
A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 157–168, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Optimization of Context Sharing for
Self-adaptive Mobile Applications

Nearchos Paspallis and George A. Papadopoulos

Department of Computer Science, University of Cyprus
P.O. Box 20537, Postal Code 1678 Nicosia, Cyprus

{nearchos,george}@cs.ucy.ac.cy

Abstract. Because of the high potential of mobile and pervasive computing
systems, there is an ongoing trend in developing applications exhibiting context
awareness and adaptive behavior. While context awareness guarantees that the
applications are aware of both their context and their own state, dynamic adap-
tivity enables them to react on their knowledge about it and optimize their of-
fered services. However, because in pervasive computing environments there is
also a need for enabling arbitrary synergies, such a behavior also requires ap-
propriate algorithms implementing the adaptation logic required to reason on
the sensed context and dynamically decide on the most appropriate adaptations.
This paper discusses how utility function-based approaches can use context-
awareness for that and, additionally, it shows how the decision-making process
is improved with respect to both performance and resource consumption by
using a more intelligent approach.

Keywords: Self-adaptive, Context-aware, Optimization, Mobile computing.

1 Introduction

Today, one can observe an ever increasing trend in the use of mobile systems and
applications which are used to assist us with our everyday tasks. As these applications
become more ubiquitous, developers are faced with both opportunity and challenge.
Adaptive, mobile applications are designed to constantly adapt to the contextual
conditions in an autonomous way, with the aim of optimizing the quality of their
service. The complexity of self-adaptive software though, renders their development
significantly more difficult. As Paul Horn has quoted in IBM’s manifesto of
autonomic computing [1], tackling the development complexity, which is inherent in
modern autonomic systems, is the next grand challenge for the IT industry.

When aiming complicated, autonomous and adaptive software, one of the most
important hurdles is to provide suitable software engineering methods, models and
tools, to ease the development effort. Current approaches aim to achieve this by using
architectural [2] and modeling tools [3]. Other approaches propose development
methodologies such as the separation of the functional from the extra-functional
concerns in the design and development of adaptive, mobile applications [4].

158 N. Paspallis and G.A. Papadopoulos

Abstracting adaptive, mobile applications with compositions of individual and re-
usable components [5] offers many benefits, including the opportunity to delegate
part of the adaptation responsibility to a different layer (middleware). This paper
discusses the proactive and reactive approaches for sharing context information with
the purpose of achieving distributed adaptation reasoning. Furthermore, it proposes an
optimization which is shown to significantly improve distributed context-awareness in
terms of number of needed message exchanges.

The rest of this paper is organized as follows: Section 2 introduces the basic terms
of context-awareness and adaptation reasoning. Then, Section 3 presents a basic ap-
proach to adaptation reasoning and proposes an optimization, aiming at minimizing
the number of context change messages to be communicated. Then, Section 4 de-
scribes a case study scenario and validates some of the approaches proposed in the
previous section, and Section 5 discusses related work. Finally, the paper concludes
with Section 6 which presents the conclusions and points to our plans for future work.

2 Adaptation Enabling Middleware

Often, applications featuring context-awareness and adaptivity, exhibit a common
pattern: context changes are monitored and evaluated against the possible adaptation
options so that the optimal choice is dynamically selected. This pattern naturally leads
to the attempt of encapsulating and automating much of these tasks, in the form of
appropriate middleware tools. The Mobility and Adaptation-enabling Middleware
(MADAM) project [6] has aimed at providing software developers with reusable
models and tools, assisting them in the design and implementation of adaptive, mobile
applications. To facilitate the reusability of adaptation strategies, a middleware layer
was proposed which can be used to encapsulate context monitoring, adaptation rea-
soning logic and reconfiguration tasks. Building on MADAM’s legacy, the Self-
Adapting Applications for Mobile Users in Ubiquitous Computing Environments
(MUSIC) project [7] envisions to improve the results of MADAM and also to extend
the application domain from mobile to ubiquitous computing.

