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Abstract: In this work, we describe the protein secondary structure prediction module of a distributed bio-informatics
system. Protein databases contain over a million of sequenced proteins, however there is structuring infor-
mation for at most 2% of that number. The challenge is to reliably predict the structure based on classifiers.
Our contribution is the evaluation of architectures of multiple classifier systems on a standard dataset (CB-
396) containing protein sequencing information. We compare the results of a single classifier system based
on SVMs, as well as with our version of an SVM based adaBoost algorithm and a novel fuzzy multi-SVM
classifier.

1 INTRODUCTION

Over the past years we have witnessed an increase in
the number of biological databases, but it is mainly
the tremendous increase of their size that points to
data mining tools so as to extract information out of
the stored data. The desirable functions of such a data
mining tool, would include the automatic categori-
sation of the data and the discovery of patterns. In
this paper we are mainly interested in protein struc-
ture databases and we present the module for protein
secondary structure prediction. This module is part
of the PROT(ein)-GRID, which is an information re-
trieval and distribution system for the bio-informatics
sector, under co-development in our lab and supported
by the European Union.

Proteins are very important to all living organisms.
All the cellular chemical transformations are aided by
proteins and much of the structure of the cell is ac-
tually proteins. Proteins are chains of an “alphabet”
of 20 amino acids, varying in length from 50 to 3000,
with an average length of 200.

While it has been relatively inexpensive to se-
quence proteins, i.e. to discover the amino acids
they are made of, it is expensive to discover the
way the amino acids fold in 3-D space. In other
words, the discovery of the protein structure which
is made through X-ray crystallography, nuclear mag-
netic resonance etc. is time consuming and demands

highly trained personnel (Baxevanis and Lands-
man, 1998). Thus, there is a great disparity be-
tween the number of proteins that have been se-
quenced and and the number of proteins with known
structure. For instance, the Protein Information
Resource (PIR) (http://pir.georgetown.edu/pirwww/-
aboutpir/aboutpir.html), contains 1,011,453 sequenc-
ing entries 1, while the Protein Data Bank (PDB)
has only 18,616 structures 2. The ratio is almost the
same as it was 4 years ago (Baxevanis and Landsman,
1998). A comprehensive understanding of the func-
tional role of proteins depends on their structure and
it is extremely important in drug design.

Because of the aforementioned situation, there is
the need to develop algorithms for the prediction of
the 3-D structure based on sequencing data. The
earliest attempt for secondary structure prediction
with Artificial Neural Networks (ANNs) goes back
to (Qian and Sejnowski, 1988). Recently, there has
been work on secondary structure prediction with
Support Vector Machines (SVMs) (Hua and Sun,
2001).

Among the classical methods for secondary struc-
ture prediction, we should mention PHD (Rost and
Sander, 1993), DSC (King and Sternberg, 1996),
NNSSP (Salamov and Solovyev, 1995) and PREDA-
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TOR (Frishman and Argos, 1995). The PHD method,
is based on a 3 level neural network. DSC combines
residue attributes, hydrophobicity and aminoacid po-
sition along with linear discrimination. The NNSSP
is based on a scored nearest neighbour algorithm.
Finally, the PREDATOR employs a pairwise align-
ment method, rather than using global multiple align-
ment. PREDATOR also uses propensities for α-helix,
b-strand and coil derived form a nearest-neighbour
approach. The homology search is another method
for secondary structure prediction, and it is based on
comparison of an unknown sequence with a database
of known sequences. However, is has been noted that
80% of homologues may not be found by these search
methods (Brenner et al., 1998).

Our contribution is in the design and evaluation of
2 different predictor models of the secondary struc-
ture of proteins, where the common substrate is the
SVM. The models are based on multiple classifier
systems (Kittler and Roli, 2001) and we compare
them to a single classifier system, which is an SVM.
The multiple classifier systems we have used is the
AdaBoost (Rätsch et al., 2000), where we developed
an SVM version, and the fuzzy multiSVM an algo-
rithm built by one the paper’s authors (Frossyniotis
and Stafylopatis, 2001).

The rationale of this approach is that a single classi-
fier, in spite of its quality, implements one hypothesis
on the data, whereas multiple classifiers test multiple
hypothesis and vote on the best one. Normally, one
expects performance gains in terms of prediction ac-
curacy.

