of Cyprus. It
ncluded undergraduate students who used MUSIC as part of a ubiq-
itous computing course. Students were first given an introduction
o the OSGi framework, development of context aware applications
sing “brute force” programming, and – finally – use of (a sub-
et of) MUSIC, all in approximately 10 weekly sessions of 90 min
ach.

After covering basic OSGi concepts, the students were instructed
o develop context-aware applications using so-called “brute force”
rogramming, i.e. developing using just the core language fea-
ures (provided by Java itself, as well as the OSGi framework).
hen, in the last group of sessions, the students were tutored the
asic functionality of MUSIC with emphasis on building and uti-

izing context plug-in bundles. At that point, the students were
sked to re-implement their context-aware applications. This sec-
nd step included the option of reusing context plug-ins available
n the MUSIC repository or provided by other students, highlighting
he middleware’s potential for code reuse. Last, their applications
ere finalized (i.e. by adding the UI and business logic), and were

ound to the middleware for asynchronous notification of context
hanges.

The evaluation was completed in the form of questionnaires,
sking the developers and the students who got hands-on-
xperience with MUSIC to report their experience. The format of
he questionnaires, as well as the cumulative answers received, are
vailable in Appendix B of Paspallis (2009).

At the University of Kassel the framework has been adopted
nd used in a follow-up research project by application developers
ho were not involved in the MUSIC project. The objective was to
evelop a prototype of a new adaptive mobile social networking
pplication for Android phones on top of the MUSIC middleware.
ive groups of undergraduate and graduate students, advised by
xperienced MUSIC developers, worked on different variants of
he application during a semester project. Together they built the
daptation model. At the end of the semester questionnaires and
nterviews were used to find out about the experiences with the
evelopment framework and methodology.

In a project at SINTEF the MUSIC technology is being used
s a central component in the development of an experimental
evelopment platform for internet-of-things applications, with a
pecial focus on simplifying the deployment and evolution of such
pplications. The idea is to exploit the self-adaptation and extensi-
ility capabilities of MUSIC to build self-configuring and extensible

oftware which adapts semi-automatically as things, services and
pplications enter and leave the network. Application areas consid-
red include ambient assisted living and sub-sea sensor networks
sing acoustic communication.
 and Software 85 (2012) 2840– 2859 2853

5.2. Findings

This section reports our findings, as they were identified from
the different experiments conducted as part of the MUSIC project.
Since the different experiments provided mostly consistent results,
the overall findings are reported here – with discussions of signifi-
cant deviations, where appropriate.

5.2.1. Learning and using the methodology, modelling notation
and tools

Throughout its development, MUSIC was guided by the guide-
lines summarized at the end of Section 2. Most notably, it aimed
at making it easier for developers to develop and maintain large
and complex context-aware, self-adaptive applications. The find-
ings from the experiments indicate that:

• The framework provides very comprehensive and effective devel-
opment support while also removing a substantial amount of
work from the shoulders of the developers.

• The tight alignment of the methodology with the middleware
works very well.

• The flexible plugin-architecture of the context and the adaptation
middleware shows clear advantages when individual applica-
tions require their own specific solutions (e.g. specialized Context
sensors and context data analysis, communication protocols, or
adaptation reasoning).

• The integration into Eclipse has proved successful and effective.
• The MUSIC demonstrators are helpful in getting acquainted with

the framework and help serve as blueprints for new applications.

For every research endeavor, discovering the drawbacks of a
certain methodology, model or tool is equally important as finding
its advantages. As such, the experimentation has helped us identify
the following problems and opportunities for improvement:

• The MUSIC framework is quite extensive and thus has a steep
learning curve. For instance, newcomers had to spend a lot of time
familiarizing themselves with many necessary concepts before
they were able to develop their own  “hello world” application.
Providing tutorials helped to mitigate this problem, but the lat-
ter are limited to explaining the methodology, whereas limited
information is provided on the handling of the framework. A more
elaborate user manual would help overcome this drawback.

