
A Basis for Performance Property Prediction
of Ubiquitous Self-Adapting Systems

Gunnar Brataas,
Jacqueline Floch

SINTEF ICT
NO-7465 Trondheim

Norway
(+47 735) 92945 / 93012

Gunnar.Brataas@sintef.no
Jacqueline.Floch@sintef.no

Romain Rouvoy
University of Oslo

0316 Oslo
Norway

+47 22852869

Rouvoy@ifi.uio.no

Pyrros Bratskas,
George A. Papadopoulos

University of Cyprus
Nicosia
Cyprus

+357-22892684

Bratskas@cs.ucy.ac.cy
George@cs.ucy.ac.cy

ABSTRACT
Utility-based adaptation approaches permit to determine the
“best” suited variant of an application at run-time. Utility policies
are usually specified in terms of resources and QoS dimensions.
Although utility policies provide a precise formulation for
adaptation decision, they are difficult to specify. The developer
especially needs assistance in the specification of performance
properties. In this paper, we investigate using a performance
engineering framework, for the specification of such properties
and identify several open research issues.

Categories and Subject Descriptors
C.4 [Performance of systems]: Modelling techniques,
D.2.4 [Software/Program Verification]: Validation

General Terms
Verification, Performance.

Keywords
Self-adaptation, Performance property specification, Analytical
Modelling

1. INTRODUCTION
Ubiquitous computing environments are characterized by frequent
changes. To retain usability, usefulness, and reliability in such
environments, systems should adapt to changing conditions [1].
The aim of the MUSIC project is to facilitate the development of
self-adapting component-based applications for mobile users in
ubiquitous computing environments [2]. We follow an
architecture-centric approach where architecture models are
represented at runtime to allow generic middleware components

to reason about and to control adaptation of applications [3].
These architecture models describe the application structure and
variability, and adaptation information. Rather than describing
explicitly the adaptation actions to take place in particular
situations, we adopt a utility-based approach. Utility policies are
extended goal policies that ascribe a real-value scalar desirability
to system states [4] (in our case system variants). The adaptation
middleware thus can compute the utilities of system variants and
reasons about the actions required to facilitate an adaptation.
Utility policies express the rationale of an adaptation decision in a
precise way, and are therefore more appropriate than action or
goal policies when adaptation triggers and effects interfere, or
when goals conflict is the case in mobile and ubiquitous
environments [5]. A drawback though is that they require the
developer to specify the properties of the system variants, and this
might be a difficult task. Especially system resource needs (e.g.,
CPU or network) and the impact of resources on performance are
hard to deal with. To facilitate the developer task in specifying
such properties, we are investigating a performance engineering
(PE) framework. In this position paper, we present an existing
research approach that we propose to refine and extend for
MUSIC needs and discuss open research issues.

predicted
properties

contextarchitecture
models

applicationsAdaptation
reasoning

offered
properties

predicted
utility

offered
utility

perceived
utility

compare

compare

has impact on

relate to

use

compare

user
needs

predict

adapt

influence

describe

predicted
properties

contextarchitecture
models

applicationsAdaptation
reasoning

offered
properties

predicted
utility

offered
utility

perceived
utility

compare

compare

has impact on

relate to

use

compare

user
needs

predict

adapt

influence

describe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESSPE '07, September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-798-8/07/09...$5.00 Figure 1. Utility-based adaptation.

Article number 9

59

2. PROBLEM DESCRIPTION
Figure 1 illustrates adaptation in a utility-based approach. The
architecture models specify property predictors allowing the
adaptation middleware to predict properties of application
variants in a given context. A utility function is a kind of property
predictor: it aggregates several properties and take user
preferences into account. Examples of property predictors and
utility functions are provided in [3]. The property predictors
should be correctly specified so that the right adaptation decision
is applied in response to context changes. This means that
predicted properties should faithfully approximate the "real"
offered properties and utilities of application variants.
MUSIC uses component frameworks to design applications and
supports compositional variability, allowing application
reconfiguration at the component level. This requires specifying
property predictors at the component level. Further, a user often
runs multiple applications at the same time. This requires
adaptation reasoning to take into account the combined resource
needs and utility of the set of active applications.
Figure 2 illustrates the different composition levels for a set of
self-adapting applications. At each level, the properties and
resource requirements should be specified correctly and validated.
The component level deals with individual or elementary
components. Resource requirements and properties offered by
components should be specified correctly. The application level
deals with application and possibly composite components. The
aggregation of resource requirements and properties from
components to applications may introduce discrepancies and must
be validated. In addition, the utility of each application model
must be checked: is the "real" utility similar? The portfolio level
deals with a set of applications. The "aggregation" of resource
requirements, properties and utilities from several applications
must be validated. The system-and-user level deals with a set of
applications deployed on a specific platform and made available
to end-users. When all applications are running on the top of the
adaptation middleware, subject to context changes and
experienced by the user, the offered utility should be checked
against the utility perceived by the user.

