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Abstract. Because of the high potential of mobile and pervasive computing 
systems, there is an ongoing trend in developing applications exhibiting context 
awareness and adaptive behavior. While context awareness guarantees that the 
applications are aware of both their context and their own state, dynamic adap-
tivity enables them to react on their knowledge about it and optimize their of-
fered services. However, because in pervasive computing environments there is 
also a need for enabling arbitrary synergies, such a behavior also requires ap-
propriate algorithms implementing the adaptation logic required to reason on 
the sensed context and dynamically decide on the most appropriate adaptations. 
This paper discusses how utility function-based approaches can use context-
awareness for that and, additionally, it shows how the decision-making process 
is improved with respect to both performance and resource consumption by  
using a more intelligent approach. 
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1   Introduction 

Today, one can observe an ever increasing trend in the use of mobile systems and 
applications which are used to assist us with our everyday tasks. As these applications 
become more ubiquitous, developers are faced with both opportunity and challenge. 
Adaptive, mobile applications are designed to constantly adapt to the contextual 
conditions in an autonomous way, with the aim of optimizing the quality of their 
service. The complexity of self-adaptive software though, renders their development 
significantly more difficult. As Paul Horn has quoted in IBM’s manifesto of 
autonomic computing [1], tackling the development complexity, which is inherent in 
modern autonomic systems, is the next grand challenge for the IT industry. 

When aiming complicated, autonomous and adaptive software, one of the most 
important hurdles is to provide suitable software engineering methods, models and 
tools, to ease the development effort. Current approaches aim to achieve this by using 
architectural [2] and modeling tools [3]. Other approaches propose development 
methodologies such as the separation of the functional from the extra-functional  
concerns in the design and development of adaptive, mobile applications [4]. 
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Abstracting adaptive, mobile applications with compositions of individual and re-
usable components [5] offers many benefits, including the opportunity to delegate 
part of the adaptation responsibility to a different layer (middleware). This paper 
discusses the proactive and reactive approaches for sharing context information with 
the purpose of achieving distributed adaptation reasoning. Furthermore, it proposes an 
optimization which is shown to significantly improve distributed context-awareness in 
terms of number of needed message exchanges. 

The rest of this paper is organized as follows: Section 2 introduces the basic terms 
of context-awareness and adaptation reasoning. Then, Section 3 presents a basic ap-
proach to adaptation reasoning and proposes an optimization, aiming at minimizing 
the number of context change messages to be communicated. Then, Section 4 de-
scribes a case study scenario and validates some of the approaches proposed in the 
previous section, and Section 5 discusses related work. Finally, the paper concludes 
with Section 6 which presents the conclusions and points to our plans for future work. 

2   Adaptation Enabling Middleware 

Often, applications featuring context-awareness and adaptivity, exhibit a common 
pattern: context changes are monitored and evaluated against the possible adaptation 
options so that the optimal choice is dynamically selected. This pattern naturally leads 
to the attempt of encapsulating and automating much of these tasks, in the form of 
appropriate middleware tools. The Mobility and Adaptation-enabling Middleware 
(MADAM) project [6] has aimed at providing software developers with reusable 
models and tools, assisting them in the design and implementation of adaptive, mobile 
applications. To facilitate the reusability of adaptation strategies, a middleware layer 
was proposed which can be used to encapsulate context monitoring, adaptation rea-
soning logic and reconfiguration tasks. Building on MADAM’s legacy, the Self-
Adapting Applications for Mobile Users in Ubiquitous Computing Environments 
(MUSIC) project [7] envisions to improve the results of MADAM and also to extend 
the application domain from mobile to ubiquitous computing. 

As illustrated in Fig. 1, the middleware layer can serve by automating three basic 
functions: First, it monitors the context for changes and notifies the adaptation logic 
module when a relevant change occurs. Second, it reasons on the context changes and 
makes decisions about which application variant should be selected (different application 
variants refer to different component compositions providing the same functionality with 
different extra-functional properties). This step typically includes the dynamic formation 
of all possible application variants, as they are defined by corresponding component 
metadata. Finally, when an adaptation is decided, the configuration management instructs 
the underlying component framework to apply it (i.e. it reconfigures the application by 
setting adjustable parameters and by binding or unbinding the involved components and 
services). 