• Many developers have questioned the effort spent on adaptation
modelling because most applications have only a few variants
that might as well be handled without a sophisticated adapta-
tion modelling environment. Ideally, a solution like MUSIC should
scale its complexity alongside the complexity of the underlying
problem (e.g. the developed application). The complexity of mod-
elling is partly due to limitations in the UML  profiling capability,
and the problem could be mitigated by providing a DSL (domain
specific language) more like the abstract notation used in the
examples in this paper, and a special purpose modelling tool.

• As an open-source project, MUSIC focused its effort on building
upon other public domain solutions. However, that turned out to
cause problems in some cases because these components were
not mature enough. An example is the Papyrus UML  tool which
caused some frustrations among the developers and led to mod-
elling mistakes and incorrect UML  models, and consequently to
incorrect model transformations. A more mature UML  tool would
have provided a better experience and a lower entrance burden,
or even better, a DSL with its own tool as mentioned above.
Besides the above common findings, a more specialized result
refers to the experiment at the University of Cyprus. That exper-
iment was limited to the Context middleware part of MUSIC. The

http://ist-music.berlios.de/
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eedback from the students was favorable for the presented devel-
pment methodology and underlying framework (compared to
he so-called “brute force” approach). In particular, 11 of 12 stu-
ents stated that they would like to use the MUSIC framework –
s opposed to a brute-force approach – had they been assigned
he development of additional context-aware applications. Similar
nswers were received also from the internal developers who com-
leted the questionnaires. It could be argued that the main finding
rom this exercise is that it has been proved that building context-
ware applications adds significant complexity (as expected) and
lso that providing a methodology and an appropriate middleware
an help improve the capacity and ability of the developers.

In general, it turned out that the learning process for the MUSIC
ramework initially requires a rather large effort and is hindered by
everal more or less severe obstacles, mostly due to issues related
o the handling of tools and middleware. However, after hav-
ng climbed the initial hurdle the development methodology and

iddleware infrastructure as such were found to be very appro-
riate and effective for the development and operation of complex
ontext-aware, self-adaptive applications.

.2.2. Correctness and performance at runtime
Generally, the testing of the trial applications confirmed that

he envisaged adaptation behavior was achieved, although in most
ases some tuning of the Context reasoners, property predictors,
nd utility function during testing was necessary. In the Kassel
xperiment, which took place after the MUSIC project had finished,
t was observed that the quality of the middleware prototype is very
ood; no severe bugs were detected by the students.

Some results from the measurement of the processing over-
ead for the adaptation planning and reconfiguration are shown in
able 1. The measured application is TravelAssistant, and the plan-
ing algorithm is the “serene greedy” variant. First we measured
ravelAssistant running alone and then with InstantSocial running
n the background. A sequence of events roughly corresponding to

hat happens in the scenario was simulated. The tests were per-
ormed on a Google Android G1 smartphone with MS  Windows
Cs acting as slave and service provider nodes, all connected in a
LAN. All measurements are given in milliseconds. Note that the
easurements are done by means of logging code, which according

o our experience degrades the performance by 20–50%. Thus the
verhead experienced by a user will be 20–50% less than what is
easured.
During adaptation planning, the application still runs. However

t competes with the middleware for the CPU, so its responsiveness
ay  suffer. As can be seen from the measurements this typically

asts for a few seconds each time an adaptation planning is trig-
ered. When adaptation planning has decided on an adaptation,
he application is paused while reconfiguration takes place. This
lso typically lasts a few seconds.

