
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Papadopoulos, George Angelos]
On: 9 November 2010
Access details: Access Details: [subscription number 928470442]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Enterprise Information Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t748254467

A survey of software adaptation in mobile and ubiquitous computing
Konstantinos Kakousisa; Nearchos Paspallisa; George Angelos Papadopoulosa

a Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Online publication date: 21 October 2010

To cite this Article Kakousis, Konstantinos , Paspallis, Nearchos and Papadopoulos, George Angelos(2010) 'A survey of
software adaptation in mobile and ubiquitous computing', Enterprise Information Systems, 4: 4, 355 — 389
To link to this Article: DOI: 10.1080/17517575.2010.509814
URL: http://dx.doi.org/10.1080/17517575.2010.509814

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t748254467
http://dx.doi.org/10.1080/17517575.2010.509814
http://www.informaworld.com/terms-and-conditions-of-access.pdf


A survey of software adaptation in mobile and ubiquitous computing

Konstantinos Kakousis*, Nearchos Paspallis and George Angelos Papadopoulos

Department of Computer Science, University of Cyprus, Nicosia 1678, Cyprus

(Received 22 April 2009; final version received 16 July 2010)

Driven by the vast proliferation of mobile devices and ubiquitous computing,
dynamic software adaptation is becoming one of the most common terms in
Software Engineering and Computer Science in general. After the evolution in
autonomic and ubiquitous computing, we will soon expect devices to understand
our changing needs and react to them as transparently as possible. Software
adaptation is not a new term though; it has been extensively researched in several
domains and in numerous forms. This has resulted in several interpretations of
adaptation. This survey aims to provide a disambiguation of the term, as it is
understood in ubiquitous computing, and a critical evaluation of existing
software adaptation approaches. In particular, we focus on existing solutions that
enable dynamic software modifications that happen on resource constrained
devices, deployed in mobile and ubiquitous computing environments.

Keywords: dynamic software adaptation; context awareness; adaptation
reasoning; adaptation acting; ubiquitous computing; mobile computing

1. Introduction

It has been almost two decades since Weiser (1993, 1999) first introduced the notion
of ubiquitous computing. Although there are still ongoing arguments to which extent
his vision for non-intrusive, seamless and constantly available human–computer
interaction has been realised (Bell and Dourish 2007), this vision has undoubtedly
guided significant research effort for the last 20 years. The envisioned unobtrusive
interaction between smart objects and human users is nowadays possible due to the
advances in hardware and software technologies in multiple research fields.
Furthermore, several projects, both in the academia and the industry, have been
concerned with – and are still investigating – the multi-disciplinary aspects of
ubiquitous (or pervasive) computing.

The ubiquitous computing technology has already increased the demand for
novel enterprise application and services, providing anytime and anywhere access.
This applies particularly to users of mobile phones (Ljungstrand 2001) (‘the most
prolific consumer product ever invented’ (Rubin 2008)). This is because existing
enterprise services need to be adjusted to accommodate the limitations of mobile and
ubiquitous computing (Hong et al. 2007) and also in order to take advantage of the
features of new smartphone technology (Wright 2009). According to Strassner and
Schoch (2003), the technical feasibility of such initiative is proved by five trends:

*Corresponding author. Email: kakousis@cs.ucy.ac.cy

Enterprise Information Systems

Vol. 4, No. 4, November 2010, 355–389

ISSN 1751-7575 print/ISSN 1751-7583 online

� 2010 Taylor & Francis

DOI: 10.1080/17517575.2010.509814

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



(1) The number of transistors on the same chip area doubles every 18 months
(Moore’s law (Moore 2000)). (2) Progress in communication technologies. Today
mobile communication has become an essential part of our daily life. In the
forthcoming century, it is expected that the society and economy will greatly depend
on computer communications in digital format. Higher bandwidth, new generation
mobile networks as well as new types of communication systems such as broadband
wireless access systems, millimeter-wave LAN, intelligent transport systems (ITS)
and high altitude stratospheric platform station (HAPS) are expected to further
enhance the digital communication process (Ohmori et al. 2000). (3) Progress in
sensor technology (sensors are getting smaller and cheaper so they can be easily
embedded in everyday-use, hand-held devices). (4) New materials such as smart
paper (E-Ink 2003) which can be used as user interaction media to enhance the
communication in ubiquitous environments. (5) New concepts that model the
infrastructure for everyday use of such smart items. At a larger scale, the examples of
Singapore and Korea have already proved that the long expected technological
advances (or trends) for enabling ubiquitous computing are already here (Bell and
Dourish 2007). It is now up to enterprises and other involved parties (e.g.
governments and organisations) how they will adjust their service and policies in
order to evolve by adjusting to this new reality.

This article provides a survey and a thorough discussion of software adaptation
techniques that enable developers of enterprise services to provide more flexible and
capable ubiquitous computing applications. Software adaptation is a wide term,
extensively studied in multiple disciplines and used to denote any kind of software
modification at any phase throughout the whole lifecycle of a system. The interest on
adaptable applications was increased after the proliferation of distributed and
mobile computing and further accelerated with the emergence of ubiquitous and
autonomic computing.