The adaptation reasoning refers to the process where a set of possible variants are 
first formulated, based on the composition plans provided by the application [2], and 
then evaluated with the aim of selecting the adaptation which optimizes the utility for 
the given context. This process is triggered by changes to the context, which in this 
case includes the user context (preferences, activities, state, mood, etc), the computing 
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Fig. 1. High-level structure of a typical context-aware, adaptation-enabling middleware 

context (devices, networks, UI options and capabilities, available composition plans 
and services, etc) and the environment (location, weather, light and noise, etc). 

The adaptations are performed at the application layer, where different components 
and services can be interchangeably replaced (or [re]connect to each other in different 
configurations) in order to form different variants of the application. Although these 
variants are assumed to be characterized by different extra-functional properties, they 
are nevertheless assumed to offer the same functional service. This results in different 
application variants, which can offer different levels of Quality of Service (QoS) de-
pending on their contextual conditions. To enable self-adaptation, these variants are 
then evaluated (e.g. using utility functions) and the optimal one is selected (for an 
example see [8]). 

Assuming a centralized system, the decisions are taken locally (i.e. no networking 
interactions are required), and the decided application variants are limited to non-
distributed ones. However, while the lack of networking requirements improves the 
system’s robustness, it also prevents it from exploiting the opportunities arising when 
distributed compositions are available. More particularly it misses the opportunity of 
supporting distributed compositions, which allow hosts to better exploit resources and 
services offered by other hosts. This is particularly important in mobile and pervasive 
computing environments where frequent context changes and scarce resources render 
the exploitation of distributed resources extremely useful. For instance, a mobile de-
vice is enabled to delegate processor-intensive tasks (such as text-to-speech) to ap-
propriate server nodes, thus better utilizing the globally available resources. 

This paper discusses a basic approach which allows for distributed decision-
making and distributed compositions (i.e. applications comprising of components 
residing on distributed nodes). The approach builds on the basic architectural-based 
model for runtime adaptability, as it is described by Floch et al [2]. 

2.1   Problem Description and Requirements 

In its simplest form, a centralized architecture can be designed so that it supports the 
adaptation of a single, non-distributed application. The composition plans specify a 
set of possible variants, which are all evaluated whenever a relevant context change is 
sensed. A natural evolution of this approach is the support of composition plans 
where some of the components are allowed to be distributed. This implies the defini-
tion and use of distributed composition plans, i.e. plans defining compositions where 
some of the components are possibly deployed on distributed nodes. 
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Furthermore, an additional relaxation of the original form refers to the case where 
the distributed variants are formed and decided on a single central node or they are 
formed and decided in a distributed way. The latter approach is of course significantly 
more complex as it requires mechanisms to enable the nodes to reach trusted and fair 
agreements. For the latter, it is assumed that the common point of reference is the 
utility, as it is perceived by the end user [8]. 

In this context, the dynamic adaptation reasoning problem can be defined as the re-
quirement for models and algorithms which can be used for the dynamic selection of 
the most suitable variant. In this case, the suitability of a variant refers to its fitness to 
the user needs, as it is measured by the utility offered to the end user. The next section 
discusses a straightforward approach for enabling adaptation reasoning and an opti-
mization which minimizes the number of messages required to be communicated for 
distributed context sharing. 

3   Adaptation Reasoning 

We consider the case where adaptive, component-based applications are defined as 
collections of software components which can be configured to derive a number of 
variants according to a set of composition plans. These components are defined as 
self-containing modules of code, which can communicate with each other through a 
set of ports. In practice, many systems use computational reflection to reason and 
possibly alter their own behavior, as well as component-orientation to “allow inde-
pendent deployment, and composition by third parties” [5]. 

The composition plans are defined at design time and they are used to dynamically 
construct different variants of the application. Individual variants are designed so that 
they offer an advantage (such as better resource utilization) compared to the others in 
varying context. Naturally, each variant is designed with the aim of maximizing the 
utility of the application for at least a subset of the context space. 

In autonomic systems, the possible approaches for making adaptation reasoning are 
classified to action-based, goal-based and utility function-based [10]. In this work we 
consider the use of utility functions for two reasons: First they facilitate scalability 
and, second, they support dynamically available, arbitrary components. 