There is not much difference in the performance for one or two
pplications. This is because the context changes that affect the
ravelAssistant are different from those affecting InstantSocial, and
euristics applied by the planning algorithm avoids adapting appli-
ations not affected directly unless there is a shortage of resources.
imilar tests with the First Aid and Conferencing applications on
indows Mobile phones of the same class gave similar results.
In the demo we also used Google NexusOne phones (1 GHz pro-

essor, 512 MB  RAM), which had then just arrived on the market.
hile rehearsing for the demo we did similar measurements on

his phone during a trip on the Paris metro with several (up to 5)
hones running both TravelAssistant and InstantSocial, and devices
oining and leaving. Even if this test involved more nodes and active
se of InstantSocial, the results showed that planning and recon-
guration was about halved compared to the experiment with
he G1. During the course of the demo walkthrough we had 36 Ta
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Table 2
Execution times of the “brute force” and the “serene greedy” algorithms.

1st Launch 2nd Launch 3rd Launch 4th Launch
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“Brute force” algorithm 78 ms  40,765 ms  >20 min  Not tested
“Greedy” algorithm 156 ms 141 ms 125 ms  141 ms

daptations during nearly 2 h of runtime. Average adaptation time
as 3375 ms  for adaptations with a reconfiguration and 1084 ms
ithout. The maximum was about 9 s whereas the minimum was

nly 241ms. It is worth noting that in this rather realistic test, the
raction of the total runtime where the middleware adds a signifi-
ant load on the device is small, around 1%.

The observed memory footprint of the middleware is approx-
mately 17 MB,  and a typical (in our tests) application on top of

USIC adds approximately 12 MB.  The observed start-up time for
he middleware was up to approximately 45 s, depending on device.
or example the longest time was observed on the Android G1,
hile it was much shorter on a Nexus One. Although this can be con-

eived as somewhat slow, we consider this is a lesser problem since
he middleware is supposed to run continuously and started only
hen the device is switched on. Platforms, such as Android, can be

et up to automatically start the middleware when the device is
ooted.

From our experiments we conclude that for today’s mobile plat-
orms the middleware is a bit heavy-weight in terms of memory
emand and start-up time, and also processing overhead during
pplication execution. However, in practice, during the demo, the
verhead of the middleware did not affect the responsiveness of
he application in a disturbing way.

.2.3. Scalability
Our adaptation planning approach basically works by evaluating

ll possible configurations and selecting the one with the high-
st utility. Due to the combinatorial explosion, the computational
omplexity of this algorithm is exponential in the number of varia-
ion points. Thus, this approach has an inherent scalability problem.
owever, we observed during the development of the trial appli-
ations that each application typically did not have more variants
han could be handled with acceptable performance. Performance
roblems occurred with the “brute force” variant of the algorithm
hen running several applications concurrently. We  also noted

hat the need to coordinate the adaptation of different applications
nly stemmed from competition for shared resources, and that dif-
erent applications tended to be affected by different context. The
serene greedy” variant of the algorithm exploits this to improve
he scalability as explained in Section 3.3.2. In the best case, when
here is no shortage of resources and the applications are affected
y disjunctive contexts, the planning time of the “serene greedy”
lgorithm is unaffected by the number of running applications, as it
ill only replan the directly affected application. In the worst case,

he “serene greedy” algorithm will replan all the running appli-
ations and the planning time will be proportional to the sum of
he number of variants of the running applications, rather than the
roduct, which is the case for the “brute force” algorithm.

A comparison of the performance of the two variants of the plan-
ing algorithm is shown in Table 2. The measurements were done
ith several instances of a manipulated version of TravelAssistant
here additional versions of the components were added artifi-

ially increasing the number of variants to 2048. The instances were
aunched one by one and we measured the planning time for the
nitial configuration of the application. This corresponds to the best

ase behavior of the “serene greedy” algorithm. The test was  run
n a laptop, and that is the reason that the observed planning times
re significantly shorter than those observed on the smartphones,
lthough the test applications have more variants.
 and Software 85 (2012) 2840– 2859 2855

This shows that the scalability of the “brute force” algorithm
is insufficient in multi-application scenarios, but that the “serene
greedy” algorithm solves this problem.