McKinley et al. (2005), claimed that foundations from autonomic computing
along with advances in software engineering form the basis for most of the existing
adaptation solutions. Furthermore, Satyanarayanan (2001) provided an excellent
discussion on how pervasive computing builds on foundations of distributed
computing, shares the same requirements with mobile computing and augments both
by introducing new capabilities and requirements such as invisibility (i.e. minimal
user interaction), smart spaces (i.e. integrating computing and building infrastruc-
ture), localised scalability (i.e. reduce interaction with context entities as the user
moves away from them) and uneven conditioning (i.e. the transition period, where
traditional computing applications and infrastructure are gradually replaced by
others, introducing the features of pervasive computing).

Adaptation in ubiquitous computing is understood as the reactive process
triggered by a specific event or a set of events in the context, with an ultimate goal to
improve the QoS perceived by the end-user. Thus, the fundamental requirement for
applications after the ubiquitous computing paradigm is the ability to sense their
environment, reason upon context changes, and react (if necessary) accordingly.
Inspired from the MAPE-K loop in the context of autonomic computing (Dobson
et al. 2006), we define adaptation in ubiquitous computing as a closed loop (Figure 1)
comprised of the following consecutive phases:

. Context sensing and processing: During this phase, all the data from the user
context (such as the ambient noise, the current temperature and the user’s

356 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



preferences) and the system context (such as the available computational
resources and shared devices) are collected and often translated into high-
level context events that might trigger a system adaptation. Although the
focus of this survey is on Adaptation reasoning and Adaptation acting
phases, we briefly discuss the Context Sensing and Processing phase in
Section 2.

. Adaptation reasoning and planning: In this phase, the self-adaptive system is
called to reason on the new context and decide what needs to be changed and
how, in order to achieve the overall adaptation goal. Section 4 presents
available adaptation reasoning techniques and evaluates their applicability to
ubiquitous computing according to specific requirements.

. Adaptation acting: In this phase, appropriate adaptation mechanisms are used
for implementing the adaptation decisions made by the reasoning process.
Section 5 presents the most commonly used adaptation acting mechanisms and
discusses their applicability to ubiquitous computing.

This survey reviews the state-of-the-art in software adaptation with emphasis on
runtime modification of applications deployed on mobile devices. The rest of this
article is organised as follows: Section 2 briefly describes the context sensing and
processing phase of the adaptation loop. Section 3 gives background information on
software adaptation and provides main classifications that restrict the scope of our
discussion. Section 4 evaluates adaptation reasoning approaches with regard to their
applicability to ubiquitous computing. Section 5 presents available mechanisms for
implementing adaptation decisions and discusses their suitability to mobile, context-
aware systems. Section 6 discusses some research challenges and issues in dynamic
software adaptation and identifies possible future directions. Finally, Section 7
concludes this article.

Figure 1. Adaptation loop in ubiquitous computing.

Enterprise Information Systems 357

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



2. Context sensing and processing

Context-aware computing has been actively studied since at least the mid-1990s
(Schilit et al. 1994), shortly after Weiser first introduced the concept of ubiquitous
computing (Weiser 1993, 1999). Initially, the research was concentrated on stand-
alone context-aware applications, especially location-aware ones such as tour guides
and active badges (Want et al. 1992, Long et al. 1996, Pascoe 1997). However, as the
interest for context-awareness was extended to cover a much wider domain of
context types and uses, the research was naturally shifted towards building
frameworks providing support for general context-awareness. Perhaps the most
popular of those is the Context Toolkit (Dey 2001) while, although more recent,
approaches like CML (Henricksen and Indulska 2005, Henricksen et al. 2006) and
COSMOS (Conan et al. 2007, Rouvoy et al. 2008b) are also widely referenced.

While many definitions of context are available in the literature, the one by Dey is
the most widely cited one: ‘Context is any information that can be used to characterise
the situation of an entity; an entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
application themselves’ (Dey 2001). After that, Dey has also defined context-aware
behaviour as follows: ‘A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task’.
Although not explicitly indicated by these definitions, software adaptation is one of
the most common methods for realising context-aware systems, as it allows varying
the system behaviour in runtime. More specifically, compositional adaptation is
particularly important for mobile and pervasive systems, as it allows for better
resource utilisation (Paspallis et al. 2008b).

In software systems, which is the main focus of this article, context-aware
behaviour is realised in different ways. While in most cases context-awareness implies
context sensing, reasoning and reaction, in some approaches these aspects are clearly
separated and different components are used for context sensing and processing, and
others for actuation. For example, in the Context Toolkit, the proposed abstractions
include: widgets, aggregators, interpreters, services and discoverers. Widgets are
components that are responsible for acquiring context information directly from
sensors. Aggregators can be thought of as meta-widgets, taking on all capabilities of
widgets. They also provide the ability to aggregate context information of real-world
entities such as users or places and act as a gateway between applications and
widgets. Interpreters transform low-level information into higher-level information
that is more useful to applications. Services are used by context-aware applications
to invoke actions using actuators. Finally, discoverers are used to locate suitable
widgets, interpreters, aggregators and services (Dey 2001). On the other hand, in the
MUSIC middleware (IST-MUSIC 2009), the context middleware leverages context
plug-ins for collecting, processing and elevating context information. The actual
exploitation and use of the context information is left to the application developers
(Paspallis et al. 2009).

