
p ()

URL: http://www.elsevier.nl/locate/entcs/volume66.html 15 pages

IWIM Semantics via Fibred Automata
1

R. Banach 2

Computer Science Department, Manchester University

Manchester, M13 9PL, U. K.

F. Arbab 3

Software Engineering Department, CWI

Kruislaan 413, 1098 SJ Amsterdam, Netherlands

G. A. Papadopoulos 4

Computer Science Department, University of Cyprus

75 Kallipoleos St., Nicosia, Cyprus

J. R. W. Glauert 5

School of Information Systems, University of East Anglia

Norwich, NR4 7TJ, U.K.

Abstract

Coordination programming helps to separate concerns in the programming of the

coordination activities in complex applications software. It separates the develop-

ment, veri�cation, maintenance, and reuse of the coordination and communication

protocols, from the development of the rest of the application; coincidentally mak-

ing these entities into standalone products. The IWIM coordination model is brie
y

reviewed, and a formal automata theoretic version of the model is developed, cap-

turing the essentials of the framework in a �bration based approach. Speci�cally,

families of worker automata have their communication governed by a state of a

manager automaton, whose transitions correspond to recon�gurations.

1 Partially supported by the EU in the KIT-INCO Project SEEDIS (Contract No. 962114)
2 Email: banach@cs.man.ac.uk
3 Email: farhad@cwi.nl
4 Email: george@cs.ucy.ac.cy
5 Email: J.Glauert@sys.uea.ac.uk

c
2002 Published by Elsevier Science B. V.

Banach et al

1 Introduction

The massively parallel systems that can be built today require programming

models that explicitly deal with the concurrency of cooperation among large

numbers of entities in a single application. Today's concurrent applications

typically use ad hoc templates to coordinate the cooperation of their compo-

nents, and this is symptomatic of a lack of proper coordination frameworks

for describing complex cooperation protocols in terms of simple primitives and

structuring constructs.

In most real applications, there is no paradigm in which we can systemat-

ically talk about cooperation of active entities, and in which we can compose

cooperation scenarios such as client-server, workers pool, etc., out of a set

of more basic concepts. Consequently, applications programmers must deal

directly with the lower-level communication primitives that instantiate the

cooperation model of a concurrent application. These primitives are generally

scattered throughout the source code, interspersed with non-communication

application code, and the cooperation model never manifests itself in a tan-

gible form. Thus it is not an identi�able piece of source code that can be

designed, developed, debugged, maintained, and reused, in isolation from the

rest of the application. This inability to deal with the cooperation model of

a concurrent application explicitly, contributes to the diÆculty of developing

working concurrent applications containing large numbers of actively cooper-

ating entities.

The two most popular models of communication within highly concurrent

applications are shared memory and message passing. In the shared memory

model, interprocess synchronisation primitives play the dominant role with in-

terprocess communication subordinate, whereas in the message passing model,

interprocess communication is dominant and synchronisation is subordinate.

The somewhat greater
exibility of the latter tends to make it more popular

in concurrent applications.

The observation that both models are really too low-level to serve as a

foundation for the standalone development of protocols has led in recent years

to an upsurge in activity in coordination frameworks and languages. An early

survey is [17] which characterisies coordination as an emerging discipline. Var-

ious approaches with roots in eg. the actor model [1], or in logic program-

ming [21], were instrumental in establishing coordination as an independent

discipline. See [12,14,19,13,20,18] for representative contemporary work. A

number of higher level perspectives have emerged. Among these are the tu-

ple based approaches such as Linda [15,11], and by contrast, the connection

control based approaches such as IWIM, the subject of this paper.

In the rest of this paper, we survey the IWIM model informally in Section 2.

In Section 3 we develop an automaton-based model to express the essentials

of IWIM, which we call the IWIM systems model. For lack of space, we

restrict our attention to a special case of the model, the elementary IWIM

2

Banach et al

systems. The underlying idea is that families of worker automata perform

their tasks under the supervision of a manager automaton. Change of state of

the manager corresponds to recon�guration, whereupon a di�erent family of

worker automata can shoulder the burden. We abstract away from the ability

of workers to continue with internal actions on their own; thus our model falls

short of capturing everything about IWIM or any speci�c implementation

of the IWIM idea, such as is to be found in the formal speci�cation of the

MANIFOLD language [4,10].