Component
level

Application
level

Portfolio
level

System
and user
level

MW

Component
level

Application
level

Portfolio
level

System
and user
level

MW

Figure 2. Composition levels.

3. MAIN REQUIREMENTS
Validation and tuning of system properties are generally
associated to a fine-grained analytical modelling of the system
performances. However, the description of such an analytical
model is often time-consuming and error prone for the developer.
The objective of our work is to leverage the task of the developer
by providing him/her tools and methods to describe these
analytical models quickly and efficiently. This means that the PE

framework should be integrated in the development process. This
integration consists in extending existing tools with support for
the particularities of self-adapting systems.
Thus, the PE framework should provide an integrated support to
the developer for (1) inferring the analytic model of a component,
and (2) validating the analytic model using component test-beds
and context simulations. Finally, this approach should support
different types of execution platforms due to the large
heterogeneity of ubiquitous devices.

4. ANALYTICAL MODELLING
As a basis for our performance property models we will use
analytical performance models where equations are used to derive
properties of interest from observable quantities. We propose to
use static analytical models for software components and dynamic
analytical models for hardware resources. We could have selected
other modelling paradigms [6]. More powerful approaches, e.g.,
layered queuing models [7], allow for contention also at the
software levels, but then also require getting more parameters and
become more complex. Approaches based on SPE [8] (Software
performance engineering) will not have the same component
focus as our static model. Nevertheless, it would be interesting to
also explore other modelling paradigms in our component-based
mobile setting.
As shown in Figure 3, user workload is separated into work (what
is done?) which drives a static model and load (how often is it
done?) which drives the dynamic model. For dynamic
performance models, resource demands, service times and
response times are well-defined concepts, e.g., see [9]. The
resource demands needed by the dynamic model are the product
of service times and the devolved work from the static model.
Devolved work is the number of elementary hardware operations
for the top level work. Service time is the execution time for each
elementary operation on a hardware resource, excluding
queueing. Response times for top-level operations are finally
derived from the dynamic model. A multi-class queuing network
[9] can be used for the dynamic model, with one class for each
top-level operation. For an open queuing network model, load is
represented by arrival rates.

Static Model

Dynamic Model

Work

Devolved Work

Response Times

Load

Service
Times Resource Demands

Figure 3. Overall framework.

Figure 4 shows the components in the static model for the service
technician example from [3]. Technicians are responsible for
inspecting geographically spread technical installations. They use
PDAs for status and fault report. When changes occur in the work
environment, applications adapt. For example, the application
structure might adapt from a thin to a medium or self-reliant
client; the UI switches between keyboard- or voice-based.

Article number 9

60

The static model defined in [10] and validated by [11] describes
how work is devolved from user level work through several
software components and finally onto work on primary hardware
components. The model example shown in Figure 4 has five
primary hardware resources, one CPU for the handheld, one CPU
(or several if needed) for the server, flash memory on the
handheld, one disk (or several disks) on the server and the
Internet, which acts as the communication medium. Components
are linked together in a directed acyclic graph. The links have
three types. Solid thin links represent transformation and
processing of information, solid thick links represent persistent
storage and dotted thin links represent communication.

Server CPUHandheld
CPU

Server
Disk

UI and
Controller

DBMS

Internet

Legend
Processing
Storage
Communication

Tr
an

sf
er

pa
ck

et

In
st

ru
ct

io
n

R
ea

d
B

lo
ck

W
rit

e
B

lo
ck

St
or

e
in

sp
ec

tio
n

re
po

rt
R

et
rie

ve
 in

sp
ec

tio
n

gu
id

e

G
en

er
at

e
in

sp
ec

tio
n

re
po

rt

In
st

ru
ct

io
n

Ta
ke

pi

ct
ur

e

W
rit

e
bl

oc
k

R
ea

d
bl

oc
k

Handheld
Flash Memory

Figure 4 . Static model of Service Technician example.

The first crucial step in making a static model is to decide on
which components and links to model. In our model example the
UI component and the Controller component are combined
into the UI and Controller component to decrease the
complexity of the model, and trading off accuracy for cost of
measurements. In our example, storage of inspection reports could
be done locally in the Handheld Flash Memory or remotely
in the Server Disk. Each component offers operations, e.g.,
both the DBMS and the Handheld CPU will have operations.
For the DBMS, the two operations Store inspection
report and Retrieve inspection guide are specified,
and for both CPUs we specify on average Instruction only.
The accuracy of the model increases with the number of
operations, but so will also the measurement cost.