Although context-awareness techniques are tightly related to software adapta-
tion, this article focuses primarily on adaptation reasoning, planning and actuating.
Extensive reviews of the motivation, challenges and state-of-the-art results focusing
on context-awareness are available in the literature (Chen and Kotz 2000,
Strang and Linhoff-Popien 2004, Baldauf et al. 2007, Bolchini et al. 2009, Paspallis
2009).

358 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



3. Adaptation background

The Oxford Dictionary of Sciences defines adaptation as ‘any change in the structure
or functioning of an organism that makes it better suited to its environment’. The
parallelism in computer science should be straight forward: it is any kind of
structural, functional or behavioural modification of a software component, with the
aim of better fitting to a changing environment and satisfying a high-level overall
objective. More formally, yet generally enough, Capra et al. (2001) defined
adaptation as ‘the ability of the application to alter and reconfigure itself as a result
of (i.e. in reaction to) context changes [. . .] to deliver the same service in different
ways when requested in different contexts and at different points in time’. The need for
adaptation in mobile and ubiquitous computing becomes a fundamental require-
ment, since frequent context changes may affect the functional as well as the QoS
properties of the system. This section aims to precisely define the scope of our
discussion by presenting common classifications in software adaptation.

A first, coarse-grained categorisation is between functional and extra-functional
adaptation. The former refers to modifying or correcting the system’s functionality,
while the latter targets changes in the system’s extra-functional properties, such as its
performance, accuracy, reliability and other QoS aspects. On the same axis, Ketfi
et al. (2002) proposed a finer grained categorisation based on the overall goal of the
adaptation. Corrective adaptation occurs when a malfunction is detected to a sub-
component of an application, which is replaced by a new version with exactly the
same functionality but without the faulty part. Adaptive adaptation reactively adapts
the system in response to some context changes that might affect its behaviour.
Extending adaptation deals with the need for adopting new functionalities or services
that have not been considered during development or deployment time. Finally,
Perfective adaptation aims to improve an application even if it runs correctly. If, for
example, the performance, security or any other extra functional property of
the system is not considered optimal the perfective adaptation may be triggered. The
overall objective of a self-adaptive application must be clear because it affects the
selection of suitable adaptation reasoning approaches and implementation
mechanisms.

Secondly, we distinguish between static and dynamic software adaptation. The
former refers to any action that takes place pre-runtime, while the latter refers to any
reconfiguration that occurs at runtime. More specifically, Canal et al. (2004) and
Becker et al. (2006), classify software adaptation according to the moment in which
the adaptation need is detected. The identified categories are as follows:

. Requirements adaptation: Occurs pre-runtime, usually when the requirements
of a system are extended to meet new properties, or when a system specification
must be adapted to meet the requirements of the new system. Requirements
adaptation may trigger both functional and non-functional changes.

. Design time adaptation: Also occurs pre-runtime and whenever an analysis of
the system architecture indicates a mismatch between two constituent
components. For example, component mismatches may occur due to the use
of different platforms, operating systems or frameworks, due to different
names of methods, services and parameter types, due to differences between the
provided and the expected quality of service (QoS) or during the interaction
between connected components. Canal et al. (2008) and Becker et al. (2006)

Enterprise Information Systems 359

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



provide a detailed description of the various mismatch types that may occur in
component based software engineering.

. Dynamic adaptation: Occurs after the adaptable system has been deployed and
refers to the situation where some running pieces of software need to be
adapted in order to better fit to their execution environment. In contrast to
static adaptation, in dynamic adaptation the components to be adapted, as
well as the adaptation steps, are unknown until the moment of the adaptation.
Dynamic adaptation is closely related to context-aware systems and is often
limited to non-functional adaptation.

In ubiquitous computing, the provision of the expected functionality with the desired
quality requires composite systems that can be adapted dynamically. (i.e. capable of
reasoning about context changes and reconfiguring their behaviour in a way that
satisfies a well-defined objective). Therefore, in this survey we restrict our discussion
on Dynamic software adaptation with an overall objective of maximising user
satisfaction, or in other words, minimising mismatches in the QoS. Static adaptation
on the other hand, has different objectives, such as maximising code reuse and
facilitating software maintenance. Static adaptation has been extensively examined
elsewhere (Canal et al. 2004,Becker et al. 2006, Canal et al. 2008, Kell 2008) and it is
outside the scope of this survey.

Dynamic adaptable systems can be further distinguished to reactive and proactive.
The former refers to the ability of a system to alter and reconfigure itself in response to
a context change. Reactively adaptable applications are expected to define the context
elements that are interested in, identify relevant context changes and specify suitable
adaptation and reconfiguration strategies to be applied if such changes occur.
Conversely, proactive adaptation, driven by pervasive computing, refers to
environments acting proactively by suggesting adaptation possibilities or directly
adapting applications. Systems supporting proactive adaptation mainly target
minimisation of user’s distraction through environments composed of pervasive
blocks that seamlessly interact and adapt to the user’s needs. Several projects support
reactive (David and Ledoux 2003), proactive (Garlan et al. 2002, Popovici et al. 2003)
or hybrid (Capra et al. 2005, 2003) adaptation functionality. Generally speaking,
proactive approaches require a greater synergy between hardware infrastructure (i.e.
monitoring sensors), middleware components and user applications but they fit much
better to the objectives of pervasive computing for an environment that satisfies user’s
context needs. Modern systems are expected to support both reactive and proactive
adaptation to avoid limiting their adaptation capabilities.