In Section 4 we indicate brie
y how our elementary IWIM systems model

can be extended to model processes that are able to display both worker

and manager traits, and we discuss how recon�gurations can be implemented

asynchronously. We raise the issue of the algebraic combination of these IWIM

systems and the contrast beween the general purpose approach to system

combination, and the bespoke one arising from the emulation of the models

of Arbab, de Boer and Bonsangue [6], and Katis, Sabadini and Walters [16].

The latter are two earlier theoretical models exploring aspects of IWIM. A

fuller treatment of all these issues can be found in [8]. Section 5 concludes.

2 The IWIM Model

In this section we review the generic coordination framework known as the

Ideal Worker Ideal Manager (IWIM) model [2,3,5]. The basic concepts in

the IWIM model are processes, events, ports, and channels. A process is a

black box with well de�ned ports of connection through which it exchanges

units of information with the other processes in its environment. A port is

a named opening in the bounding walls of a process through which units of

information are exchanged using standard I/O primitives such as read and

write; we assume that each port is used for the exchange of information in

only one direction: either into the process (input port) or out of the process

(output port).

The interconnections between the ports of processes are made through

channels. A channel connects a port of a producer process to a port of a

consumer process. Independent of the channels, there is an event mechanism

for information exchange in IWIM. Events are broadcast by their sources into

their environment, yielding event occurrences. In principle, any process in an

environment can pick up a broadcast event occurrence. In practice, usually

only a few processes pick up occurrences of each event, because only they are

tuned in to the relevant sources.

The IWIM model supports anonymous communication: in general, a pro-

cess does not, and need not, know the identity of the processes with which it

exchanges information. This concept reduces the dependence of a process on

its environment and makes processes more reusable; it also makes the proto-

cols governing such communication more reusable.

A process in IWIM can be regarded as a worker process or a manager

3

Banach et al

(or coordinator) process. The responsibility of a worker process is to perform
a task. A worker process is not responsible for the communication that is
necessary for it to obtain the proper input it requires to perform its task,
nor is it responsible for the communication that is necessary to deliver the
results it produces to their proper recipients. In general, no process in IWIM
is responsible for its own communication with other processes. It is always
the responsibility of a manager process to arrange for and to coordinate the
necessary communications among a set of worker processes.

There is always a bottom layer of worker processes, called atomic workers,
in an application. In the IWIM model, an application is built as a (dynamic)
hierarchy of worker and manager processes on top of this layer. Aside from
the atomic workers, the categorization of a process as a worker or a manager
process is subjective: a manager process man that coordinates the commu-
nication among a number of worker processes, may itself be considered as a
worker process by another manager process responsible for coordinating the
communication of man with other processes.

In IWIM, a channel is a communication link that carries a sequence of
bits, grouped into units. A channel represents a reliable, directed, and per-
haps bu�ered,
ow of information in time. Here, reliable means that the bits
placed into a channel are guaranteed to
ow through without loss, error, or
duplication, and with their order preserved; and directed means that there
are always two identi�able ends in a channel: a source and a sink. Once a
channel is established between a producer process and a consumer process, it
operates autonomously and transfers the units from its source to its sink.

If we make no assumptions about the internal operation of the producer
and the consumer of a channel c, we must consider the possibility that c may
contain some pending units. The pending units of a channel c are the units
that have already been delivered to c by its producer, but not yet delivered by
c to its consumer. The possibility of the existence of pending units in a channel
gives it an identity of its own, independent of its producer and consumer. It
makes it meaningful for a channel to remain connected at one of its ends, after
it is disconnected from the other. The full details of the IWIM model codify a
number of variations on this theme, but for our purposes, a channel will stay
alive as long as one end or another is connected to a process.