Operations on components which are linked together are related
with a Complexity Specification Matrix (CSM). Each element in
the CSM is a function describing the average number of a
particular low-level operation which is used by a particular high-
level operation. This function will often be simple numbers like 0
(the low-level operation is not used) and 1 (exactly one low-level
operation is used for each high-level operation). A more
sophisticated function may depend on load and data sizes. An
access to a DBMS will for example depend on the size of the
requested data. A garbage collection component depends on the
system load, as there is more garbage collection when the load on
the system is high, than when it is low.

To compute the devolved work for an application consisting of
several components, we use two simple rules. If two links devolve
work on the same component, their respective CSMs are added
together. Multiplication is used for combining links coming into a
component with the links going out from a component [10] [11].

In our model example the component UI and Controller
has the two operations Take picture and Generate
inspection report. The complexity matrix showing the
relationship between the top-level operations Take picture
and Generate inspection report and the low-level
CPU Instructions will in this case have two elements:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
8

7__&

10
10

_
_

.

reportGenerate
pictureTake

Instr
C CntrlUI

CPU

In this CSM the element 108 means that the each Generate
report operation on the average requires 108 CPU instructions.
If we assume the handheld CPU is running on average 107
instructions per second, then the service time for each CPU
instruction is 10-7 seconds. Note a main advantage of this
framework: it is easy to adjust for differences in CPU speed
between different processors. Only service times have to be
adjusted, whereas the static model itself remains unchanged.
The resource demand for each high-level Generate report
operation is the product of the number of instructions for each
Generate report operation and the resource demand, and is

, i.e., it takes 10 seconds of CPU time to exe-
cute one Generate report operation.

ss 101010 78 =⋅ −

To compute the resource requirement on the handheld device, we
also need the CSM between UI and Controller and
Handheld Flash Memory. The Handheld Flash
Memory has the two operations RB (Read block) and WB (Write
block). We assume a block size of 1 MB. The CSM is defined as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
1000100

100
_

___&
_

reportGenerate
pictureTake

WBRB
C CntrlUI

memFlash

We assume each read access requires 0.02 s, and each write
access requires 0.05 s, therefore each Take picture operation
will take 0.5 s, while each Generate report operation will
require .5205.0100002.0100 sss =⋅+⋅

During peak load the user generates 1 report every 10 minute, and
will in the same time interval take around 20 pictures. For
simplicity, and since they are heavily intertwined, we consider the
Handheld CPU and Handheld Flash memory as one
resource. The utilisation, U, of this resource becomes:

153.0
6010

)5210(1)5.01(20
=

⋅
+++

=
s

ssssU

A utilisation of 0.153 means that the handheld is busy 15.3 % of
the time. This is not a significant load, but nonetheless small
queues will contribute to the response time. We assume steady
state and a random distribution of the load (in practice, the time
between individual top-level operations will then be exponentially
distributed). Using a multi-class open queuing network model as
the dynamic model, then the steady-state, average response time
for each Generate report operation will be [9]:

sss
U

DR 2.73
153.01
5210

1
=

−
+

=
−

=

Article number 9

61

If the storage is distributed to a server, both the load and the
response times on the handheld will be smaller, but we must in
addition also add the network and the response time contributions
from the server (which would be considerably less than for a
handheld, given much faster processing and storage devices).
In summary, there are three types of “parameters” or inputs to the
models in this framework: 1) the load 2) the service times and 3)
the elements in the CSM. Based on the response times it is
possible to derive property predictors and utility functions.

5. TEST-BEDS
In our PE framework, the objective of using test-beds is twofold:

1. Test-beds should capture resource demands for the different
parameters of the static model based on service time
responses.

2. Test-beds should also validate the property predictors
defined in the static model (and computed in the dynamic
model) by comparing it to measured performances.