Finally, from a technical perspective, adaptation methodologies are generally
identified either as parameter-based or compositional. The former refers to techniques
that affect the system’s behaviour through property-tuning or variable modification
without changing any structural or algorithmic part of the system. On the contrary,
any approach that targets the system’s behaviour through structural, geographical,
interface or implementation modifications can be labelled as compositional
adaptation.

4. Adaptation reasoning

We define adaptation reasoning as the adaptation process triggered by a change (or a
set of changes) in the context and which aims to decide when and how often

360 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



adaptation is needed, which alternative best satisfies the adaptation overall objective
and what adaptation operations are necessary in order to bring the system into the
next configuration state in a safe and timely manner. In some cases any application
variant satisfying specific criteria may be acceptable, while in some other cases only
the optimal configuration (i.e. the one that maximises the overall objective) is
required. Adaptation reasoning techniques applied in ubiquitous computing are
mainly adopted from correlated fields, such as autonomic computing, artificial
intelligence (AI) and machine learning.

We mainly classify adaptation reasoning techniques depending on whether
adaptation (re)configurations are predefined (i.e. global configurations are pre-
constructed at design time) or generated and evaluated at runtime. Predefined
configuration is much easier since the adaptation reasoner only has to choose from a
fixed set of global configurations. However, if new components become available or
new applications are installed, the set of global configurations must be updated,
something that might cause unacceptable delays. In addition, depending on the
number of variation points in a system (i.e. the possible alternative system
realisations) constructing every possible adaptation configuration at design time
may turn into a particularly heavy task for application developers. Representative
approaches of this category are action- and goal-based adaptation.

Dynamic reasoning on the other hand, is more flexible. It allows runtime
modification of the available system realisations without further re-evaluation of
adaptation configurations since they are all constructed and evaluated dynamically.
Reasoning techniques, based on utility functions and AI, belong to the above
category. Dynamic reasoning is considered more appropriate for systems with
multiple variation points and frequent context changes but also requires more
resources at runtime. Thus, choosing a reasoning approach depends on the
adaptation objective, the available resources, the adaptation frequency and the
number of variation points.

For the rest of this section, we review adaptation reasoning techniques and we
critically evaluate their applicability to ubiquitous computing according to the
following requirements:

(1) Resource efficiency: Resources of mobile devices are limited and precious, this
criterion evaluates the applicability of a reasoning approach according to its
demands for resources.

(2) Coverage of the context value domain: This requirements refers to the ability
of a reasoning approach to operate and produce decisions on any subset of
the context value domain.

(3) Ease of building: This criterion evaluates the applicability of an adaptation
reasoning approach with regard to the development effort needed for
implementing self-adaptive applications using this approach.

(4) Adaptation openness: Open self-adaptive software is the one that can be
extended with new functionality, unknown at design time (e.g. newly
discovered services or adaptable entities). Consequently, new adaptation
behaviour and alternatives can be introduced. This criterion evaluates the
ability of an adaptation reasoning approach to decide based on new
adaptation alternatives as well.

(5) Adaptation coordination: One of the biggest challenges for an adaptation
reasoning approach is its ability to deal with more than one self-adaptive

Enterprise Information Systems 361

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



application that run concurrently on the same device. This criterion evaluates
its ability to coordinate adaptation and resolve conflicts that may occur due
to contradicting adaptation goals.

(6) Evolvability: This criterion refers to the ability of an adaptation reasoning
approach to dynamically improve itself based on previous experience or
feedback received from the environment.

(7) Traceability: This criterion refers to the ease of tracing, and producing
human-readable explanations on the logic behind an adaptation decision.
Traceability increases user trust and boosts technology adoption.

The above requirements are not presented in any particular order but their
numbering is used for reference in the rest of this section. The requirements have
been derived after an extensive review of existing approaches in adaptation reasoning
for ubiquitous computing. These requirements are specific to the adaptation
reasoning approach and represent only a small subset of the requirements that a
complete context-aware, self-adaptive system should satisfy for the purposes of
ubiquitous computing. In practice, many solutions depend on more complex
platforms, typically involving a middleware layer, which usually supports several
requirements, such as platform independence, fault-tolerance and enhanced security.
For instance, with regard to the platform independence requirement, existing
solutions are explicitly designed so that they hide the platform-specific properties of
the underlying (heterogeneous) devices. As an example, we refer to the MUSIC (IST-
MUSIC 2009) middleware which does exactly this while implementing a utility-based
approach. Nevertheless, the overall architecture could be easily adapted to using any
of the discussed adaptation reasoning approaches.