Worker processes have two means of communication: via ports, and via
events. The communication primitives that allow a process to exchange data
through its ports are conventional read and write primitives. A process can at-
tempt to read data from one of its input ports. It hangs if no data is presently
available through that port, and continues once data is made available. Simi-
larly, a process can attempt to write data to one of its output ports. It hangs
if the port is presently not connected to any channel, and continues once a
channel connection is made to accept the data.

A process proc can also broadcast an event e to all other processes in its
environment by raising that event. The identity of the event e together with

4

Banach et al

the identity of the process proc comprise the event occurrence. A process

can also pick up event occurrences broadcast by other processes and react to

them. Certain events are guaranteed to be broadcast in special circumstances;

for example, termination of a process instance always raises a special event

to indicate its death. Our formal model in the rest of the paper will be quite

limited in that we only model recon�guration events. Even then, for simplicity,

the modelling will be synchronous, a defect we address later.

A manager process can create new instances of processes (including itself)

and broadcast and react to event occurrences. It can also create and destroy

channel connections between various ports of the process instances it knows,

including its own. Creation of new process instances, as well as installation and

dismantling of communication channels are done dynamically. Speci�cally,

these actions may be prompted by event occurrences it detects. Each manager

process typically controls the communications among a dynamic family of

process instances in a data-
ow like network. The processes themselves are

generally unaware of their patterns of communication, which may change in

time, according to the decisions of a coordinator process.

In our formal model, again for reasons of simplicity, we eschew the full

generality of these concepts. Our process networks will turn out to be stat-

ically de�ned, though the execution trajectory through this stucture will be

dynamically determined. As such they may be viewed as the static unwinding

of an implicit but more succinct syntactic speci�cation of dynamic behaviour,

and the unwinding enables us to restrict discussion to the semantic level alone,

a welcome simpli�cation.

3 IWIM Automata

In this section, we distil the essentials of the ideas just described, to create

our semantic model. The idea is to use a �bration-inspired strategy, to re
ect

the way that IWIM events tear down and rebuild interconnections between

families of processes. Thus elementary IWIM automata will have in the base

manager automaton, describing how the manager part of an elementary IWIM

system moves, and above each state of the manager automaton, there will be

a collection of worker automata, connected together according to the prescrip-

tion contained in the manager state. The various worker collections are then

integrated into a single elementary IWIM system using an `above' relation de-

scribing how workers relate to states of the manager, a construction inspired

in essence by the Grothendieck construction. As a result of this, each con�gu-

ration of the overall automaton can be projected down onto the relevant state

of the manager in the manner of a �bration.

The capacity of IWIM systems to recon�gure themselves via events that

provoke managers to perform recon�guration activities, is here modelled by

mappings of certain worker moves (that represent the raising of the event)

to manager moves (that represent the reception and processing of the event,

5

Banach et al

l

m

n

χ

A B

C

S
D E

Man

[u; : : :]

a -o!v-> b

c -rec-> d

Fig. 1. An Elementary IWIM Automaton System.

resulting in recon�guration). Unlike genuine IWIM systems, this is a syn-
chronous activity in our model, but we will indicate in Section 4 that the
asynchronous aspects can be recaptured within our framework.

Fig. 1 illustrates in pictures what we have just described in words for ele-
mentary IWIM automata. It shows a collection of worker automata fA;B;C;
D;E; Sg sitting above a manager Man, forming an elementary IWIM system.
The states of Man i.e. fl; m; ng each map to communication networks con-
sisting of directed graphs of ports and channels. The ports of these networks
correspond bijectively to input and output ports in the workers, who are ig-
norant of whence come their input messages and where their output messages
are destined. Input ports are shown solid, while output ports are hollow. Fur-
thermore these bijections in large part mimic the substructuring of individual

6

Banach et al

ports in IWIM into their private and public parts. Also following these bijec-

tions up to the workers reveals which workers are above which management

states. Note that worker B is above more than one management state. This

means that when Man makes a transition from l to m, B is una�ected and

continues to work as before. Attached to each channel is a queue of messages

illustrated for just one channel for l in the �gure. Some of the channels can

be external, such as the external input channel for state l, and the external

output channel for n; these allow connection to and exchange of information

with the outside world. Note however that external input can only take place

when l is the current management state, and external output can only take

place when n is the current management state. The management transitions

must specify what happens to the message queues. These are mapped by

additional data illustrated by � in the �gure and merged into the destination

queues.