Another opportunity for improvement is early filtering (Brataas
et al., 2007). In the trials we have seen that the utility functions often
contain code to exclude certain combinations in certain contexts
based on the properties of individual components or services. This
may  be exploited to exclude invalid variants in a more efficient way
and thus reducing considerably the number of variants that has to
be evaluated during adaptation planning.

We also did some experiments with the adaptation planner
based on constraint programming. The solver can apply different
heuristics to reduce the solving time, and for the most efficient
ones the solving time is linear with the number of variation points.
Admittedly, this comes at the expense of no guarantee for an opti-
mal  choice. However, in our tests the utility of the chosen variant
were very close to the utility of the optimal variant (between 95
and 100%). This test was done with artificial adaptation models, not
with the trial applications. Still the results indicate that it is possible
to apply search heuristics that significantly improve scalability.

5.2.4. Reusability and evolvability
A prominent feature of the MUSIC approach is the modularity

of the adaptation model. Components and compositions with their
adaptation models can be developed separately and bundled and
reused in different systems. Furthermore, already deployed and
running applications can be extended or modified by deploying
new bundles representing new alternative implementations at all
levels of the design, and by retiring already deployed bundles. The
trial applications have demonstrated that this works as intended,
but since the trials only covered the initial development phase we
could not really assess the value of this feature.

5.3. Threats to validity

Our evaluation of the appropriateness and learning effort of
the development framework is based on developers that were
participating in the project and students, and in all cases they
had support from experts taking part in the development of the
framework. Some of the trial application developers also partici-
pated actively in the development of the framework and thus were
experts themselves. This may  have biased their assessment in a
positive direction. On the other hand, the assessment was  based on
experience with a technology under development, with immature
and lacking documentation, which may have caused a bias in the
other direction.

Our experiments covered only the initial development phase
of the trial applications. It is widely accepted that model based
development approaches and separation of concerns pays off most
in later phases of the software lifecycle. The same holds for the
support for component reuse and for dynamically extending and
modifying both the functionality and the adaptation behavior of
the applications.

Finally there is the issue of the representativeness of the trial
applications and the scenarios used for the test. There is of course
the possibility that both the applications and the scenarios are too
simple to really assess the applicability of the MUSIC framework.
Regarding the applications, although they are fairly simple, their
adaptation behavior is not trivial and requires the consideration of
several context and resource properties and the balancing of con-
flicting concerns. Regarding the test scenarios, we  believe they are
staged in a typical and challenging environment for mobile com-

puting, and that they represent typical usage examples for mobile
devices already emerging as common practice.

In conclusion we  believe that our evaluation has demonstrated
the feasibility of the MUSIC framework, and that it to a large extent
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eets important challenges related to the development of adaptive
oftware. However, it has also identified some problem spots where
he framework needs further refinement.

. Related work

Context-aware and self-adaptive applications that are able to
dapt to context changes have been the subject of many projects
ver the years. These projects differ in their technical approaches
nd scope, as well as in their application domains. In this section
e compare MUSIC to a few typical representatives of the many
rojects that have tackled context-aware adaptation from different
ngles.

.1. Context-awareness

Following Mark Weiser’s introduction of his vision of Ubiq-
itous Computing (Weiser, 1991) context-aware computing has
een actively studied since at least the mid-nineties. Initially,
he research was concerned primarily with stand-alone location-
ware applications (Long et al., 1996; Want et al., 1992). However,
s the interest for context-awareness was extended to cover a
uch wider domain of context types and uses, the focus naturally

hifted toward building frameworks providing support for general
ontext-awareness.