4.1. Action-based adaptation

Action-based (or rule-based) adaptation is undoubtedly the most popular approach
for defining the behaviour of self-managing systems in several domains related to
networks and distributed systems. It is based on the notions of states and actions in
the following way: at any point in time t, a system can be characterised as being in a
state S where if a policy p is satisfied, an action a will cause a probabilistic or
deterministic transition of the system to a new state S’. In other words, a set of
IF(Condition) – Then(Action) rules define precisely how the system will adapt in
certain situations (Kephart and Das 2007).

Besides several works that use action policies for networks and systems
optimisation (Lutfiyya et al. 2001, Lymberopoulos et al. 2002), Efstratiou et al.
(2002) proposed an adaptation platform for mobile systems driven by variations of
action policies based on event calculus (Shanahan 1999). Event calculus-based
policies, formulated in terms of conditions and actions define exactly the adaptive
behaviour of the corresponding application. Conditions are logical expressions that
can be evaluated either to true or false and actions specify a set of adaptation
methods that should be invoked if the condition evaluates to true.

Furthermore, the concept of event-action rules has been also deployed for
expressing dynamic reconfigurations over component-based architectures. An early
example is the DART (Raverdy and Lea 1999) project where an adaptation manager
applies adaptation policies that are triggered by specific events, and generated based
on system statistics and user requirements. Each policy is registered for one or more

362 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



adaptation events and whenever an event is received, the manager finds the policies
to be called and executes them. Finally, to resolve conflicts among policies
(several policies may register for the same event), suitable priorities are assigned to
each policy.

In the same context, Chisel (Keeney and Cahill 2003) and SAFRAN (David and
Ledoux 2003) proposed self-adaptive components driven by action policies that are
handled separately from the functional parts of an application. In Chisel, there are
policy specification documents containing text-based declarative representations of
policy rules which in response to relevant context changes may trigger an adaptation.
Following the same (Event–Condition-Action) pattern SAFRAN provides a
context-aware component (WildCAT) that detects incoming events which corre-
spond to reconfiguration actions written in a simple scripting language (FScript). An
adaptation manager allows dynamic attachment of SAFRAN policies to individual
components and is responsible for their execution.

An obvious limitation of rule-based approaches is the imposed binary decision
logic since each rule is either evaluated to true or false. This limitation becomes more
obvious in dynamic environments and may lead to low coverage of the context value
domain (2). Fuzzy logic (Wang 1996) and fuzzy rules introduce a more human-like
way of thinking. They allow for multi-valued logic with different degrees of truth.
Thus, instead of having IF-THEN-ELSE rules we simply have IF-THEN rules (that
can be simultaneously valid), or equivalent constructs, such as fuzzy associative
matrices that allow multiple rules to be evaluated and assigned different degrees of
truth for the same case.

Typically, rule-based approaches appear to be powerful in pervasive computing
since they are not resource demanding (1) and they precisely define the adaptation
behaviour of self-adaptive systems (Lutfiyya et al. 2001), even in the context of
multiple applications running concurrently (5) (Efstratiou et al. 2002). Furthermore,
they provide high traceability (7) of adaptation decisions, since they favour easier
production of human-readable explanations of the reasoning behind a system
reaction.

On the other hand, application developers need to explicitly describe, at design
time, the adaptive reaction of the system in response to any relevant context
fluctuation that may trigger an adaptation at runtime. In other words, every possible
context change that may trigger an adaptation must be reflected by at-least one
adaptation rule. Therefore, the more context elements we have, the more conditions
and rules need to be specified. In the ever-changing, multi-dimensional context space
of ubiquitous computing, identifying every possible adaptation action, in advance, is
not an easy task and implies high development effort (3). It requires policy makers
that are intimately familiar with low-level details of the system and specialised policy
languages capable of expressing dependencies between adaptation and context. In
most cases, policy files are written against the specifications of particular systems and
do not provide the flexibility required for the heterogeneous environment of
ubiquitous computing. Finally, dynamic modification and evolution of rules increases
complexity and often requires recompilation (4), (6).

4.2. Goal-based adaptation

Instead of exactly specifying the system’s transition from the current state to the next
one, in the form of IF-THEN actions, goal-based policies specify either a single

Enterprise Information Systems 363

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



desired state or the criteria that characterise a whole set of desired states. Thus, it is
the system’s responsibility to decide which adaptation actions will cause a transition
to the desired state. This relieves human administrators from the hard task of
specifying adaptation actions, which requires low-level knowledge of the system’s
functionality (3). Goal-based approaches provide the flexibility to define the desired
behaviour using high-level goals that are closer to the human way of reasoning. This
enables goal-based approaches to provide good traceability support (7). This sort of
flexibility does not come for free though: introducing rational behaviour into the
system requires sophisticated planning and modelling algorithms. In particular, most
policy-driven management systems require a mathematical model of the system,
modules that monitor specific system parameters and prediction modules that
provide estimates for the system’s workload and resource needs.

Goal-based approaches are efficient in terms of resource needs (1) and have been
used by several control-theoretic approaches for managing computing systems
(Kephart and Walsh 2004). However, we argue that they have major drawbacks. For
instance, goal-based policies fail to catch dependencies between adaptation and goals
while in the case of limited resources, goal policies are prone to conflicts if the system
cannot satisfy all the goals simultaneously. Goal-based approaches do not provide
resolution mechanisms between contradictory goals, nor do they support state
comparison mechanisms in the case that more than one state can fulfil the same
goal (2), (5). Finally, adding new goals or removing existing ones usually leads to
significant changes on the decision mechanism and might require recompilation (4),
(6). After all, goal policies have been superseded by utility functions which, as
Kephart and Das (2007) claim, are natural extensions of goal policies, but with
several advantages.