Worker C shows a typical worker output transition; there are similar

worker input transitions. The port of worker S shows that ports are really

quite general purpose concepts in IWIM, able to accomodate several incoming

and outgoing channels. Worker S itself can be seen as providing a serialisa-

tion service for B;C;D. Worker D shows a recon�guration event transition.

The thick line from the transition to the manager illustrates that the atomic

transition label rec is mapped to the manager transition from m to n. In this

manner the workers provoke recon�gurations implemented by the manager.

3.1 Elementary IWIM Systems

De�nition 3.1 An IWIM manager automaton is a triple (M;mI; R), where

M is a set of management states, mI 2 M is an initial state, and R is a

set of recon�guration transitions. These components are further stuctured as

follows. Each management state m is itself the name of a pair (Pm; Cm), where

Pm is a set of port names, and Cm is a set of channel names. There are two

partial functions sm; tm : Cm ! Pm that send channels to source and target

port names where they are de�ned. They satisfy dom(sm) [dom(tm) = Cm,

i.e. each channel is connected to at least one port | channels not in dom(sm)

are called external input channels, and channels not in dom(tm) are called

external output channels; channels in both dom(sm) and dom(tm) are called

internal channels. In a recon�guration transition, written m -r-> n, the r is

shorthand for a partial injection on the channel names �m;n : Cm ! Cn. Also

for each management state m, we have an identity transition m -idm-> m in

which the �m;m partial injection is a total identity.

The above de�nition characterises states of the manager automaton as

connection networks in which the ports do not have a unique orientation (as

input or output ports). Di�erent states m;n may refer to the same connection

network. Recon�gurations identify some channels of the source state with

some channels of the target.

7

Banach et al

De�nition 3.2 An IWIM worker automaton is a triple (I; O;A), where I is a
set of input ports, disjoint from O a set of output ports; and A = (St; Init; T r)

is an automaton with states St, of which Init 2 St is an initial state, and
Tr � St�Act�St is a transition relation, where Act is a set of actions of the

form in?v or out!v or rec. In the �rst two kinds of action in 2 I, out 2 O, and
we assume that there is a global alphabet of values V al containing v. In the
last kind, rec is just a name (intended to be the name of a recon�guration tran-

sition as in De�nition 3.1). Where convenient below, we will write transitions
using the notation a -in?v-> b or a -out!v-> b or a -rec-> b. We de�ne TrI = fa

-in?v-> b 2 Trg, TrO = fa -out!v-> b 2 Trg, TrR = fa -rec-> b 2 Trg, so that

Tr = TrI [TrO [TrR, the union being evidently disjoint. Additionally we

de�ne Rec = frec j a -rec-> b 2 Trg, the alphabet of recon�guration events of

the worker.

So far, workers are automata of a fairly standard kind. Now we show how

workers and managers are glued together.

De�nition 3.3 An elementary IWIM system (Man;Wor) comprises an IWIM
manager automaton Man, an elementary workforce Wor, and ancillary data

to be described below. Wor is a set of worker names together with a map wor,

which yields for each worker w 2 Wor, an IWIM worker automaton wor(w).
Furthermore we have:

(i) There is a relation ^ between Wor and the management states of Man.

We write w^m to say that a worker w is above a management state m if

the pair is in the relation.

(ii) If a worker w is above a management state m, then there is a map rw^m
from the rec actions of wor(w), into recon�guration transitions m -r-> n

of Man.

(iii) For each management state m 2 Man, there is a total bijection �m :
Pm ! IOm where IOm is the disjoint union of all of the input and

output ports of all workers above m; i.e. IOm =
U

k
^
m
fi j i 2 Iwor(k)g]U

k
^
m
fo j i 2 O

wor(k)g.