As illustrated in Fig. 1, the middleware layer can serve by automating three basic
functions: First, it monitors the context for changes and notifies the adaptation logic
module when a relevant change occurs. Second, it reasons on the context changes and
makes decisions about which application variant should be selected (different application
variants refer to different component compositions providing the same functionality with
different extra-functional properties). This step typically includes the dynamic formation
of all possible application variants, as they are defined by corresponding component
metadata. Finally, when an adaptation is decided, the configuration management instructs
the underlying component framework to apply it (i.e. it reconfigures the application by
setting adjustable parameters and by binding or unbinding the involved components and
services).

The adaptation reasoning refers to the process where a set of possible variants are
first formulated, based on the composition plans provided by the application [2], and
then evaluated with the aim of selecting the adaptation which optimizes the utility for
the given context. This process is triggered by changes to the context, which in this
case includes the user context (preferences, activities, state, mood, etc), the computing

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 159

Fig. 1. High-level structure of a typical context-aware, adaptation-enabling middleware

context (devices, networks, UI options and capabilities, available composition plans
and services, etc) and the environment (location, weather, light and noise, etc).

The adaptations are performed at the application layer, where different components
and services can be interchangeably replaced (or [re]connect to each other in different
configurations) in order to form different variants of the application. Although these
variants are assumed to be characterized by different extra-functional properties, they
are nevertheless assumed to offer the same functional service. This results in different
application variants, which can offer different levels of Quality of Service (QoS) de-
pending on their contextual conditions. To enable self-adaptation, these variants are
then evaluated (e.g. using utility functions) and the optimal one is selected (for an
example see [8]).

Assuming a centralized system, the decisions are taken locally (i.e. no networking
interactions are required), and the decided application variants are limited to non-
distributed ones. However, while the lack of networking requirements improves the
system’s robustness, it also prevents it from exploiting the opportunities arising when
distributed compositions are available. More particularly it misses the opportunity of
supporting distributed compositions, which allow hosts to better exploit resources and
services offered by other hosts. This is particularly important in mobile and pervasive
computing environments where frequent context changes and scarce resources render
the exploitation of distributed resources extremely useful. For instance, a mobile de-
vice is enabled to delegate processor-intensive tasks (such as text-to-speech) to ap-
propriate server nodes, thus better utilizing the globally available resources.

This paper discusses a basic approach which allows for distributed decision-
making and distributed compositions (i.e. applications comprising of components
residing on distributed nodes). The approach builds on the basic architectural-based
model for runtime adaptability, as it is described by Floch et al [2].

2.1 Problem Description and Requirements

In its simplest form, a centralized architecture can be designed so that it supports the
adaptation of a single, non-distributed application. The composition plans specify a
set of possible variants, which are all evaluated whenever a relevant context change is
sensed. A natural evolution of this approach is the support of composition plans
where some of the components are allowed to be distributed. This implies the defini-
tion and use of distributed composition plans, i.e. plans defining compositions where
some of the components are possibly deployed on distributed nodes.

160 N. Paspallis and G.A. Papadopoulos

Furthermore, an additional relaxation of the original form refers to the case where
the distributed variants are formed and decided on a single central node or they are
formed and decided in a distributed way. The latter approach is of course significantly
more complex as it requires mechanisms to enable the nodes to reach trusted and fair
agreements. For the latter, it is assumed that the common point of reference is the
utility, as it is perceived by the end user [8].

In this context, the dynamic adaptation reasoning problem can be defined as the re-
quirement for models and algorithms which can be used for the dynamic selection of
the most suitable variant. In this case, the suitability of a variant refers to its fitness to
the user needs, as it is measured by the utility offered to the end user. The next section
discusses a straightforward approach for enabling adaptation reasoning and an opti-
mization which minimizes the number of messages required to be communicated for
distributed context sharing.

3 Adaptation Reasoning

We consider the case where adaptive, component-based applications are defined as
collections of software components which can be configured to derive a number of
variants according to a set of composition plans. These components are defined as
self-containing modules of code, which can communicate with each other through a
set of ports. In practice, many systems use computational reflection to reason and
possibly alter their own behavior, as well as component-orientation to “allow inde-
pendent deployment, and composition by third parties” [5].

The composition plans are defined at design time and they are used to dynamically
construct different variants of the application. Individual variants are designed so that
they offer an advantage (such as better resource utilization) compared to the others in
varying context. Naturally, each variant is designed with the aim of maximizing the
utility of the application for at least a subset of the context space.