4.3. Utility functions

The notion of utility function was originally introduced in the fields of economics
and AI. Recently, autonomic and ubiquitous computing have also adopted utility-
based approaches for enabling adaptation reasoning. Generally speaking, utility
functions are tools for measuring preferences. In particular, they are mathematical
artifacts that map each possible system state, or alternative implementations, to a
real scalar value. According to this value, a rational agent (a human or a software
entity) can select the alternative implementation or system state that maximises the
utility. Utility functions are considered an improved extension of goal policies,
because instead of classifying system states to desired and undesired they assign
scalar values (i.e. scores) to them indicating their applicability to the current context.
Utility functions allow elimination of policy conflicts when multiple goals can be met
simultaneously. In addition, while goal-oriented approaches only indicate feasible
solutions, utility functions provide runtime determination of the optimal adaptation
alternative. Finally, they provide a finer degree of expression that includes multiple
adaptation aspects incorporating the user preferences as well.

Utility functions have been applied in several works, especially QoS-based, for
measuring the suitability of adaptation alternatives in fluctuating environments. An
early example in the area of mobile computing was the Odyssey (Noble and
Satyanarayanan 1999), and subsequently, the Aura (Garlan et al. 2002) projects.
These projects deal with mobile data access and target resource utilisation of mobile
devices through utility-based adaptation. Each data item has a current reference copy

364 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



which is the most complete and detailed version of the data item under the current
resource availability. Ideally, the reference copy is always presented to the mobile
user. However, when resources become scarce, the item will be degraded in some
way. A quality metric, very similar to utility – called fidelity – measures the degree of
similarity between the original item and the reference copy. The operating system is
responsible for monitoring resource availability and notifying affected applications
of relevant changes in those resources. Upon notification, applications enter an
adaptation decision loop which results in a new fidelity for the current resource
situation and then enters a state where it waits for the next notification.

Capra et al. (2002) used a microeconomic-inspired mechanism for conflict
resolution in a mobile setting. This mechanism relies on a particular type of sealed-
bid auctions for conflict resolution while utility functions are used for incorporating
user preferences in the resolution mechanism.

In MADAM (Geihs et al. 2009a) and MUSIC (IST-MUSIC 2009), applications
are assembled through a recursive component composition process and variability is
achieved by plugging into the same component type different component
implementations with the same functional behaviour. After the MDA development
methodology, adaptation is captured in platform-independent adaptation models
which are transformed into a representation that the middleware can access and use
at runtime. Finally, the middleware uses utility functions to calculate utility scores
for each application variant. The highest utility score indicates the most suitable
variant for the current context and it is selected for adaptation.

Similarly, Gjørven et al. (2006) proposed a middleware managed adaptation
approach based on utility functions and service reflection. Adaptation is based on
service planning which is responsible for searching and evaluating among alternative
service mirrors and in the end selecting the one with the highest utility score. Utility
rankings are calculated by utility functions which take as input QoS predictions that
encode developers’ knowledge about the QoS implementation.

Finally, Paspallis et al. (2008a) propose a multi-dimensional, utility-based model
which attempts to simulate the user’s adaptation reasoning mechanism. Utility
functions are formulated over a set of pre-defined adaptation aspects, considered
important for the adaptation reasoning process. The utility scores are calculated
independently for each dimension, and the overall utility is computed as their
weighted sum. Weight values are used to reflect the importance of each adaptation
aspect for the targeted user.

Utility functions have several advantages over the rest of the approaches
discussed in this article. According to Geihs et al. (2009a), Kephart and Das (2007),
they appear to fit very well in the context of ubiquitous computing. Besides their
ability to produce scalar decisions based on any subset of the context value domain
(2), they can provide an effective decision mechanism for systems with multiple self-
adaptive applications running concurrently. The applications may run on the same
or different devices. Utility functions can resolve conflicts between contradicting
adaptation goals since they can be defined as parts of a more generic utility function
that aggregates the adaptation goals of several parts of the same system. Khan et al.
(2009) proposed a solution for such a modular adaptation decision-making
mechanism based on utility functions (5). In addition, utility functions support
very high-adaptation openness (4) since they can incorporate in their decision
mechanism newly discovered adaptable entities (unknown at design time), given that
they provide the required QoS properties. Finally, as Kakousis et al. (2008)

Enterprise Information Systems 365

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



suggested, weighted utility functions in combination with optimisation techniques
can support high evolvability (6) of the mechanism, based on received user feedback.

On the other hand, defining utility functions, especially for complex applications,
might be a difficult task for developers (3). Utility functions are based on variant
properties prediction, current context situation and user preferences. Thus,
application developers need to specify application variants in great detail and
formulate every possible adaptation aspect in mathematical equations. Because of the
complex adaptation reasoning, utility functions provide very poor traceability
feedback as well (7). Furthermore, utility functions assume calculation and
evaluation of each variant’s utility. Therefore, utility functions present an average
resource efficiency (1) and additional mechanisms (such as architectural constraints
(Khan et al. 2008)), as well as, complicated heuristics are needed for discarding invalid
variants, in order to avoid scalability issues (Khan et al. 2009) (see Section 6.2).