Perhaps the most popular of those is Dey’s Context Toolkit
Dey, 2001). When it was first introduced the Context Toolkit was

 pioneering approach. The basic idea was to simplify the devel-
pment of context-aware applications by enabling the reuse of
pecialized components, in a similar way to how widgets facili-
ate the development of advanced graphical user interfaces. While
he Context Toolkit was based on reusable code, it was limited in

 number of respects: First, applications were assumed to inte-
rate their own context management code, whereas in MUSIC
his code is external (embedded in the middleware). Notably, this
mplies that the Context Toolkit could not facilitate context reuse
y concurrent applications running on the same device. Second, the
ontext Toolkit management code was rather rigid itself, whereas

n MUSIC individual context plug-ins enabled automatically start-
ng or stopping context acquisition and processing on demand, thus
ptimizing resource utilization.

The Context Information Service (CIS) (Judd and Steenkiste, 2003),
eveloped by and used in Aura (Sousa and Garlan, 2002), provided

 database approach for context-aware applications where queries
re encoded in a SQL-like language. Arguably, one of the advantages
f this approach was that it delegated some of the power of tradi-
ional Database Management Systems (DBMS) to context clients,
ia a SQL-like query language. Nevertheless, and unlike MUSIC, CIS
as limited in terms of controlling the activation and deactivation

f various – distributed – context providers, making it difficult to
ptimize resource utilization.

The Context Modelling Language (CML), proposed by Henrick-
en and Indulska is a graphical modelling approach which was
sed as a tool to assist designers with the task of exploring and
pecifying the context requirements of a context-aware application
Henricksen and Indulska, 2006). This model defines constructs for
ypes of context (in terms of fact types), their classification (i.e.
hether it concerns sensed, static, profiled or derived context),

ssociated quality metadata and dependencies amongst different
ypes of context. However, while the CML-based context model is

uite powerful, it is also significantly complex, making its adoption
articularly difficult. Furthermore, the authors do not consider dis-
ribution of context in their requirements, and they do not discuss
ow it could be enabled using CML.
s and Software 85 (2012) 2840– 2859

Finally, the authors of (da Costa et al., 2008) propose a Gen-
eral Software Architecture for Ubiquitous Computing,  which defines
many requirements commonly found in the literature, such as: het-
erogeneity, scalability, dependability, spontaneous interaction, etc.
The MUSIC middleware has noted these requirements and satisfied
most of them. For instance, heterogeneity is met at multiple levels:
hardware heterogeneity is implicitly supported by the underlying
Java/OSGi middleware (and has been practically proven by deploy-
ing applications on both desktop, windows mobile and Android
devices), while context model heterogeneity is supported via an
elaborate ontology-based model (Wagner et al., 2008). An elabo-
rate discussion of these requirements in the context of MUSIC is
available in (Paspallis, 2009).

6.2. Self-adaptation

McKinley et al. (McKinley et al., 2004) argued that foundations
from autonomic computing along with advances in software engi-
neering form the basis for most of the existing adaptation solutions.
Furthermore, Satyanarayanan (2001) argued on how pervasive
computing builds on foundations of distributed computing, shares
the same requirements with mobile computing and augments both
by introducing new capabilities and requirements. In this section,
we present a few representative works which are related to our
approach. Far more extensive surveys of self-adaptation software
exist in the literature, such as (Salehie and Tahvildari, 2009) and
(Kakousis et al., 2010).

As mentioned in the Introduction of this paper, the MADAM
project was a direct precursor of MUSIC. MADAM addressed adap-
tation in mobile computing scenarios from both the theoretical and
the practical perspective and provided several innovative results
acting as a foundation and starting point for MUSIC (Geihs et al.,
2009a). MUSIC goes far beyond MADAM in tackling ubiquitous
computing environments that are characterized by inherent open-
ness, heterogeneity, and dynamic service discovery and binding.