In autonomic systems, the possible approaches for making adaptation reasoning are
classified to action-based, goal-based and utility function-based [10]. In this work we
consider the use of utility functions for two reasons: First they facilitate scalability
and, second, they support dynamically available, arbitrary components.

Utility functions are simple computational artifacts which are used to compute the
utility of an application variant: i.e. a quantifiable scalar value, reflecting the utility
perceived by the end user. In this respect, the overall objective of the middleware can
be defined as “the continuous evaluation of all possible variants with the aim of al-
ways selecting the one which maximizes the utility offered to the end user”.

 Assuming there is only a single application which is managed by the middleware
the utility function can be implemented as a function which maps application variants,
context conditions and user preferences to scalar values, as depicted in the following:

ƒ(p,c): (p1, p2, …, pN) ⋅ (c1, …, cM) [0,1] (1)

In this formula, the “p1, …, pN” values correspond to the available variants, and the
“c1, …, cM” values correspond to the possible points in the context space (this includes
the user preferences, as part of the user context). In other words, the utility function is
used to map each combination of a composition plan and context condition to a scalar

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 161

number (typically in the range of [0, 1]). As this definition indicates, all the parameter
types are subject to change. Thus, the aim is to always select a composition which
maximizes the utility. The evaluation process is triggered whenever any of the argu-
ments (i.e. context and available variants) changes.

Although it is assumed that the computed scalar utility reflects the benefit as that is
perceived by the user, there are currently no general methods which can guarantee the
precision of such an assignment. Rather, approaches such as the one used in the
MADAM project [6] simply encourage the assignment of utilities to components and
composition plans in an empirical manner (i.e. using the developers’ intuition). When
the application is sufficiently complex, there is no straight-forward method or ap-
proach which can guarantee that there is a perfect (or even close) match between the
computed utility value and the actual user desires. Nevertheless, it is argued that con-
structing utility functions in an empirical manner, in combination with experimental
evaluation, can result in reasonable solutions with moderate effort.

Finally, as it is evident from the definition of the utility functions, the performance
of the selection process is inversely proportional to the number of possible variants.
Naturally, the adaptation reasoning becomes less efficient as the number of composi-
tion plans increases. This becomes more evident with larger, distributed applications
featuring large numbers of possible variants, especially as this number typically
increases exponentially with the number of used components.

3.1 Developing Applications with Compositional Plans

In order to be able to define applications in a dynamic, compositional way, a recursive
approach is defined as follows: The primary modeling artifacts defined, are the com-
ponent types and the component implementations. A component type can be realized
by either a component implementation, or by a well-defined composition of additional
component types (i.e. a composite component type). The latter enables the dynamic
formation of alternative compositions in a recursive manner (in this case the recursion
ends when all the component types have been assigned to either a composite compo-
nent type or to an actual component implementation). The application is defined by an
application type, which is itself a component type.

Additionally, the composition plans are predefined (i.e. at development time rather
than at runtime). For instance, the model which is defined in [3] specifies how to
construct different composition plans (and thus variants) for an application, and thus it
aims at the developers rather than the runtime system. The latter uses the composition
plans to dynamically compose the possible variants during the evaluation phase.

The applications are also defined in a recursive manner: for each step, of which a
new layer is defined, specifying how the abstract component type is implemented.
Always, the first layer is a layer with a single composite component type, abstracting
the whole application. Depending on whether the application interacts with other
applications or not, the first layer includes a composition plan with possibly some
input (dependency) and some output (offered) services (or ports in component-
orientation terminology). Subsequent layers expose further details of the composition
plan by specifying additional component implementations and component types. The
recursion ends when a layer is reached where all component types are fully resolved
with component implementations.

162 N. Paspallis and G.A. Papadopoulos

Evidently, variability is enabled by allowing the use of various alternatives for par-
ticular component types. Each such alternative adds to the total number of possible
variants. During the adaptation process, all possible variants are computed with the
purpose of being evaluated.

3.2 Adaptation Reasoning

A centralized adaptation reasoning approach implies that the decisions are taken lo-
cally, and that no negotiation with other peers is required [11]. On the other hand, a
distributed approach allows coordination between the collaborating peers, thus allow-
ing the proposition and agreement of mutually accepted decisions.