(iv) Associated to each channel c 2 Cm (where m is a management state),

there is a queue of messages which we write c : [u0; u1; : : :]. Each ui is in
V al. The front of this queue is u0.

A con�guration of an elementary IWIM system (Man;Wor) consists of:

(i) a state m of Man;

(ii) a set ests = fak j ak 2 Stwor(k); k 2 Worg of states ak one per worker k;

(iii) a set qs = fc : qc j c : qc = c : [u0; u1; : : :]; c 2 Cn; n 2 Mg of queues of
messages c : [u0; u1; : : :] one per channel per management state.

Note that in the above, ests may equivalently be viewed as the range of a

function which maps each worker to one of its states, so that ak is formally

an ordered pair. Since we are overwhelmingly concerned with the states and

8

Banach et al

how they change, we will not use the more cumbersome functional apparatus.

Similar remarks apply to qs though here some of the indexing information is

routinely suppressed.

A con�guration of an elementary IWIM system (Man;Wor) is initial i�:

m is initial, the ak are also all initial, and the queues associated with all

channels are empty.

A transition of an elementary IWIM system (Man;Wor) in state (m; ests;

qs) is one of the following six kinds:

(ENVI) The environment adds a value to the input end of a queue whose

source end is not attached to any port (an external input channel's queue).

c 62 dom(sm) ;

c 2 dom(tm) ;

qsrest = qs� fc : [: : : ; un]g

|||||||||||

m �! m ;

ests �! ests ;

qs �! qsrest [fc : [: : : ; un; u]g

(ENVO) The environment removes a value from the output end of a queue

whose target end is not attached to any port (an external output channel's

queue).

c 2 dom(sm) ;

c 62 dom(tm) ;

qsrest = qs� fc : [u; u1; : : :]g
|||||||||||{

m �! m ;

ests �! ests ;

qs �! qsrest [fc : [u1; : : :]g

(IN) A worker automaton performs an input on one of its input ports, remov-

ing the front element from an input queue attached to the port, of which there

must be at least one.

k
^
m ; ak 2 ests ; ak -i?u-> bk ;

�m(p) = i 2 Iwor(k) ;

tm(c) = p ;

estsrest = ests� fakg ;

qsrest = qs� fc : [u; u1; : : :]g

|||||||||||{

m �! m ;

ests �! estsrest [fbkg ;
qs �! qsrest [fc : [u1; : : :]g

(OUT) A worker automaton performs an output on one of its output ports,

9

Banach et al

adding a value to the end of any output queue attached to the port, of which

there must be at least one.

k^m ; ak 2 ests ; ak -o!u-> bk ;

�m(p) = o 2 Owor(k) ;

6
 6= Out = fd j sm(d) = pg ;

estsrest = ests� fakg ;

qsrest = qs� fd : [: : : ; ud;nd] j d 2 Outg

||||||||||||||||{

m �! m ;

ests �! estsrest [fbkg ;

qs �! qsrest [fd : [: : : ; ud;nd; u] j d 2 Outg

(FOR) A port performs a forwarding action, removing the front element from

an input queue attached to the port and inserting (a copy of) it to all output

queues attached to the port, of which there must be at least one.

tm(c) = p ;

6
 6= Out = fd j sm(d) = pg ;

qsrest = qs� fc : [u; u1; : : :]g [fd : [: : : ; ud;nd] j d 2 Outg

|||||||||||||||||||||||

m �! m ;

ests �! ests ;

qs �! qsrest [fc : [u1; : : :]g [fd : [: : : ; ud;nd; u] j d 2 Outg

NB. The above notation is intended to include the case that c 2 Out, where-

upon the front message of c's queue is moved to its tail.

(REC) A worker automaton kr performs a rec action akr -rec-> bkr , provoking a

recon�gurationm -r-> n of the elementary IWIM system, given by the function

rk ^r m. The manager automaton makes a transition to the new state. Worker

automaton kr completes its transition. Worker automata other than kr who

are above both the old and new manager state remain as before. Worker

automata above the old but not the new manager state go into suspension.