Utility functions are simple computational artifacts which are used to compute the 
utility of an application variant: i.e. a quantifiable scalar value, reflecting the utility 
perceived by the end user. In this respect, the overall objective of the middleware can 
be defined as “the continuous evaluation of all possible variants with the aim of al-
ways selecting the one which maximizes the utility offered to the end user”. 

 Assuming there is only a single application which is managed by the middleware 
the utility function can be implemented as a function which maps application variants, 
context conditions and user preferences to scalar values, as depicted in the following: 

ƒ(p,c): (p1, p2, …, pN) ⋅ (c1, …, cM)  [0,1] (1) 

In this formula, the “p1, …, pN” values correspond to the available variants, and the 
“c1, …, cM” values correspond to the possible points in the context space (this includes 
the user preferences, as part of the user context). In other words, the utility function is 
used to map each combination of a composition plan and context condition to a scalar 
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number (typically in the range of [0, 1]). As this definition indicates, all the parameter 
types are subject to change. Thus, the aim is to always select a composition which 
maximizes the utility. The evaluation process is triggered whenever any of the argu-
ments (i.e. context and available variants) changes. 

Although it is assumed that the computed scalar utility reflects the benefit as that is 
perceived by the user, there are currently no general methods which can guarantee the 
precision of such an assignment. Rather, approaches such as the one used in the 
MADAM project [6] simply encourage the assignment of utilities to components and 
composition plans in an empirical manner (i.e. using the developers’ intuition). When 
the application is sufficiently complex, there is no straight-forward method or ap-
proach which can guarantee that there is a perfect (or even close) match between the 
computed utility value and the actual user desires. Nevertheless, it is argued that con-
structing utility functions in an empirical manner, in combination with experimental 
evaluation, can result in reasonable solutions with moderate effort. 

Finally, as it is evident from the definition of the utility functions, the performance 
of the selection process is inversely proportional to the number of possible variants. 
Naturally, the adaptation reasoning becomes less efficient as the number of composi-
tion plans increases. This becomes more evident with larger, distributed applications 
featuring large numbers of possible variants, especially as this number typically  
increases exponentially with the number of used components. 

3.1   Developing Applications with Compositional Plans 

In order to be able to define applications in a dynamic, compositional way, a recursive 
approach is defined as follows: The primary modeling artifacts defined, are the com-
ponent types and the component implementations. A component type can be realized 
by either a component implementation, or by a well-defined composition of additional 
component types (i.e. a composite component type). The latter enables the dynamic 
formation of alternative compositions in a recursive manner (in this case the recursion 
ends when all the component types have been assigned to either a composite compo-
nent type or to an actual component implementation). The application is defined by an 
application type, which is itself a component type. 

Additionally, the composition plans are predefined (i.e. at development time rather 
than at runtime). For instance, the model which is defined in [3] specifies how to 
construct different composition plans (and thus variants) for an application, and thus it 
aims at the developers rather than the runtime system. The latter uses the composition 
plans to dynamically compose the possible variants during the evaluation phase. 

The applications are also defined in a recursive manner: for each step, of which a 
new layer is defined, specifying how the abstract component type is implemented. 
Always, the first layer is a layer with a single composite component type, abstracting 
the whole application. Depending on whether the application interacts with other 
applications or not, the first layer includes a composition plan with possibly some 
input (dependency) and some output (offered) services (or ports in component-
orientation terminology). Subsequent layers expose further details of the composition 
plan by specifying additional component implementations and component types. The 
recursion ends when a layer is reached where all component types are fully resolved 
with component implementations. 
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Evidently, variability is enabled by allowing the use of various alternatives for par-
ticular component types. Each such alternative adds to the total number of possible 
variants. During the adaptation process, all possible variants are computed with the 
purpose of being evaluated. 

3.2   Adaptation Reasoning 

A centralized adaptation reasoning approach implies that the decisions are taken lo-
cally, and that no negotiation with other peers is required [11]. On the other hand, a 
distributed approach allows coordination between the collaborating peers, thus allow-
ing the proposition and agreement of mutually accepted decisions. 