A typical centralized implementation, triggered by context changes, is expressed
by the following pseudo-code:

1. Detect a relevant context change

2. For all application variants (including distributed
ones), compute the utility value for the new context

3. If the optimal variant is different from the current
one, then adapt (reconfigure the application)

First, the adaptation reasoning is triggered by a relevant context change event. In
this case, the relevance is computed by analyzing the utility functions of the deployed
applications and extracting the context types which affect their outcome. The next
step simply iterates through all possible variants and computes their utility value. The
last step evaluates the computed values and selects the variant which maximizes the
utility. If that variant is different from the one already selected, then an adaptation
occurs by applying the new, optimal variant. Although not shown in this algorithm,
another optimization would be to evaluate how much does the newly selected variant
improves on the current one. If the margin is too small, then it is usually better to skip
the adaptation, as it typically incurs additional overhead cost (i.e. for reconfiguration).
Ideally, the exact cost of each prospective adaptation should be taken into account
when selecting on the reaction to a context change. However, when distributed con-
text sharing is considered, the context change events can be distributed, which implies
a higher cost for each message in terms of resources.

We assume an approach where the adaptation managers directly consult their cor-
responding context managers (instead of their remote adaptation manager peers),
which subsequently provide them with access to the information that is required to
assess all the possible application variants, including the distributed ones. In this way,
the best variant can be efficiently selected and applied. In [16], two main strategies
were discussed for optimizing the communication between the distributed devices:
First, a proactive strategy which aims at communicating as much information as soon
as it is available. In practice, with this strategy the nodes are always aware of as much
context information as possible, which as a result minimizes the response time at the
cost of increased messages communications carrying the required context updates.
Alternatively, a reactive strategy aims at minimizing the number of communicated
messages at the cost of slower reaction time. This strategy activates the adaptation
reasoning process only when a context change is sensed, which subsequently triggers
the exchange of all relevant context changes from the participating peers. This results

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 163

in less message communications of context events at the cost of increased response
time. Hybrid approaches are also possible, one of which is presented in this paper
with the purpose of achieving both minimal communication of messages and quick
response times.

3.3 Optimizing the Adaptation Reasoning through Context Management

As it was argued in the previous subsections, adaptation reasoning can be solely based
on offering component types and assigning a utility value to them (which on the client
side appears as cost). Thus, practically, the distributed aspect of adaptation reasoning
can be implemented exclusively through the use of appropriate context distribution
mechanisms, facilitating the exchange of needed context data among the collaborating
nodes. This subsection discusses an approach for optimizing distributed adaptation
reasoning in the form of minimizing the number of messages required to be
exchanged as a result of context change events.

Typically, the context management systems inform their peers about the subset of
context data they are interested in, which as a result triggers a distributed context
change event whenever a relevant change is detected. For example, if node A is inter-
ested in context elements “c1, …, cP”, which are not locally available but are offered
by a peer node B, then node A can simply register for it. For example, this would
occur if node A had no local sensors available for that particular context type, while
some of its applications depend on it [9].

Naturally, the straight-forward approach includes node A sending an update mes-
sage to node B every time any context change occurs to the registered context
elements. However, this would be unnecessary, as not all context changes have a
potential of causing an adaptation. Assuming that the two nodes share a copy of the
relevant utility functions, then a natural optimization would be for node A to ask node
B to further process context changes, and filter out any context change messages that
are unlikely to cause an adaptation, before communicating them to A.

Of course, this also implies that node B will go through the same evaluation proc-
ess for all possible variants as node A would, which as described earlier can be a quite
heavy process, especially for a mobile device. However, it is argued that this process
can still offer significant benefits with regards to resource usage. Assuming that the
serving node is sufficiently powerful, it is expected that the gain of minimizing the
communicated context messages dominates the cost of processing and filtering
context change events.

4 Case Study Example and Experimental Evaluation

As a means of better illustrating the use of the optimization approach described in
Section 3.3, this section describes a case study example and also provides an evalua-
tion which arguably validates its potential. The gathered results are based on simula-
tions and aim at identifying and measuring the improvements that could result from
the application of the proposed approaches. Further details such as the actual over-
head incurred when making a decision is not discussed, but nevertheless the primary

164 N. Paspallis and G.A. Papadopoulos

objective of this evaluation is to illustrate that performance can be improved by show-
ing that the number of required context coordination messages is reduced.