Worker automata not above the old but above the new manager state are

awakened. The queues of channels above the old manager state which are

reassigned via the channel recon�guration data are moved according to that

data, being merged with the existing queues at target channels and leaving the

queues at originating channels empty. The queues at other channels remain

as before.

10

Banach et al

k ^

r
m ; akr 2 ests ; akr -rec-> bkr ;

rk ^
r
m(rec) = m -r-> n = �m;n : Cm ! Cn ;

estsrest = ests� fakrg ;

qsdel = fc :qc j c 2 Cm; c 2 dom(�m;n)g [fd :qd j d 2 Cn; d 2 rng(�m;n)g ;

qsrest = qs� qsdel ;

qsdom = fc : [] j c 2 Cm; c 2 dom(�m;n)g ;

qsmerge = fd :qcd j c :qc; c 2 Cm; c 2 dom(�m;n);

d :qd; �m;n(c) = d 2 Cn; d 2 rng(�m;n);

d :qcd 2 merge(qc; qd)g

|||||||||||||||||{

m �! n ;

ests �! estsrest [fbkrg ;

qs �! qsrest [qsdom [qsmerge

This transition system has some features that deserve comment. Note �rstly

that input/output and forwarding activities are completely decoupled. For

this reason it makes little sense for the manager to connect up a port to use

simultaneously as a broadcasting device, and as an input device to the rele-

vant worker, since the input messages and forwarded messages are necessarily

disjoint. Thus since even forwarding ports have to belong to some worker, it

is best to invent special purpose dummy workers just for the purpose.

A second issue concerns the creation and destruction of processes. IWIM

is entirely virtuous regarding matters of life and death: there is no murder,

only suicide. The most that managers can accomplish is anasthesia. When a

recon�guration transition takes a worker out of the current con�guration be-

cause that worker is not above the new current management state, the worker

sleeps, because being above the current management state is a hypothesis of

all six transition types. When the current management state once more be-

comes one which the worker is above, it wakes and is able to participate in

worker transitions again. It is the worker's own responsibility to enter a state

out of which no transitions emerge if it wishes to die.

Thirdly there arises the issue of queue management during recon�guration

transitions. We have elected to merge assigned queues with existing ones (for

given source and target ports) as representing an abstraction of the potential

presence of several independent queues from the source to the target. The

latter would require a more complex notion of recon�guration transition than

we wish to get embroiled in.

Let EConfs (Man;Wor) be the set of all con�gurations of (Man;Wor).

Equipping it with the transitions just described makes it into a transition

system. We regard this transition system as unlabelled, it being the case that

the kind of step involved is always deducible from the pair of con�gurations

in question.

11

Banach et al

A run of (Man;Wor) is, in the normal manner, a sequence of contiguous
transitions of EConfs (Man;Wor), starting with an initial con�guration:

(m; ests; qs) �! (m0; ests0; qs0) �! (m00; ests00; qs0) �! : : :

Let Mngr(Man;Wor) be the set of manager states of con�gurations occur-
ring in EConfs (Man;Wor). These are given by a function e�man where

e�man(m; ests; qs) = m. The set Mngr(Man;Wor) can be equipped with

transitions derived from the (REC) transitions of EConfs (Man;Wor). Thus
to the transition (m; ests; qs) �! (m0; ests0; qs0) corresponds the Mngr(Man;

Wor) transition e�man(m; ests; qs) �! e�man(m
0; ests0; qs0), i.e. m �! m0,

(we regard these transition as unlabelled too). We also add an identity tran-

sition m �! m to each manager state in Mngr(Man;Wor).

Now although a particular worker may be above several manager states,
making problematic the de�nition of a projection from the static structure

of the elementary IWIM system to its manager, the same is not true of
the set of con�gurations of the elementary IWIM system and its transition

system, EConfs (Man;Wor), as it relates to the set of manager states. In

EConfs (Man;Wor), some speci�c manager state always indexes any worker

state that forms part of a con�guration, and so we obtain the following result.