If the former objective can be achieved using existing profiling
approaches and tools (such as the Eclipse TPTP framework [12]),
the latter needs to extend current approaches to take into account
domain-specific property predictors. Thus, our PE framework
includes test-beds for (1) resource demands evaluation, and (2)
property predictors validation of components.
This first type of test-bed gathers data about the observable
performance related to the execution of a component. The
resulting information (execution time, list of methods calls, etc.)
becomes useful to refine the definition of the static model. In [13],
the authors introduce a workbench and a repository dedicated to
the gathering of resource demand data. Scenarios are defined for
identifying resource demands as both operating system
dependencies (e.g., memory, CPU), and invocation dependencies
(e.g., libraries). Performance is then evaluated by the test
environment and stored in a repository, which contains the
demands per operation and the total demands per execution of
each scenario. To measure resource demands and eventually to
specify the CSMs for primary hardware resources could be time-
consuming, but one eventually gets the information one look
after. However, to characterise the CSMs for intermediate
components could be a more frustrating experience, because
enough information may not be readily available making educated
guessing necessary [13].
The second type of test-bed addresses the validation of property
predictors associated to a component. This includes general
performance properties, such as response times and domain-
specific QoS properties (e.g., packet-loss rate for streaming
applications). The latter cannot be modelled, observed and
validated by traditional performance modelling approaches and
testing environments. This means that the specification and
validation of these predictors should be derived from concrete
observations that are possibly abstracted to higher-level quality
properties. Thus, it may be necessary to extend domain-specific
data structure (e.g., video streams) with instruments, such as high-
level metadata, that reify the QoS property model at runtime. For
example, the quality of a video stream may be converted to
abstract QoS property levels (low, medium, high).

6. CONTEXT SIMULATION
Context simulation contributes to facilitate the capture of dynamic
properties. We may simulate two kinds of context:

1. The user work load, allowing one to observe how the load
influences the performance properties. A solution to this may
be the CLIF framework (http://clif.objectweb.org/).

2. The system resources allowing one to observe the effects that
either result from platform variations or from the
competition from other applications.

As for the latter is concerned, we propose to exploit the
ResourceManager component of the MUSIC Middleware [2]
which aims at managing the resource instances present in a given
adaptation domain. The ResourceManager provides uniform
discovery and configuration interfaces to local lower level
resources present in a node, such as memory, CPU, and network
resources. Additionally, in a distributed environment, the
ResourceManager running on a master node provides information
about the global resource model and resource situation in its
adaptation domain, including other available nodes. A node,
which is also considered as a resource, represents a computational
entity in the system that may host application components. The
ResourceManager is designed not only for Resource Discovery
but also for Observability/Listenability and Configuration.
Resource’s properties are observable in both pull and push
schemes and the resource management should be able to manage
the configuration of certain resources and guarantee a certain
level of protection when accessing the underlying manageable
resource.
The MUSIC resource model supports the modelling of resources
in a uniform way. A resource must be generic, modelled uni-
formly and its range extensible, supporting adding new resource
types to cover all resources identified in a given scenario.

7. RESEARCH CHALLENGES
The use of analytical modelling for self-adaptive computer
systems is reported for example in [14]. The modelling of
performance for a component-oriented software system has been a
lively research issue for at least one decade (see for example
[15]). However, to our knowledge, analytical modelling of
performance properties for mobile and ubiquitous self-adapting
component-based systems is not addressed in the literature. Some
of the research challenges will therefore be remaining research
challenges from component-based performance engineering of
“vanilla” software, while other research challenges are original
because of the new environment. In this section we identify some
open research issues.
Component-based performance engineering is not normal practice
in software engineering, both because of remaining research
challenges and because of its cost in terms of manpower. The
rigorous formal basis given in this paper should in practice
therefore be simplified, decreasing its accuracy, but more
importantly also decreasing its cost. It is however our underlying
assumption that it is better to simplify a rigorous formal basis than
to work with an ad hoc approach.
In the context of self-adapting systems, a main challenge is to
provide the developers with tools that are easy to use and support
the specification of accurate models. As our work focuses on
everyday systems, we may relax the level of accuracy and detail.