In this respect, we have revisited the scenario discussed in [11], which describes an
application used by onsite workers for assisting them into performing their everyday
tasks. This application offers three primary modes of operation: Visual UI interaction,
Audio UI interaction with local Text-to-Speech (TTS) and Audio UI interaction with
remote TTS (illustrated in Fig. 2). Each of these modes is optimized for offering the
best quality to the user under different context conditions. For the purposes of evalu-
ating the context and selecting the optimal mode, the following property predictors
and utility function have also been defined, as illustrated in Fig. 3.

Fig. 2. The compositional architecture of the case study scenario

The composition of different variants is achieved through the exploitation of the
offered component types and component implementations, as shown in Fig. 2 and
discussed in Section 3.1 and Section 3.2. This figure illustrates the composition of a
simple application. At the highest abstraction layer, an application consists of a single
component type, which in this case is named Application. This component type is
composite, and thus describes its architectural composition as the simple binding of
two component types: Main and UI. The first is assumed to be an atomic component
implementing the main application’s logic, while the latter is assumed to be a compo-
nent providing UI functionality. Although not depicted in this figure, the main com-
ponent type is provided by a component implementation. The UI component type,
however, is further decomposed in three possible variants: The first one is provided
by a single atomic implementation, namely the Visual UI. The second and third are
equivalent in terms of architecture (an Audio UI component type bound to a Text-to-
Speech or TTS component type), but differ in their deployment plan as in one case the
TTS component type is deployed locally, while in the other case remotely. Subsequent
layers specify that the Audio UI and the TTS component types are provided as single,
atomic component implementations (not shown in Fig. 2).

Given this composition plan, a utility function was also defined, along with a set of
property predictors, which are used to dynamically evaluate the utility value for each
possible variant, and for specific context values. In this case, we consider three simple
context types only: bandwidth which refers to the available network bandwidth (as a

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 165

percentage), response which corresponds to the user’s need for quick response, and
hands-free which corresponds to the user’s need for hands-free operation. The band-
width and response context properties are constrained to numeric values in the range
[0, 100], and the hands-free property is constrained to false or true values only. The
exact configuration of the property values and the property predictors for each of the
three variants is depicted in Fig. 3.

Fig. 3. The left side illustrates the application’s dependence on the response and hands-free
properties. It also describes the definition of the utility function. The right side, illustrates the
three possibilities for implementing the UI role, which comprise the three primary modes of
operation for the application. The utility of the latter is defined using a property predictor.

Given these metadata, and a set of context property values, one can compute the
utility of any variant. However, not all context changes can affect the selected variant,
i.e. a transition in the value of a context property does not imply that an adaptation
will be triggered. It is exactly this fact that it is exploited in the optimization approach
defined in Section 3.3. In order to validate its usefulness, we used this example and
computed the ratio of context changes that could potentially trigger an adaptation.

Table 1 shows the results of our evaluation, which was performed as follows: First,
different domains for the values of each of the three context properties were defined:
the bandwidth, the response and the hands-free. In this case, the bandwidth value-set
of (0:10:40) implies that the bandwidth is simulated with all values between 0 and 40
with a step of 10. Next, for each of these context combinations, we computed the
number of different context settings that favor the use of each of the three possible
variants. Then, the adaptation probability is computed as follows: It is assumed that
each context setting corresponds to a different node in a fully connected graph. Fur-
thermore, each of the graph nodes is colored with one of three colors, based on the
variant which optimizes the utility for that context setting. Finally, the probability is
computed by assuming that any context change can occur with the same probability,
and by counting the number of node-transitions that cause an adaptation (i.e. connect
nodes of different colors).