CARISMA (Capra et al., 2003) is a mobile computing peer-to-
peer middleware that exploits the principle of reflection to support
the construction of context-aware, adaptive applications. CARISMA
uses a microeconomic-inspired mechanism for conflict resolution
in mobile settings, which relies on a particular type of sealed bid
auctions for conflict resolution while utility functions are used for
incorporating user preferences in the resolution mechanism. In
contrast to MUSIC, CARISMA focuses on adaptation of middleware
level services. Planning in CARISMA consists of choosing among a
handful of predefined rule based adaptation policies (referred to
as application profiles) using utility functions and resolving con-
flicts between policies using an auction-like procedure. While the
adopted rule based policies are natural and simple to use, there
are some drawbacks compared to MUSIC’s use of utility functions.
Firstly, rules provide less transparency to the developer by requir-
ing reasoning in terms of lower-level reconfiguration actions rather
than architectural design with variation points, In MUSIC, the lower
level reconfiguration actions are automatically determined by the
middleware. Also, adaptation in MUSIC is QoS (or property) driven
while the CARISMA rule based policies do not consider prediction of
non-functional properties. Furthermore, CARISMA handles only a
fixed number of adaptation policies whereas the utility function
approach of MUSIC allows choosing the best adaptation among
an open-ended range of alternatives, both fine grained and course
grained, that are automatically derived by the adaptation middle-
ware itself. Finally, MUSIC’s utility function approach allows for
dynamically adding or removing components and plans without

requiring a complete restructuring of the deployed applications.

Gomaa and Hussein have studied the dynamic reconfiguration
problem (Gomaa and Hussein, 2004) and proposed reconfigura-
tion patterns associated with common architectural patterns. These
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atterns describe how to deal with bringing the system to a qui-
scent state where it can be reconfigured and to transfer the state
nformation. In MUSIC this is to a large extent left to the developers
s part of implementing the reconfiguration interface of reconfig-
rable application components. Thus the proposed patterns will be
seful for developing applications based on the MUSIC framework.

The self-adaptation techniques proposed by the RAINBOW
pproach (Garlan et al., 2004) are similar to MUSIC in that they
ttempt to separate adaptation from application logic concerns.
AINBOW extends architecture-based adaptation by adopting
rchitectural styles. Such styles are used to tailor the adaptation
nfrastructure by encoding the developer’s system-specific knowl-
dge, including adaptation strategies and system concerns. The
esulting situation-action rules are scored using utility preferences
pecified for the quality dimensions, where the adaptation manager
elects the highest scoring strategy. However, RAINBOW appears
o have based its adaptation strategies on situation-action rules,
hich specify exactly what to do in certain situations. MUSIC

lso uses utility functions, but to score application variants. When
 new variant is selected, the adaptation steps necessary to get
rom the current variant to the selected one are derived by the

iddleware.
The Aura project (Sousa and Garlan, 2002), which was  built on

he legacy of Odyssey and Coda, targeted primarily pervasive appli-
ations. For this reason it introduced auras (which correspond to
ser tasks) as first class entities. To this direction, it categorizes
he techniques which support user mobility into: use of mobile
evices, remote access, standard applications (ported and installed
t multiple locations) and finally use of standard virtual platforms
o enable mobile code to follow the user as needed. Unlike Aura,

USIC focuses on specifying the internal architecture of mobile
pplications, aiming at enabling context-aware adaptive behavior
ia middleware support. Similar to MUSIC, Aura integrates so-
alled staging servers to off-load resource intensive computations
rom mobile devices and to improve performance when accessing
emote data sources. Similarities also exist in the overall archi-
ecture where Aura defines a Context Observer, for observing and
eporting context, comparable to MUSIC’s Context middleware, as
ell as a Task Manager (PRISM) and Environment Manager, for rea-

oning and planning the adaptation based on the available services,
omparable to MUSIC’s Adaptation middleware.