In Sect. 2 we present an overview of voting algo-
rithms, as well as our approach. Sect. 3 contains the
experimental settings and results. Finally, in Sect. 4
we present the conclusions and future directions. In
the next sections, characters in bold denote vectors.

2 VOTING ALGORITHMS

It has been shown that a monolithic approach to chal-
lenging data mining problems is ineffective. Espe-
cially, in the domain of classification, a multiclassifier
system can exhibit shorter training time and higher ac-
curacy than a single classifier. Furthermore, the mul-
tiple classifier system, might be easier to understand
and maintain (Bauer and Kohavi, 1999).

A multiclassifier system combines the performance
of multiple single classifiers so as to reach a global
decision. A major issue here is the way of combining
those individual decisions, the simplest method is to
follow the scheme of the majority wins, but this is not
always optimal.

Another major issue, and this concerns mainly the
training phase, is the method of splitting the original
problem into subproblems, which are assigned to the

single classifiers. Essentially, there two schemes: the
ensemble learning and the modular approach.

In the first scheme, each classifier is trained on the
whole of the available data. Then the decision of a
multiclassifier system is not simply the decision of the
best classifier, but it takes advantage of the informa-
tion that is provided by the other classifiers. One of
the most popular approaches is the boosting method,
(Avnimelech and Intrator, 1999), whereby specialised
classifiers are serially constructed to focus on data
points misclassified in previous stages.

The second scheme, i.e. the modular approach,
advocates the idea of using a set classifiers which
are trained independently (possibly in parallel) on the
available training patterns, and combining their deci-
sions to produce the final decision of the system.

2.1 Our Approach

The voting algorithms we will be using (i.e. the Ad-
aBoost and the fuzzy multiSVM) belong in the ensem-
ble and modular categories respectively, according to
the aforementioned scheme (see Fig. 1 and Fig. 2 for
a general overview of these methods). Furthermore,
there has been used a method of multiple classifiers,
where each classifier is trained on the whole of the
data set of protein sequences (Cuff and Barton, 1999).
This is known as Consensus method, which belongs
essentially in the modular category and it combines
the decisions of PHD, NNSSP, DSC and PREDATOR
methods, which have been mentioned in the introduc-
tion.

We believe that the AdaBoost and the fuzzy mul-
tiSVM have certain distinct advantages, when com-
pared to Consensus. The first, advantage of the fuzzy
multiSVM is the shorter training time, since each
classifier can be trained on a subset of the data. The
advantage of AdaBoost, is based on the existence of
theoretical limits on the performance of classifiers
on unseen data (i.e test data), which is not the case
for the Consensus method. Furthermore, almost all
of the real life classifier applications are highly non-
linear; splitting the data into subsets, can potentially
“smooth” the non-linearities and thus to improve the
accuracy of the classifier. Another reason for pre-
ferring the AdaBoost over the Consensus method is
based on the fact that each classifier in AdaBoost, im-
plements a hypothesis on the data. The hypotheses
become gradually, more and more refined which is
not the case for the Consensus.

2.2 AdaBoost Voting Algorithm

The Adaptive boosting algorithm seeks to boost the
performance of a single classifier (Rätsch et al.,
2000). Initially a classifier is trained on the whole data
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Figure 1: The fuzzy multiSVM method. Each predic-
tor/classifier is trained on a region of the data set, which
may partly overlap another region. For the final prediction,
the classifiers are combined.
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Figure 2: The AdaBoost method. Each predictor/classifier
is trained on the whole of the data set. The final predic-
tion involves participation of each classifier according to an
importance factor.

Table 1: The AdaBoost algorithm for Support Vector
Machines

Input A data set (X,Y), where X contains N multidi-
mensional training data and Y are the correspond-
ing categories.

Loop Let w be a vector of the weights of the input
samples, and cc (mc) be the set of indexes of the
correctly classified (misclassified) samples

1. train classifier Ci : |Ci(X
′) − Y | < d, where

d is a small positive constant. X ′ stems from
X, different for every repetition because SVMs
are deterministic. To create X ′ we sample the
data of X according to their “importance” —to
be defined later; and we add some uniform noise.
Initially, X ′ = X .