Equivalently, the probability for switching across different variants can be com-
puted using the following probability formula:

p= p(A1)·(p(B2)+p(C2))+p(B1)·(p(A2)+p(C2))+p(C1)·(p(A2)+p(B2)) (2)

166 N. Paspallis and G.A. Papadopoulos

Table 1. Adaptation evaluation outcomes as a result of different context settings; the last col-
umn depicts the probability that a context change can potentially trigger an adaptation

Bandwidth Response Hands-free iVisual
UI

Audio
UI Loc

Audio
UI Rem

Adaptation
Probability

0:10:40 0:25:100 false:true 20 18 12 65%
0:10:40 0:20:100 false:true 30 18 12 62%
0:20:100 0:25:100 false:true 24 28 8 60%
0:20:100 0:20:100 false:true 36 28 8 58%
40:10:80 0:20:100 false:true 30 30 0 50%
40:10:80 0:25:100 false:true 20 30 0 48%

In this formula, the probabilities p(Ai) refer to the probability for the corresponding
event at step i (i.e. selecting the variant at step i). For instance, the probability for a
change is equal to the sum of probabilities where the current variant is either A, B or
C (i=1) and the next variant is one of the other two variants (i=2).

As it is shown in Table 1, a context change does not always imply an adaptation.
Actually, the probability for an adaptation ranges from 65% down to 48% for the
given scenario. The columns of the three variants illustrate the number of configura-
tions for which that variant is optimal. The main lesson from this evaluation process is
that when the distributed nodes coordinate at the context sharing level, the number of
messages required for coordination can be significantly reduced (in this example by
more than 50%). Notably, this experiment has assumed that the context properties
were identical in both nodes (i.e. both devices refer to the same notion of bandwidth,
response and hands-free requirements). Finally, the constants of the utility function
were tuned to C1=80 and C2=20 respectively (see utility function in Fig. 3).

5 Related Work

There is a substantial amount of literature on adaptive, mobile systems. A very good
description of composite adaptive software is provided by McKinley et al in [13]. This
paper studies many basic concepts of adaptation, such as how, when and where to
compose. One statement in this work is that the main technologies which are required
for supporting compositional adaptations are Middleware, Separation of Concerns
(SoC), Computational reflection and Component-based design. This is in agreement
with the spirit of this paper. Applications are expressed in components, and SoC is
achieved by defining utility functions which express the adaptivity properties of the
compositions. Architectural reflection is used for enabling the actual reconfigurations
required for adaptivity and a middleware is assumed in the background, collecting the
distributed context management and distributed adaptation reasoning functionalities.

Another approach for enabling adaptivity from the coordination community is
LIME, which enables coordination by means of logical mobility as it is described in
[14]. In this case, the mobile hosts are assumed to communicate exclusively via tran-
siently shared tuple spaces. LIME offers decoupling both in space and time and al-
lows adaptations through reactive programming, i.e. by supporting the ability to react
to events.

 An Optimization of Context Sharing for Self-adaptive Mobile Applications 167

The Aura project [15], which built on the legacy of the Odyssey and Coda projects,
also describes a relevant approach. Aura targets primarily pervasive applications. For
this reason it introduced auras (which correspond to user tasks) as first class entities.
To this direction, the same project categorizes the techniques which support user
mobility into: use of mobile devices, remote access, standard applications (ported and
installed at multiple locations) and finally use of standard virtual platforms to enable
mobile code to follow the user as needed.

Unlike the existing literature, the approach which is described in this paper aims
for self-adaptive applications which are constructed and dynamically adapted using
architectural models. Additionally, this approach builds on previous work which de-
scribed two alternative strategies for distributed adaptation reasoning: proactive and
reactive approach [16]. Both of these offered significant advantages, depending on the
deployment environment. However, the hybrid strategy proposed in this paper enables
distributed adaptation reasoning merely through distributed context management.
Furthermore, it combines benefits from both the reactive and proactive strategies, to
achieve better results in terms of required communicated messages and response time,
something that is illustrated and validated through the description and the examination
of a case study example.

6 Conclusions

In this paper we have examined the problem of distributed context management and
adaptation reasoning, and we proposed an approach for overcoming it. Building on
two previous approaches, namely proactive and reactive adaptation reasoning, we
proposed a hybrid approach which aims at optimizing the number and timing of
communicated context change messages. This approach was illustrated and validated
through a case study example, which highlights its potential.

In the future, we plan to investigate further approaches which can enable agile and
efficient adaptation reasoning for distributed computing environments. Furthermore,
we aim at further studying the relationship between distributed context-awareness and
distributed adaptation reasoning, and propose approaches which further challenge it.