Also related to Aura is research on an extensive resource prop-
rty prediction model, called anticipatory configuration (Poladian
t al., 2007), that adheres to the specific application, task and
ervices model of Aura. In MUSIC we have tailored the property
rediction model specifically to the compositional adaptation of
ontext-aware component-based applications by facilitating the
efinition of predictor functions over the properties of the context
nd the involved application components, whereby we have put
ore emphasis on execution performance than on precision of the

redictor functions.
MOCAS (Model of Components for Adaptive Systems) proposed

 generic state-based component model which enables the self-
daptation of software components along with their coordination
Ballagny et al., 2009). Unlike MUSIC, MOCAS focuses on the behav-
oral adaptation of the components themselves. Each component
mbeds a UML  state machine to realize its behavior at runtime. It is
nstalled in a container managing the adaptation process and ensur-
ng its consistency. Adaptation is triggered when invariants related
o the component’s business properties are violated. The compo-
ent supports updates of its specification at runtime. In MUSIC
uch behavioral adaptations can be achieved by architectural adap-

ation, i.e. by binding to an appropriate component or service that
xhibits the desired modified behavior. In addition MUSIC supports
ther adaptation mechanisms, such as deployment adaptation and
evice adaptation.
 and Software 85 (2012) 2840– 2859 2857

Menasce and Dubey (2007) propose an approach to QoS broker-
ing in SOA. Consumers request services from a QoS  broker, which
selects a service provider that maximizes the consumer’s utility
function subject to its cost constraint. The approach assumes that
service providers register with the broker by providing service
demands for each of the resources used by the provided services
as well as cost functions for each service. This approach is of inter-
est both from the viewpoint of the consumer and the provider.
While the client is relieved from performing service discovery and
negotiation, the provider is given support for QoS management.
This approach, however, requires the client device to be able to
access the broker, which is not always possible in ubiquitous envi-
ronments. Furthermore, it assumes that the consumer is able to
determine the expected service properties. MUSIC, on the other
hand, considers the offered properties as alternatives in order to
determine the best application configuration, and in this way it
enables the client to adapt to the service landscape.

Adaptive Service Grids (ASG) is a more recent open initiative that
enables dynamic composition and binding of services, and which
is used for provisioning adaptive services (Kuropka and Weske,
2008). Compared to the MUSIC planning-based middleware, ASG
focuses only on the planning per request of service workflows with
regards to the properties defined in the semantic service request.
Thus, ASG does not support a uniform planning of both components
and services as MUSIC does.

Finally, the MOdel-based SElf-adaptation of SOA  systems
(MOSES) (Cardellini et al., 2011) approach aims at the intersection
of SOA systems and self-adaptation. At its core, and similar to many
other approaches (including MUSIC), MOSES follows the MAPE-K
reference model, using utility functions for adaptation decisions.
Notably, and also similar to MUSIC, MOSES exploits the flexibil-
ity of its utility-based approach to allow for adapting based on the
common benefit of all the users. However, and unlike MUSIC, as
MOSES is a SOA-centric approach it is limited to service-level only
adaptation and, also, its adaptation logic is limited to a predefined
set of attributes only (i.e. response time, expected execution cost,
and expected reliability).

6.3. Architectures for self-adaptation

As explained above, the architecture of MUSIC includes an adap-
tation control loop to perform self-adaptation tasks. Two, by now
widely accepted architectural reference models for self-adaptive
software systems, are the MAPE-K model (Kephart and Chess, 2003)
and the three layer model of Kramer and Magee (Kramer and
Magee, 2007). As evidenced in Section 3, MUSIC complies with and
can be seen as an instantiation of the MAPE-K model for mobile and
ubiquitous environments.

Kramer and Magee suggest a layered reference model for
self-adaptive software systems with the three layers Component
Control, Change Management and Goal Management (from bottom
to top). The Component Control layer implements operations to
monitor and manipulate the managed system, the Change Manage-
ment layer executes predefined reconfiguration plans for foreseen
situations, while the Goal Management layer manages goals and
derives new plans for situations where no relevant plans are avail-
able. This three layered model was initially not considered for
MUSIC, because it appeared after the basic architectural principles
of MUSIC had been fixed and basically adopted from the pre-
decessor project MADAM (Floch et al., 2006). Nevertheless, it is
insightful to compare the two  independently evolved architectural
approaches to self-adaptive software.
Considering the MUSIC Context middleware, its functions and
internal structures are located at the Component Control layer of
the Kramer & Magee reference model which includes “event and
status reporting to higher levels” (Kramer and Magee, 2007).
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The activities of the MUSIC adaptation middleware correspond
o activities in the Change Management layer of the Kramer &