A typical centralized implementation, triggered by context changes, is expressed 
by the following pseudo-code: 

1. Detect a relevant context change 

2. For all application variants (including distributed 
ones), compute the utility value for the new context 

3. If the optimal variant is different from the current 
one, then adapt (reconfigure the application) 

First, the adaptation reasoning is triggered by a relevant context change event. In 
this case, the relevance is computed by analyzing the utility functions of the deployed 
applications and extracting the context types which affect their outcome. The next 
step simply iterates through all possible variants and computes their utility value. The 
last step evaluates the computed values and selects the variant which maximizes the 
utility. If that variant is different from the one already selected, then an adaptation 
occurs by applying the new, optimal variant. Although not shown in this algorithm, 
another optimization would be to evaluate how much does the newly selected variant 
improves on the current one. If the margin is too small, then it is usually better to skip 
the adaptation, as it typically incurs additional overhead cost (i.e. for reconfiguration). 
Ideally, the exact cost of each prospective adaptation should be taken into account 
when selecting on the reaction to a context change. However, when distributed con-
text sharing is considered, the context change events can be distributed, which implies 
a higher cost for each message in terms of resources. 

We assume an approach where the adaptation managers directly consult their cor-
responding context managers (instead of their remote adaptation manager peers), 
which subsequently provide them with access to the information that is required to 
assess all the possible application variants, including the distributed ones. In this way, 
the best variant can be efficiently selected and applied. In [16], two main strategies 
were discussed for optimizing the communication between the distributed devices: 
First, a proactive strategy which aims at communicating as much information as soon 
as it is available. In practice, with this strategy the nodes are always aware of as much 
context information as possible, which as a result minimizes the response time at the 
cost of increased messages communications carrying the required context updates. 
Alternatively, a reactive strategy aims at minimizing the number of communicated 
messages at the cost of slower reaction time. This strategy activates the adaptation 
reasoning process only when a context change is sensed, which subsequently triggers 
the exchange of all relevant context changes from the participating peers. This results 
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in less message communications of context events at the cost of increased response 
time. Hybrid approaches are also possible, one of which is presented in this paper 
with the purpose of achieving both minimal communication of messages and quick 
response times. 

3.3   Optimizing the Adaptation Reasoning through Context Management 

As it was argued in the previous subsections, adaptation reasoning can be solely based 
on offering component types and assigning a utility value to them (which on the client 
side appears as cost). Thus, practically, the distributed aspect of adaptation reasoning 
can be implemented exclusively through the use of appropriate context distribution 
mechanisms, facilitating the exchange of needed context data among the collaborating 
nodes. This subsection discusses an approach for optimizing distributed adaptation 
reasoning in the form of minimizing the number of messages required to be  
exchanged as a result of context change events. 

Typically, the context management systems inform their peers about the subset of 
context data they are interested in, which as a result triggers a distributed context 
change event whenever a relevant change is detected. For example, if node A is inter-
ested in context elements “c1, …, cP”, which are not locally available but are offered 
by a peer node B, then node A can simply register for it. For example, this would 
occur if node A had no local sensors available for that particular context type, while 
some of its applications depend on it [9]. 

Naturally, the straight-forward approach includes node A sending an update mes-
sage to node B every time any context change occurs to the registered context  
elements. However, this would be unnecessary, as not all context changes have a 
potential of causing an adaptation. Assuming that the two nodes share a copy of the 
relevant utility functions, then a natural optimization would be for node A to ask node 
B to further process context changes, and filter out any context change messages that 
are unlikely to cause an adaptation, before communicating them to A. 

Of course, this also implies that node B will go through the same evaluation proc-
ess for all possible variants as node A would, which as described earlier can be a quite 
heavy process, especially for a mobile device. However, it is argued that this process 
can still offer significant benefits with regards to resource usage. Assuming that the 
serving node is sufficiently powerful, it is expected that the gain of minimizing the 
communicated context messages dominates the cost of processing and filtering  
context change events. 

4   Case Study Example and Experimental Evaluation 

As a means of better illustrating the use of the optimization approach described in 
Section 3.3, this section describes a case study example and also provides an evalua-
tion which arguably validates its potential. The gathered results are based on simula-
tions and aim at identifying and measuring the improvements that could result from 
the application of the proposed approaches. Further details such as the actual over-
head incurred when making a decision is not discussed, but nevertheless the primary 
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objective of this evaluation is to illustrate that performance can be improved by show-
ing that the number of required context coordination messages is reduced. 