Acknowledgments. The authors would like to thank their partners in the MUSIC-IST
project, and acknowledge the partial financial support provided to this research by the
European Union (6th Framework Programme, contract number 035166).

References

1. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technol-
ogy, IBM Corporation (2001), http://www.research.ibm.com

2. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using Architecture
Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)

3. Geihs, K., Khan, M.U., Reichle, R., Solberg, A., Hallsteinsen, S., Merral, S.: Modeling of
Component-Based Adaptive Distributed Applications. In: 21st ACM Symposium on Ap-
plied Computing (SAC), Dijon, France, April 23-27, 2006, pp. 718–722 (2006)

168 N. Paspallis and G.A. Papadopoulos

4. Paspallis, N., Papadopoulos, G.A.: An Approach for Developing Adaptive, Mobile Appli-
cations with Separation of Concerns. In: 30th Annual International Computer Software
and Applications Conference (COMPSAC), Chicago, IL, USA, September 17-21, 2006,
pp. 299–306. IEEE Computer Society Press, Los Alamitos (2006)

5. Szyperski, C.: Component software: beyond object-oriented programming. ACM Press /
Addison-Wesley Publishing Co (1998)

6. The MADAM Consortium: Mobility and Adaptation Enabling Middleware (MADAM),
http://www.ist-madam.org

7. The MUSIC Consortium: Self-Adapting Applications for Mobile Users in Ubiquitous
Computing Environments (MUSIC), http://www.ist-music.eu

8. Alia, M., Eide, V.S.W., Paspallis, N., Eliassen, F., Hallsteinsen, S., Papadopoulos, G.A.: A
Utility-based Adaptivity Model for Mobile Applications. In: 21st International Conference
on Advanced Information Networking and Applications Workshops (AINAW), Niagara
Falls, Ontario, Canada, May 21-23, 2007, pp. 556–563. IEEE Computer Society Press, Los
Alamitos (2007)

9. Paspallis, N., Chimaris, A., Papadopoulos, G.A.: Experiences from Developing a Context
Management System for an Adaptation-enabling Middleware. In: 7th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS), Paphos, Cy-
prus, June 5-8, 2007, pp. 225–238. Springer Verlag, Heidelberg (2007)

10. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility Functions in Autonomic Sys-
tems. In: International Conference on Autonomic Computing (ICAC), New York, NY,
USA, May 17-18, 2004, pp. 70–77. IEEE Press, Los Alamitos (2004)

11. Alia, M., Hallsteinsen, S., Paspallis, N., Eliassen, F.: Managing Distributed Adaptation of
Mobile Applications. In: 7th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), Paphos, Cyprus, June 5-8, 2007, pp. 104–118.
Springer Verlag, Heidelberg (2007)

12. Chen, G., Kotz, D.: A Survey of Context-aware Mobile Computing Research, Technical
Report: TR2000-381, Dartmouth College, Hanover, NH, USA (2000)

13. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing Adaptive Software.
IEEE Computer 37(7), 56–64 (July 2004)

14. Murphy, A.L., Picco, G.P., Roman, G.-C.: LIME: A Middleware for Physical and Logical
Mobility. In: 21st IEEE International Conference on Distributed Computing Systems
(ICDCS), Phoenix (Mesa), Arizona, USA, April 16-19, 2001, p. 524. IEEE Computer So-
ciety, Los Alamitos (2001)

15. Sousa, J.P., Garlan, D.: Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments. In: 3rd Working IEEE/IFIP Conference on Software Architec-
ture, Montreal, Canada, August 25-31, 2002, pp. 29–43. Kluwer Academic Publishers,
Dordrecht (2002)

16. Paspallis, N., Papadopoulos, G.A.: Distributed Adaptation Reasoning for a Mobility and
Adaptation Enabling Middleware. In: 8th International Symposium on Distributed Objects
and Applications (DOA). LNCS, vol. 4277, pp. 17–18. Springer, Heidelberg (2006)

	An Optimization of Context Sharing for Self-adaptive Mobile Applications
	Introduction
	Adaptation Enabling Middleware
	Problem Description and Requirements

	Adaptation Reasoning
	Developing Applications with Compositional Plans
	Adaptation Reasoning
	Optimizing the Adaptation Reasoning through Context Management

	Case Study Example and Experimental Evaluation
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