agee model which “is responsible for effecting changes to the under-
ying component architecture in response to new states reported”.
he rest of the MUSIC middleware as well as the application com-
onents themselves are located at the Component Control layer.
onsidering change management, MUSIC adaptation models are
omparable to application plans in the Kramer & Magee model in
he sense that alternative application configurations (application
ariants) can be derived from a single application model. A dif-
erence in the layering is that the MUSIC adaptation middleware
oes not assume the existence of internal control loops within
pplication components. Instead all adaptation decisions are made
nd performed by the adaptation middleware (often denoted as
external adaptation”), including tuning parameterized behavior.

e recognize, however that internal adaptations may  help boost
he performance of adaptive software, and the support for this by

USIC, e.g. in the form of hierarchical adaptation loops, would be
seful.

MUSIC does not include anything corresponding to the Goal
anagement Layer in the sense that the MUSIC middleware is not

ble to autonomously generate new or updated plans (in the form
f application models) in response to planning failure. However,
daptation models can be updated manually at runtime in an incre-
ental manner by deploying or removing plans and component

ealisations, thereby modifying or extending the models of running
pplications. Thus, new variant models will then be considered in
he adaptation reasoning. Also, the starting and stopping of appli-
ations on the mobile device will result in the addition and removal
f plans in the adaptation model and changing the overall goal by
he addition and removal of utility functions. These tasks could be
onsidered as logically belonging to goal management.

This exercise of comparing the MUSIC middleware architecture
o proposed reference models for self-managed systems, such as
he Kramer & Magee model, reveals that architectural perspectives
n self-managed systems clearly depend on the application domain
hat the architects have in mind. For example, Kramer and Magee
tate explicitly that their inspiration comes from the robotics
rea, while MUSIC was targeting primarily applications on mobile
evices in ubiquitous computing environments. Although the two
pproaches coincide with respect to the relevant concerns and
equired functionalities in self-adaptive systems, different appli-
ation backgrounds, as shown in this section, may  lead to different
iewpoints on the tailoring of architectural abstraction layers.

. Conclusions

The work of the MUSIC project has provided a coherent set of
olutions which ease the task of developing context-aware, self-
daptive systems for mobile and ubiquitous computing scenarios.
hile most of the various aspects and pieces of building self-

daptive systems have been addressed before in other research
rojects, MUSIC stands out because it has looked at the complete
icture and has delivered a comprehensive and coherent develop-
ent framework, methodology, and execution platform.
The results of MUSIC have been adopted already by follow-

n projects, and we expect that the development of self-adaptive
pplications and corresponding frameworks will grow in multiple
irections in the future. Expanding the MUSIC framework for intel-

igent multimedia content adaptation is one challenging research
lley, while other efforts will seek to ensure that the adaptations

re as dependable as possible to bring autonomic computing to
peration critical applications. The current version of the MUSIC
iddleware offers only basic support for security because the

roject intentionally focused on the described adaptation aspects.
s and Software 85 (2012) 2840– 2859

More work on the security features is needed. A very promising
aspect of the MUSIC technology is its ability to support “systems of
systems” with coordinated adaptation of sets of applications col-
laborating by discovering, providing and using services between
them. This is based on state of-the-art service discovery and ser-
vice level negotiation mechanisms. Thus, the MUSIC framework
also provides a foundation for enabling applications to flexibly use
services provided in the cloud, automatically adapting the usage
of cloud-based services depending on quality of service and appli-
cation context considerations. As this technology matures and the
envisaged service market becomes a reality, MUSIC will not only be
about ubiquitous computing for mobile users, but will represent a
major step toward autonomic computing in general.
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