2. ei = 1
n

∑
Ci(xi)6= yi

wxi
, sums the weights of

misclassified samples.
3. bi = log 1−ei

ei

4. wcc = wcc

2(1−ei)
, decreases the weights of cor-

rectly classified samples.
5. wmc = wmc

2ei

, increases the weights of misclas-
sified samples

Output Each Ci classifier votes according to bi,
which denotes its “importance”.

set, then the “importance” of the classifier can defined
which, is high when the training error is small. Natu-
rally, some of the training examples are misclassified
by the current classifier, thus the next step is to mark
the misclassified samples (actually it attaches a high
weight to misclassified samples and low to the cor-
rectly classified ones). After this, the adaBoost algo-
rithm will deploy another classifier, which will focus
mostly, but not exclusively, on the misclassified sam-
ples. In the end, there will a series of classifiers, each
with its own importance factor. The final decision is
based on a voting scheme, where all classifiers vote
according to their importance. Theoretical studies of
the AdaBoost algorithm show that when each of the
individual classifiers performs a little better than ran-
dom, then the training error drops exponentially fast.

For the purpose of this work we have developed our
own version of a multiclass AdaBoost algorithm. The
learners upon which it is based are Support Vectors
Machines (see Table 1).

2.3 The Fuzzy multiSVM algorithm

The fuzzy multiSVM is based on both supervised and
unsupervised learning. According to the principle of



“divide-and-conquer”, the input space is partitioned
into overlapping subspaces and Support Vector Ma-
chines (SVMs) are subsequently used to solve the re-
spective classification subtasks. Finally, the decisions
of the individual SVMs are appropriately combined
to obtain the final classification decision. We used the
Fuzzy c-means (FCM) method for input space parti-
tioning and we considered a scheme for combining
the decisions of the SVMs based on a probabilistic
interpretation.

In the present work we partition the original train-
ing data set into subsets and subsequently we use in-
dividual classifiers for solving the respective learning
subtasks. A key feature of the method is that the train-
ing subsets represent non-disjoint regions that result
from input space clustering. Thus, SVMs are assigned
to overlapping regions from the beginning and acquire
their specialisation through training with data sets that
are representative of the regions. This partitioning ap-
proach produces a set of correlated “specialised” clas-
sifiers which attack a complex problem by applying
the divide-and-conquer principle.

Next, we address the issue of data set partition-
ing based on unsupervised learning with the fuzzy c-
means method, the training sets generation and the
combination of decisions for the individuals SVMs

2.3.1 Partitioning of the Data Set

Consider a data set D having N patterns x
i where

x
i ∈ Rd, i = 1, . . . , N . The first stage of the pro-

posed classification technique consists in partitioning
the original data set D = {x1, . . . ,xN} using clus-
tering techniques to identify natural groupings. As a
result of clustering with the Fuzzy c-means algorithm
(FCM) (Bezdek, 1981), a number of training subsets
D1, D2, . . . , DM are generated from the set D. Each
data sample belongs to all clusters with a membership
degree. The main drawbacks of this algorithm is that
its performance depends on the initial cluster centers
and that the number of clusters is predefined by the
user. Therefore, it is required to run the FCM algo-
rithm several times, each time with a different num-
ber of clusters to discover the number of clusters that
is optimal.

2.3.2 Training Sets Generation

Following fuzzy clustering we can specify the degree
(varying between 0 and 1) with which a data point be-
longs to each cluster. Let x be an input data point with
its corresponding membership degree uj to cluster j.
To create M non-disjoint training sets corresponding
to the M clusters we perform the following steps for
each data point x:

1. If uJ ≥ uj , ∀ j = 1, . . . , M , then the data point
x is assigned to the training set DJ .

2. For every j = 1, . . . , M , j 6= J , a random num-
ber q is generated according to a uniform distribu-
tion in the interval (0, 1) and the data point x is
assigned to the training set Dj if q < uj .

Therefore, the data point x is assigned deterministi-
cally to the training set corresponding to the cluster
with maximum membership for that point and is as-
signed probabilistically to each of the remaining train-
ing sets (with probability equal to the degree of mem-
bership to the respective cluster).

We can also observe a degree of overlapping be-
tween the training sets, as some patterns belong to
two or more training sets simultaneously. The cor-
relation between the data sets has a beneficial impact
increasing the robustness of the multiSVM classifica-
tion system.

In what concerns the classification modules of the
proposed multiclassifier system, the primary idea is
to train an SVM for each group of patterns Dj gen-
erated through the partitioning of the original data set
D. In this sense, each classifier learns a subspace of
the problem domain and becomes a “local expert” for
the corresponding subdomain.