Proposition 3.4 Let (Man;Wor) be an elementary IWIM system. Consider

EConfs (Man;Wor), the associated transition system, andMngr(Man;Wor),
the corresponding set of manager transitions. Then there is a projection:

�e : EConfs (Man;Wor)!Mngr(Man;Wor)

which maps states by:

(m; ests; qs) 7! e�man(m; ests; qs)

and which maps (REC) transitions by:

(m; ests; qs) �! (m0; ests0; qs0)

7!

m �! m0 = e�man(m; ests; qs) �! e�man(m
0; ests0; qs0)

and which maps (ENVI), (ENVO), (IN), (OUT), transitions to identity tran-

sitions:

(m; ests; qs) �! (m; ests0; qs0)

7!

m �! m

Proof. Obvious. 2

4 Properties and Extensions of IWIM Systems

In this section we outline some aspects of our IWIM systems model that lack of

space prevents us from treating in a more comprehensive manner. The �rst is-

sue concerns the fact that in the general case, processes in IWIM are capable of

12

Banach et al

displaying both manager and worker behaviour. To address this, a more com-

prehensive formal construction asynchronously combines a worker automaton

and a manager automaton of the kind we have seen above in elementary IWIM

systems, to yield a worker-manager automaton. The asynchronous product

construction has a state space which is the cartesian product of the individ-

ual state spaces, permitting moves which are either worker or manager moves,

each acting on their respective component. The relatively decoupled nature of

the construction means that all the apparatus for linking workers to their man-

agers carries over without alteration from the elementary case. Consequently

workers may be simultaneously managed by several di�erent managers, just

as a manager can control several workers. The only technical point of note,

is that recon�guration transitions are now synchronised across as many man-

agers as the poor worker is currently controlled by. Since this synchronous

recon�guration aspect of the model is at odds with the true nature of IWIM,

we emphasise that we can recover asynchronous recon�guration by simulation,

this being the second issue on our list.

Asynchronous recon�guration is in fact relatively easy to simulate by the

introduction of delay automata; one such automaton for every occurrence of a

worker being above a manager state. The purpose of the delay automata is to

bu�er the events in transit from the original worker to the original manager.

Thus instead of an original worker raising an event as previously, it posts

a message encoding the event required on a special purpose port, which is

broadcast over channel connections to the delay automata corresponding to all

the managers the worker is above. These automata then provoke the necessary

recon�gurations one at a time at their leisure.

A third issue concerns the possibilities for combining IWIM automata in

various ways. Since IWIM automata contain a variety of attributes, a large

number of possibilities arise. These fall broadly into two classes, the general

purpose ones and more speci�c constructions. Among the former are a number

of fairly natural pushout and pullback constructions which exist under rela-

tively straightforward conditions. These have to be built up stage by stage to

deal with all the layers of detail precisely enough.

Among the latter, are constructions which only apply to automata of some

precise form, which arises because the automata are designed to be emulations

of some other system. Pertinent cases in point come from the Arbab, de Boer

and Bonsangue model [6], and the Katis, Sabadini and Walters model [16].

These are two formal models for exploring theoretically some of the features of

IWIM. Generic constructions for IWIM automata (in the sense of this paper)

can be given, that accurately re
ect the workings of these models. Moreover

where these models possess algebraic combinators of their own (cf. the Katis,

Sabadini and Walters model in particular), the natural way of combining the

emulations turns out not to arise from the generic combinators for IWIM

automata, but from ad hoc constructions valid only because of the strong

invariants possessed by these emulations. Full details can be found in [8].