In this respect, we have revisited the scenario discussed in [11], which describes an 
application used by onsite workers for assisting them into performing their everyday 
tasks. This application offers three primary modes of operation: Visual UI interaction, 
Audio UI interaction with local Text-to-Speech (TTS) and Audio UI interaction with 
remote TTS (illustrated in Fig. 2). Each of these modes is optimized for offering the 
best quality to the user under different context conditions. For the purposes of evalu-
ating the context and selecting the optimal mode, the following property predictors 
and utility function have also been defined, as illustrated in Fig. 3. 

 

Fig. 2. The compositional architecture of the case study scenario 

The composition of different variants is achieved through the exploitation of the 
offered component types and component implementations, as shown in Fig. 2 and 
discussed in Section 3.1 and Section 3.2. This figure illustrates the composition of a 
simple application. At the highest abstraction layer, an application consists of a single 
component type, which in this case is named Application. This component type is 
composite, and thus describes its architectural composition as the simple binding of 
two component types: Main and UI. The first is assumed to be an atomic component 
implementing the main application’s logic, while the latter is assumed to be a compo-
nent providing UI functionality. Although not depicted in this figure, the main com-
ponent type is provided by a component implementation. The UI component type, 
however, is further decomposed in three possible variants: The first one is provided 
by a single atomic implementation, namely the Visual UI. The second and third are 
equivalent in terms of architecture (an Audio UI component type bound to a Text-to-
Speech or TTS component type), but differ in their deployment plan as in one case the 
TTS component type is deployed locally, while in the other case remotely. Subsequent 
layers specify that the Audio UI and the TTS component types are provided as single, 
atomic component implementations (not shown in Fig. 2). 

Given this composition plan, a utility function was also defined, along with a set of 
property predictors, which are used to dynamically evaluate the utility value for each 
possible variant, and for specific context values. In this case, we consider three simple 
context types only: bandwidth which refers to the available network bandwidth (as a 
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percentage), response which corresponds to the user’s need for quick response, and 
hands-free which corresponds to the user’s need for hands-free operation. The band-
width and response context properties are constrained to numeric values in the range 
[0, 100], and the hands-free property is constrained to false or true values only. The 
exact configuration of the property values and the property predictors for each of the 
three variants is depicted in Fig. 3. 

 

Fig. 3. The left side illustrates the application’s dependence on the response and hands-free 
properties. It also describes the definition of the utility function. The right side, illustrates the 
three possibilities for implementing the UI role, which comprise the three primary modes of 
operation for the application. The utility of the latter is defined using a property predictor. 

Given these metadata, and a set of context property values, one can compute the 
utility of any variant. However, not all context changes can affect the selected variant, 
i.e. a transition in the value of a context property does not imply that an adaptation 
will be triggered. It is exactly this fact that it is exploited in the optimization approach 
defined in Section 3.3. In order to validate its usefulness, we used this example and 
computed the ratio of context changes that could potentially trigger an adaptation. 

Table 1 shows the results of our evaluation, which was performed as follows: First, 
different domains for the values of each of the three context properties were defined: 
the bandwidth, the response and the hands-free. In this case, the bandwidth value-set 
of (0:10:40) implies that the bandwidth is simulated with all values between 0 and 40 
with a step of 10. Next, for each of these context combinations, we computed the 
number of different context settings that favor the use of each of the three possible 
variants. Then, the adaptation probability is computed as follows: It is assumed that 
each context setting corresponds to a different node in a fully connected graph. Fur-
thermore, each of the graph nodes is colored with one of three colors, based on the 
variant which optimizes the utility for that context setting. Finally, the probability is 
computed by assuming that any context change can occur with the same probability, 
and by counting the number of node-transitions that cause an adaptation (i.e. connect 
nodes of different colors). 