As already mentioned, an important advantage of
the multiclassifier method is that the training of each
SVM can be done separately and in parallel. Thus, in
the case of a parallel implementation, the total train-
ing time of the system equals the worst training time
achieved among the SVMs. It must be noted that this
total training time cannot be greater than the training
time of a single SVM classifier dealing with the entire
training set.

2.3.3 Combination of Decisions

As described above, the original training data set D
is partitioned into M (non-disjoint) subsets, and M
classifiers are trained, one for each subset. Consider a
new input vector x which belongs to one of c classes.
Given the vector x, a class label Cj , j = 1, . . . , M ,
is produced by each SV Mj , and the membership de-
gree uj of the vector x to the respective cluster j is
computed. To obtain the final classification decision,
the decisions of the individual SVMs are combined in
a probabilistic way.

To obtain the classification of x we compute the
probability P (k | x), (k = 1, . . . , c), that pattern
x belongs to class k and select the class C with the
maximum P (C | x) as the final decision following
the Bayes rule. The probability P (k | x) is computed
as follows:

P (k | x) =
M∑

j=1

ujI(Cj = k) (1)



Here I(z) is an indicator function, i.e. I(z) = 1 if
z = true, otherwise I(z) = 0. The above equation
states that the class probability P (k | x) results as the
sum of the weights uj of the classifiers that suggest
class k. It is easy to check that

∑c

k=1 P (k | x) = 1.

3 EXPERIMENTS

There are data sets, which have been derived from
protein databases and they serve the purpose of
testbeds. These sets are used for training a predictor,
and they contain the primary structure of a protein, as
well as the secondary structure. Normally, one uses a
part of such a set for training and another part for test-
ing the predictor’s accuracy on unseen data. One of
the oldest and widely used is the RS126 set (Rost and
Sander, 1993), which contains 126 proteins. How-
ever, it has been noted that this set does not qualify
for secondary structure prediction (Cuff and Barton,
1999).

For the purpose of our experiments we have used
the CB396 set (Cuff and Barton, 1999), which con-
tains sequencing information from 396 proteins, as
well as secondary structure information for every
aminoacid. The CB396 has been produced from the
3Dee database of structural domain definitions of pro-
teins (Siddiqui et al., 2001). The same authors, have
also produced the CB512 data set from the same
database, which contains 512 proteins, however we
choose not to use it because of the current computa-
tional limitations.

3.1 Data Preprocessing

The CB396 contains 396 protein sequences, with an
average aminoacid length of 156. Each aminoacid be-
longs to one of the eight following folding categories:

H a-helix
G 310 -helix
I π-helix

E β strand

B isolated β-bridge
T urn
S bend
- rest

This information has been used to train with super-
vised learning the three classifiers that we have de-
scribed. Since the length of proteins, in terms of
aminoacids varies, we have used a window of length
9. The window concept implies that the neighbour-
ing aminoacids play a certain role in the current
aminoacid. For instance given the following subse-
quence of a protein (upper line), we wish to train
a classifier to predict the secondary structure of the
middle aminoacid (lower line).

Aminoacid seq.: ISFH S GYSG
Folding: T

Furthermore, we have adopted the unary coding for
each aminoacid, which produces an input vector of

21*9=189 dimensions. There are 20 aminoacids plus
another symbol to denote the left or right end of pro-
tein. Finally, as it customary in the literature we have
mapped the eight folding categories into three, fol-
lowing the DSSP standard (Cuff and Barton, 1999)

H,G → h (elix)
E, B → e (strand)
other → c (oil)

We have also tried to reduce the number of dimen-
sions, by the application of Principal Component
Analysis, but the predictive accuracy of the classifiers
slightly dropped, which is not acceptable at this point.

3.2 Results

We have compared three predictive models for sec-
ondary structure prediction based on supervised
learning. The first model was a Support Vector Ma-
chine, which is a single predictor. The second one
is the AdaBoost algorithm, which is a method based
on multiple hypotheses about the data which gradu-
ally become more and more refine. Finally, the third
model (fuzzy multiSVM) is based on both unsuper-
vised and supervised learning methods. To build the
classification system, first the original training set is
divided into overlapping subsets by applying a clus-
tering technique. Then, an individual SVM is trained
on every defined subset. To obtain the classification
of a new pattern, the decisions of the SVMs are ap-
propriately combined.