4.4. Adaptation reasoning by experience

The adaptation reasoning techniques examined so far are either based on predefined
rules and actions (action-based and goal-based adaptation) or on utility functions.
Such approaches are not always capable of specifying adaptation rules that cover the
whole context space and even when they do, developers cannot be sure that every
adaptation action programmed in design time will be the optimal for the current
context situation at runtime. Even if the context state is evaluated at runtime, the
adaptation reasoning remains the same, no matter if the adaptation decision does
not maximise the user’s utility. In other words, we indicate the lack of remembering
and learning from previous experiences. Gathering knowledge from system’s
previous decisions (successful or not) can be valuable for improving the adaptation
behaviour of the system. Case-based reasoning (CBR) and machine learning
approaches are capable of learning from their previous decisions and improve their
behaviour based on collected feedback. Even though such approaches suffer from
some obvious limitations (they usually need long training periods, extensive numbers
of samples and occasionally make ‘bad’ decisions in order to explore the quality of
alternative actions), in certain cases their contribution to dynamic adaptation may
lead to improved adaptation reasoning.

4.4.1. Case-based reasoning

Instead of solving problems from scratch, by chaining generalised rules CBR follows
an approach much closer to the human-problem solving reasoning. This gives a high
traceability (7) advantage to CBR over other techniques. It is based on the
assumption that similar problems have similar solutions and certain problems tend
to recur. Solutions in CBR are generated based on previously stored, relevant cases
and knowledge. This means that they need long training periods and extensive
numbers of samples before they can produce meaningful adaptation decisions.
However, knowledge can be also retrieved from external case bases, a process known
as multicase-based reasoning (Leake 1996).

CBR is often classified to interpretive and problem-solving. The former uses prior
knowledge to classify or characterise new situations while problem-solving attempts
to apply prior solutions to new problems (Leake and Sooriamurthi 2002). A typical
CBR solver, after receiving a user’s query, it assesses and retrieves from the case base

366 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



the most similar problem descriptions along with their corresponding solutions. The
final step is to adapt correlated solutions to solve the new problem. Adapting
available solutions in CBR is considered to be one of the most difficult parts and
several approaches have been proposed for enabling automatic case adaptation.
Whether effective adaptation of relevant cases can be achieved it is still a debate
(Manzoni et al. 2007), nevertheless the development process involves complex
knowledge engineering tasks and the effort is significantly increased (3).

Case adaptation types in CBR can be classified in three main categories (Passone
et al. 2006): Null, transformation and generative adaptation. Null adaptation is based
on the Nearest Neighbour (NN) technique and simply applies the most relevant
solution from the case base without any reconfigurations. Transformation
adaptation performs structural transformations of previous solutions based on
rules specified by domain experts or learnt using an induction algorithm and, finally,
Generative adaptation generates solutions of the problem from scratch. The simplest
adaptation strategy consists of using general or domain specific adaptation rules.
However, it requires deep knowledge and manual maintenance of rules through
updates or context changes. Multiple alternatives have been proposed but in most
cases they are too complicated or too specific.

Although CBR may produce interesting results when based on a significant
amount of previously stored relevant cases, in ubiquitous computing reasoning it
may lead to non-acceptable adaptation decisions when it has insufficient sample
input. In particular, the assumption of CBR that similar problems have similar
solutions and certain problems tend to recur, barely fits to the concept of ubiquitous
computing where almost identical context changes may require completely different
adaptation actions. Therefore, low coverage of the context value domain (2) is an
important disadvantage of CBR while reasoning on long stored data also needs extra
resources (1). Additionally, when more than one application takes part to the
adaptation process or new adaptation alternatives are discovered, it becomes more
difficult to find relevant cases that will lead to accurate decisions (4), (5). On the
other hand, CBR is considered an effective AI reasoning technique, suitable for
routine or novel problems. It is highly evolvable (6) since it can improve itself, by
learning from successful decisions of the past, and by avoiding prior failures.

4.4.2. Reinforcement learning

Reinforcement learning (RL) is an unsupervised learning mechanism that selects
specific actions in uncertain environments that maximise an overall, long-term goal.
Main characteristics of RL are trial-and-error search and long-term rewards,
meaning that RL systems learn from their experiences and prefer to choose actions
that maximise the overall goal over a time horizon, even if that means poor instant
payoff. Optimal reinforcement decisions are based on previous actions that are both,
rewarding and representative of the whole context space. However, before a
representative set of rewarding actions is formulated, new actions – that possibly
have bad rewards – may need to be explored. In RL this is known as the exploitation
versus exploration dilemma and refers to how we can exploit actions proved to be
rewarding in the past, but in the same time explore new cases (both with good and
bad rewards) in order to extend the sample data and thus improve future decision
making (Sutton and Barto 1998). That said, RL is characterised by its high
evolvability (6) and self-improvement while adaptation openness can be achieved

Enterprise Information Systems 367

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



after some reinforcements (4). On the other hand, the coverage of the context value
domain might not be the expected (2), if not sufficient trial-and-error attempts have
been processed. Furthermore, extra processing and storage resources, already scarce
in mobile devices, are needed for the RL process (1).