Equivalently, the probability for switching across different variants can be com-
puted using the following probability formula: 

p= p(A1)·(p(B2)+p(C2))+p(B1)·(p(A2)+p(C2))+p(C1)·(p(A2)+p(B2)) (2) 
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Table 1. Adaptation evaluation outcomes as a result of different context settings; the last col-
umn depicts the probability that a context change can potentially trigger an adaptation 

Bandwidth Response Hands-free iVisual 
UI 

Audio 
UI Loc 

Audio 
UI Rem 

Adaptation 
Probability 

0:10:40 0:25:100 false:true 20 18 12 65% 
0:10:40 0:20:100 false:true 30 18 12 62% 
0:20:100 0:25:100 false:true 24 28 8 60% 
0:20:100 0:20:100 false:true 36 28 8 58% 
40:10:80 0:20:100 false:true 30 30 0 50% 
40:10:80 0:25:100 false:true 20 30 0 48% 

In this formula, the probabilities p(Ai) refer to the probability for the corresponding 
event at step i (i.e. selecting the variant at step i). For instance, the probability for a 
change is equal to the sum of probabilities where the current variant is either A, B or 
C (i=1) and the next variant is one of the other two variants (i=2). 

As it is shown in Table 1, a context change does not always imply an adaptation. 
Actually, the probability for an adaptation ranges from 65% down to 48% for the 
given scenario. The columns of the three variants illustrate the number of configura-
tions for which that variant is optimal. The main lesson from this evaluation process is 
that when the distributed nodes coordinate at the context sharing level, the number of 
messages required for coordination can be significantly reduced (in this example by 
more than 50%). Notably, this experiment has assumed that the context properties 
were identical in both nodes (i.e. both devices refer to the same notion of bandwidth, 
response and hands-free requirements). Finally, the constants of the utility function 
were tuned to C1=80 and C2=20 respectively (see utility function in Fig. 3). 

5   Related Work 

There is a substantial amount of literature on adaptive, mobile systems. A very good 
description of composite adaptive software is provided by McKinley et al in [13]. This 
paper studies many basic concepts of adaptation, such as how, when and where to 
compose. One statement in this work is that the main technologies which are required 
for supporting compositional adaptations are Middleware, Separation of Concerns 
(SoC), Computational reflection and Component-based design. This is in agreement 
with the spirit of this paper. Applications are expressed in components, and SoC is 
achieved by defining utility functions which express the adaptivity properties of the 
compositions. Architectural reflection is used for enabling the actual reconfigurations 
required for adaptivity and a middleware is assumed in the background, collecting the 
distributed context management and distributed adaptation reasoning functionalities. 

Another approach for enabling adaptivity from the coordination community is 
LIME, which enables coordination by means of logical mobility as it is described in 
[14]. In this case, the mobile hosts are assumed to communicate exclusively via tran-
siently shared tuple spaces. LIME offers decoupling both in space and time and al-
lows adaptations through reactive programming, i.e. by supporting the ability to react 
to events. 
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The Aura project [15], which built on the legacy of the Odyssey and Coda projects, 
also describes a relevant approach. Aura targets primarily pervasive applications. For 
this reason it introduced auras (which correspond to user tasks) as first class entities. 
To this direction, the same project categorizes the techniques which support user 
mobility into: use of mobile devices, remote access, standard applications (ported and 
installed at multiple locations) and finally use of standard virtual platforms to enable 
mobile code to follow the user as needed. 

Unlike the existing literature, the approach which is described in this paper aims 
for self-adaptive applications which are constructed and dynamically adapted using 
architectural models. Additionally, this approach builds on previous work which de-
scribed two alternative strategies for distributed adaptation reasoning: proactive and 
reactive approach [16]. Both of these offered significant advantages, depending on the 
deployment environment. However, the hybrid strategy proposed in this paper enables 
distributed adaptation reasoning merely through distributed context management. 
Furthermore, it combines benefits from both the reactive and proactive strategies, to 
achieve better results in terms of required communicated messages and response time, 
something that is illustrated and validated through the description and the examination 
of a case study example. 

6   Conclusions 

In this paper we have examined the problem of distributed context management and 
adaptation reasoning, and we proposed an approach for overcoming it. Building on 
two previous approaches, namely proactive and reactive adaptation reasoning, we 
proposed a hybrid approach which aims at optimizing the number and timing of 
communicated context change messages. This approach was illustrated and validated 
through a case study example, which highlights its potential. 

In the future, we plan to investigate further approaches which can enable agile and 
efficient adaptation reasoning for distributed computing environments. Furthermore, 
we aim at further studying the relationship between distributed context-awareness and 
distributed adaptation reasoning, and propose approaches which further challenge it. 
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