In order to assess the results we have adopted the
average Q3 measure, which has been used extensively
and it is defined as follows,

Q3 =
∑

i=h,e,c

predictedi

totali
(2)

The following results are averages over 5 cases,
where the training and testing sets are chosen ran-
domly from a pool of 61,895 vectors. Each training
set comprises 15,000 vectors, and the rest is used for
testing. In the following table we report on the pre-
dicting ability of the classifiers, and we provide cer-
tain parameters that we have found to be optimal.

For, the single SVM we have used the “osu
SVM” (Ma and Ahalt, ), whereas for the other two
algorithms we have written code on matlab on top of
the single SVM code. The training time for a single
SVM was about 30min (Pentium IV, 1500Mhz, Win-
dows 2000), considering that AdaBoost SVM reached
its best result with 5 hypotheses, we reach a number
of 150min. This was not enough, for we provided av-
erages over 5 different experiments, which amounts to
750 minutes. Then, we had to perform the same ex-
periments with at least four different parameter sets,
which amount to 3000min. Similar was the training



time for the fuzzy multiSVM, where there is an addi-
tional clustering phase, but it is counterbalanced with
smaller training sets for each SVM.

CB396 data set
Testing (avg) Std. Deviation

single-SVM 61.9% 0.19
SVM AdaBoost 5 hypotheses (SVMs)

63.4% 0.20
fuzzy multiSVM 8 clusters

65.3% 0.17

4 CONCLUSIONS

We have described and evaluated the protein sec-
ondary structure prediction module of a larger bio-
informatics retrieval system. The other modules
which are to follow, refer to integration of a vari-
ety of information sources to aid researchers in bi-
ology. Among the extensions, there will be the auto-
matic construction of relationships between proteins
and relevant scientific literature. All this will be de-
veloped in a Grid environment, as it is dictated by the
requirements of the IST PROT-GRID project.

The focus has been on secondary structure pre-
diction based on sequencing information. To this
end with have designed two algorithms the AdaBoost
SVM and the fuzzy multiSVM and evaluated them
against a single SVM. The results of the multiclassi-
fier methods (i.e. in AdaBoost SVM and fuzzy mul-
tiSVM) are better than the ones of the single classifier,
which verifies our initial assumption.

The adaBoost has been implemented for the multi
class problem, whereas most of its public domain im-
plementations are for two classes only. Furthermore,
because SVMs are deterministic predictors, on the
testing of different hypotheses we had to sample a
subset of the training data. There are theoretical re-
sults that suggest that adaBoost methods perform bet-
ter than simple modular methods (such as the Cons-
esus algorithm, which is mentioned in the introduc-
tion). More specifically it has been shown that the
training error drops exponentially fast in the case of
adaBoost algorithm. In addition, the adaBoost per-
forms a balanced reduction of the bias error and vari-
ance error, which is not the case for the Consensus
method. The bias error stems from the fact that we
have not found the optimal solution and the variance
expresses the dependence of the solution on the cur-
rent training set.

The fuzzy multiSVM implemented in this work is
quite general allowing the implementation and test-
ing of other techniques both in the clustering and the
classification module. One of the advantages of fuzzy
multiSVM is the straightforward parallel implemen-
tation of the training phase. When compared to the

Consensus method mentioned in the introduction, we
get small training subsets for each classifier, which is
translated into performance gains. Generally speak-
ing, the adaBoost and fuzzy multiSVM will exhibit
lower learning time and improved prediction capabil-
ity when compared to monolithic methods (such as
the single SVM and the other methods we have men-
tioned in the introduction). To emphasize this, imag-
ine that we have used just 396 proteins out of 18,000
available, which produced 65,895 training samples. If
we were to use a significant percentage of the 18,000,
the size of the training set would be unfeasible for
monolithic methods.

Another point is that in the literature, the predic-
tion is better than ours, but they have not been tested
on the same data, thus the comparison is meaningless
at this point, the interested reader is advised to con-
sult (Cuff and Barton, 1999). Actually, our data set
was restricted so that the prediction may be compu-
tationally feasible. We believe that the results could
be improved with a larger training set, this is based
on the observation that for the single Support Vec-
tor Machine (i.e. the first type of the classifiers),
the number of support vectors was very big. It is
known, that the support vectors denote the borders
of the classes. For instance, (9.780, 7.576, 9.557)
vectors were used to separate classes h , e and c from
each other, whereas the total number of training vec-
tors, was 15,000. This suggests that there are barely
sufficient data to train the classifiers, the same reason-
ing can be extended to the multi classifier cases.