Article number 9

62

The selected application variant does not need to be the best, but
has to be good enough. Also too detailed architectural models
would lead to frequent adaptation reasoning resulting in much
overhead. Currently in MUSIC, ports are defined that combine
several operations into one service, this to simplify the
specification of property predictors in the architecture models.
The static models as introduced in Section 4 require the
description of individual operations. We will investigate whether
the PE framework can be accommodated to the coarse-grained
architecture models proposed in MUSIC.
As MUSIC uses component frameworks facilitating the
deployment of new component variants and supporting the
composition of new application variants at run-time, we may not
be able to specify performance models for complete applications
at design time. Rather, we need a modular and incremental
approach supporting the instrumentation of components
separately. This is also needed by the extended scope of MUSIC
to service oriented architectures (SOA).
The cost of the proposed approach is by far dominated by the cost
of measurements. For each component, we must define the
platform on which the component executes and characterise the
resource consumption in terms of this platform (this is done using
the CSMs). In the case of the service technician example in
Figure 4, the report may be stored either locally on the handheld
or on a remote server. In both cases, the CSMs using this platform
should be equal. What is changing is the CSM in the platform
itself, i.e., the resource consumption for the server on its resources
will differ radically from the resource consumption for storing the
same information on the handheld. However, in the worst case,
variability will require new CSMs for each platform and thus also
the need for new measurements. We will investigate this further.
The more components, the more connections between
components (and thus the more CSMs), the more elements in each
CSM, the more complex and costly the approach is. Accuracy
requires several measurements for each CSM element, and thus
contributes to complexity. One may assume that mobile
applications are simpler and that the cost of performance
modelling is smaller than for “conventional” software.
Knowledge about the load is usually a critical parameter in PE
frameworks. As our aim is to compare several variants, we can
assume that all variants are subject to the same load. An
approximation about the load is thus probably sufficient. Also in a
mobile setting, using a handheld, the number of operations is
probably limited. A new issue though is that the load may be
influenced by the context changes: the user may use an
application more often in a particular context.
To assess the feasibility of the approach and to get more
experiences of how the simplifications can be done and on how
accurate the models will be in practice, we need case studies. The
pilot services developed in the MADAM project [16] that
provides the foundation for MUSIC, are a good starting point. It is
further interesting to seek for patterns of the relations betweens
the components in the static component models.
Finally, we may consider more tricky issues: (1) Extensions to the
static model may be required to handle the memory consumption
for each component itself (i.e., apart from the memory
consumption for its operations). In addition, memory constraints
in the primary memory (i.e., to estimate the performance
implications of using less memory than what is optimally required

by and application) may be hard to handle analytically by the
dynamic model. (2) The approach may be relevant for the
modelling of battery consumption related to the modelling of
performance, because each elementary operation will consume a
given amount of energy (We must in addition take into account
that the energy per elementary operation depends on the clock
speed, i.e. running a given workload at a high clock speed
consumes more energy than using a lower clock speed.). Energy
may also be needed for keeping an idle resource standby.

ACKNOWLEDGMENTS
Thanks to Erlend Stav, SINTEF ICT, for valuable comments. The
European project MUSIC (EU IST 035166) supports our work.

REFERENCES
[1] Satyanarayanan, M. Pervasive Computing: Vision and

Challenges. IEEE Personal Communications, vol. 8, no. 4 ,
pp. 10-17, 2001.

[2] http://www.ist-music.eu/
[3] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K.,

and Gjørven, E. Using architecture models for runtime
adaptability. IEEE Software, vol. 23, no. 2, 2006, 62-70.

[4] Kephart, J.O., and Das, R. Achieving Self-Management via
Utility Functions. IEEE Internet Computing, vol.11, no. 1 ,
pp. 40-48, 2007.

[5] Floch, J., Stav E., and Hallsteinsen, S. Interfering effects of
adaptation: implications on self-adapting systems
architecture. LNCS 4025, pp. 64-69, Springer, 2006.

[6] Woodside, M., Franks, G., Petriu, D.C., The Future of
Software Performance Engineering, Future of Software
Engineering, IEEE, May 2007.

[7] Rolia, J.A. and Sevcik, K.C. The Method of Layers, IEEE
Trans. on SW Eng., 21(8): pp 689-700, August 1995.

[8] Smith, C.U., Williams, L.G., Performance Solutions,
Addison Wesley, 2002.

[9] Menasce, D.A. Almeida, V.A.F, Dowdy, L.W. Performance
by Design, Prentice Hall, 2004.

[10] Hughes, P. SP Principles, Technical report, STC
Technology, o59/ICL226/0, July 1988.

[11] Brataas, G., Hughes, P.H., Sølvberg, A. Performance
Engineering of Human and Computerised Workflows, LNCS
1250, Springer, 1997.

[12] http://www.eclipse.org/tptp/
[13] Woodside M., Vetland V., Courtois M., and Bayarov S.

Resource Function Capture for Performance Aspects of
Software Components and Sub-systems, LNCS 2047,
Springer, 2001.

[14] Menasce, D.A., Bennani, M.N. and Ruan, H. On the Use of
Online Performance Models in Self-managing and Self-
organising Computer Systems, LNCS 3460, Springer, 2005.

[15] Gomaa, H., Menasce, D.A. Performance Engineering of
Component-Based Distributed Software Systems, LNCS
2047, Springer, 2001

[16] http://www.ist-madam.org/

Article number 9

63

	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	3. MAIN REQUIREMENTS
	4. ANALYTICAL MODELLING
	5. TEST-BEDS
	6. CONTEXT SIMULATION
	7. RESEARCH CHALLENGES
	ACKNOWLEDGMENTS
	REFERENCES