13

Banach et al

5 Conclusions

In the preceding sections we have reviewed the essentials of the IWIM model,

and constructed elementary IWIM systems as automata families that capture

some of the characteristics of IWIM, or of concrete implementations of IWIM

such as MANIFOLD, in an abstract way. We have concentrated on the ele-

mentary IWIM systems because they illustrate the most important features

of this method of modelling IWIM-style coordination in a �bration-oriented

scenario. We went on to discuss in the last section, a number of issues that

lack of space prevented us from giving a full treatment to. Aside from these

issues that we touched upon, there remains the interesting question of how one

might retrieve similar structures to the present ones in the shared store mod-

els, which must after all be capable of exhibiting the same range of behaviours

as the IWIM model.

References

[1] Agha G. \Actors: A Model of Concurrent Computation in Distributed
Systems," MIT Press, 1986.

[2] Arbab F. \Coordination of Massively Concurrent Activities." CWI Tech. Rep.
CS-R9565, 1995.

[3] Arbab F. \The IWIM Model for Coordination of Concurrent Activities." in:
Proc. COORD-96, Ciancarini, Hankin (eds.), LNCS 1061, 34-56, Springer,
1996.

[4] Arbab F., Herman I., Spilling P. \An overview of Manifold and its
Implementation." Concurrency: Practice and Experience 5, 23-70, 1993.

[5] Arbab F., Blom C. L., Burger F. J., Everaars C. T. H. \Rusable Coordination
Modules for Massively Concurrent Applications." Software: Practice and
Experience 28, 703-735, 1998.

[6] Arbab F., de Boer F. S., Bonsangue M. M. \A Logical Interface Description
Language for Components." in: Proc. COORD-00, Porto, Roman (eds.), LNCS
1906, 249-266, Springer, 2000.

[7] Arbab F., de Boer F. S., Bonsangue M. M. \A Coordination Language for
Mobile Components." in: Proc. ACM SAC-00, 166-173, 2000.

[8] Banach R., Arbab F., Papadopoulos G. A., Glauert J. R. W. \A Multiply Fibred
Automaton Semantics for IWIM." submitted, 2002.

[9] Best E., Devillers R., Koutny M. \Petri Net Algebra." Springer, 2000.

[10] Bonsangue M. M., Arbab F., de Bakker J. W., Rutten J. J. M. M.,
Scutell�a, Zavattaro G. \A Transition System Semantics for the Control-Driven
Coordination Language MANIFOLD." Theor. Comp. Sci. 240, 3-47, 2000.

14

Banach et al

[11] Carriero N., Gelernter D. \LINDA in Context." Comm. ACM 32, 444-458, 1989.

[12] Ciancarini P., Hankin C. H. L. (eds.) \Coordination Languages and Models
1996" (Proc. COORD-96). LNCS 1061, Springer, 1996.

[13] Ciancarini P., Wolf A. L. (eds.) \Coordination Languages and Models 1999"
(Proc. COORD-99). LNCS 1594, Springer, 1999.

[14] Garlan D., Le Metayer D. (eds.) \Coordination Languages and Models 1997"
(Proc. COORD-97). LNCS 1282, Springer, 1997.

[15] Gelernter D. \Generative Communication in Linda." ACM Trans. Prog. Lang.
Sys. 7, 80-112, 1985.

[16] Katis P., Sabadini N., Walters R. F. C. \A Formalisation of the IWIM Model."
in: Proc. COORD-00, Porto, Roman (eds.), LNCS 1906, 267-283, Springer,
2000.

[17] Malone T., Crowston K. \The Interdisciplinary Study of Coordination." ACM
Comp. Surv. 26, 87-119, 1994.

[18] Omicini A., Zambonelli F., Klusch M., Tolksdorf R. \Coordination of Internet
Agents: Models, Technologies, and Applications." Springer, 2002.

[19] Papadopoulos G. A., Arbab F. \Coordination Models and Languages." in:
Advances in Computers { The Engineering of Large Systems, Zelkowitz (ed.),
329-400, Academic, 1998.

[20] Porto A., Roman G-C. (eds.) \Coordination Languages and Models 2000"
(Proc. COORD-00). LNCS 1906, Springer, 2000.

[21] Shapiro E. \The Family of Concurrent Logic Languages." ACM Comp. Surv.
21, 412-510, 1989.

15