One of the issues that arise, when using ANNs or
SVMs as predictors of the a data set, is that they are
black boxes. What this means, is that the knowledge
is stored in arithmetic form (weights in ANNs and La-
grange coefficients in SVMs). This cannot be com-
municated to humans nor it can be easily extended as
it is the case in a rule based system. However, there
has been considerable progress in techniques that al-
low us to look into the ANNs (Tickle et al., 1998) or
SVMs (Núñez et al., 2002). This entails the extraction
of knowledge in the form of if-then rules.

A rather technical problem that we faced and which
renders the comparison of similar methods difficult if
not unfeasible, is that the protein data in biological
databases are classified in 8 categories, however the
predictive model is built on 3 categories, by an appro-
priate mapping. However, the exact mapping is not
always mentioned in the relevant papers.

In a future work we plan to tackle two issues. First,
are the technical matters that refer to the predictive
models that we employed. Second, is the applica-
tion of the our method into larger problems. This
means the application to larger set of proteins, so as
to achieve higher accuracy. We also intend to move in
the field of tertiary structure prediction.

For the technical matters, first we must tackle the



problem of dimensions, in all of our tests the number
of dimensions is 189, this number was produced con-
sidering a window of length 9, larger windows will
produce even more dimensions. Thus, we must apply
dimensionality reduction methods, such as non-linear
Principal Component Analysis and possibly the Inde-
pendent Component Analysis, since the linear Com-
ponent Analysis seems to worsen the accuracy of our
predictors. The use of the window implies that only
the neighbourhood of an aminoacid affects its local
folding. However, there is enough evidence that there
are non-local interactions among the aminoacids; in
this context locality is to be meant in terms of the pri-
mary structure. One way to tackle this problem is to
employ recurrent neural networks, where the predic-
tion depends on the history of the inputs.

REFERENCES

Avnimelech, R. and Intrator, N. (1999). Boosted mix-
ture of experts: an ensemble learning scheme.
Neural computation, 11(2):483–497.

Bauer, E. and Kohavi, R. (1999). An empirical com-
parison of voting classification algorithms: Bag-
ging, boosting, and variants. Machine Learning,
36:105–142.

Baxevanis, A. and Landsman, D. (1998). Predictive
methods using protein sequences. In Baxeva-
nis, A. and Ouellette, B., editors, Bioinformat-
ics, A Practical Guide to the Analysis of Genes
and Proteins, chapter 11, pages 246–267. Wiley-
Interscience.

Bezdek, J. (1981). Pattern Recognition with Fuzzy
Objective Function Algorithms. Plenum Press,
New York.

Brenner, S., Chothia, C., and Hubbard, T. (1998). As-
sessing sequence comparison methods with re-
liable structurally idenfified distant evolutionary
relationships. Proc. Nat. Acd. Sci., pages 6073–
6087.

Cuff, J. and Barton, G. (1999). Evaluation and
improvement of multiple sequence methods for
protein secondary structure prediction. Proteins:
Structure, Function and Genetics, 34:508–519.
[http://www.compbio.dundee.ac.uk/∼www-
jpred/data/].

Frishman, D. and Argos, P. (1995). Knowledge-
based secondary structure assignment. Proteins:
Struct. Funct. Genet., 23:566–579.

Frossyniotis, D. and Stafylopatis, A. (2001). A Multi-
SVM Classification System. In Proceedings of
the Second International Workshop on Multi-
ple Classifier Systems (MCS 2001), LNCS 2096,
pages 198–207, Cambridge, UK. Springer.

Hua, S. and Sun, Z. (2001). A novel method of pro-
tein secondary structure prediction with segment
overlap measure: Support vector machine ap-
proach. Journal of Molecular Biology, 308:397–
407.

King, R. and Sternberg, M. (1996). Identification and
application of the concepts important for accu-
rate and reliable protein secondary structure pre-
diction. Protein Science, 5:2298–2310.

Kittler, J. and Roli, F., editors (2001). Multiple Clas-
sifier Systems. Springer Verlag.

Ma, J. and Ahalt, S. OSU SVM Classifier Mat-
lab Toolbox (ver 2.00). [http://eewww.eng.ohio-
state.edu/maj/osu svm/].
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