Typical reinforcement learning problems are modelled as Markov Decision
Processes (MDPs) and consist of a set of environment states S, a set of actions A and
a set of scalar real values, used as rewards. At each point in time t a system is
characterised as being in state St E S from where it can take A(St) possible actions. If
a E A(St) is chosen then the system is transferred in state Stþ1 and a reward rtþ1 is
generated. Based on these interactions a policy p: S! A is formulated in a way that
maximises the overall reward that can be accumulated over the future, starting from
the current state. Optionally, RL strategies are based on internal models of the
environment and calculate the optimal policy based on these models. Models are
used for planning future actions of a system before they are actually experienced and
can be beneficial in cases where acquiring real-world experience is expensive. Model-
free approaches, on the other hand, learn directly from experience, are faster and
require less storage.

Dowling et al. (2005), proposed a technique for solving optimisation problems
using distributed reinforcement learning agents. The technique is called Collaborative
Reinforcement Learning (CRL) and extends traditional RL with various feedback
models, including negative feedbacks that demonstrate an agent’s view of its
neighbourhood and a collaborative feedback model that allows agents to exchange
gained knowledge between each other. In CRL system optimisation, problems are
decomposed to Discrete Optimisation Problems (DOP) and distributed to be solved
by collaborating RL agents. Thus, in CRL the set of possible actions that an agent
can execute is enriched with DOP actions which try to solve the problem locally,
delegation actions that delegate the solution of a DOP to a neighbour and discovery
actions that can be executed by an agent in any state in order to find new neighbours.
Delegation can occur either because a problem cannot be solved locally or the
estimated cost of solving it remotely is much less. Although we are not aware of any
research attempt towards this direction, CRL can be used for better coordination of
systems with more than one self-adaptive application (5).

Finally, Charvillat and Grigoraş (2007), have used RL in dynamic multimedia
adaptation of systems that have to deal with frequent context changes, limited
resources and uncertainty in interaction with the user. An adaptation agent perceives
the characteristics of the environment which integrates the user, his mobile terminal,
the network and various contents (such as documents, media, etc) and based on
prior knowledge and training data produces the adaptation decision (Figure 2).

The agent may manage, transform or prioritise contents, make bandwidth or
resources allocation, act on behalf of the user or simply do nothing. The agent
generates and gradually improves a decision policy capable of choosing the best
alternative action from each state.

Overall, RL and its variations can fit very well to distributed adaptation of
component based systems, acting in resource constrained environments. The power
of RL can be exploited in order to allow such systems to self-organise their
component deployment configuration in a way that best utilises the resource
availability in local and distributed devices. In particular, through an MDP we can
model alternative component delegation actions from each possible state. Conse-
quently, we can achieve optimal decisions on (re)deployment of components in

368 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



distributed environments, based on rewards learnt over the time. Furthermore,
approaches based on RL can operate quite well in environments with uncertainty
and unexpected changes, while they can improve themselves based on received
feedback. However, such approaches require modelling the alternative actions,
monitoring the environment and processing received feedback from it (i.e, extra
development effort (3)). Finally, the complex and gradually improving reasoning
approach implies low traceability support (7).

4.5. Evaluation summary

Throughout this section we have presented the most commonly used adaptation
reasoning approaches and discussed their applicability to ubiquitous computing. The
critical evaluation was based on a set of predefined requirements for dynamic
adaptation reasoning in context-aware, mobile environments. This subsection
summarises the advantages and disadvantages of each approach in Table 1. At
this point we should mention that the presented approaches are not explicitly
orthogonal. This means that reasoning techniques can be used in combination. For
example, utility functions can be used in combination with RL or any other
optimisation technique (see for example, Kakousis et al. (2008)). Furthermore, as
discussed earlier, there is no one-size-fits-all solution. The decision on which
approach to use depends on several factors such as the adaptation objective, the
available resources, the adaptation frequency and the number of variation points.

Overall, we can say that, although action-based approaches have been extensively
used as an adaptation reasoning technique (David and Ledoux 2003, Keeney and
Cahill 2003), and have the significant advantage of resource efficiency, utility-based
approaches are quickly gaining momentum, especially in the area of context-aware
systems. Their ability for multi-dimensional evaluation and prioritisation of available
variants, as well as their support for open adaptation, render this approach a very good
match for ubiquitous computing. However, adaptation reasoning can be enhanced if
utility functions are used in combination with other techniques from correlated fields
(such as control theory, machine learning, game theory, optimisation, etc.).

5. Adaptation acting

Adaptation acting is responsible for applying the adaptation decisions as determined
by the reasoning process. In this section, we discuss the most popular mechanisms

Figure 2. Adaptation agent decision by machine learning (adapted from Charvillat and
Grigoraş (2007)).

Enterprise Information Systems 369

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



found in the literature for implementing dynamic software adaptation actions. The
presented mechanisms are not explicitly orthogonal and can be used in combination.
In addition, the decision on which adaptation acting mechanisms to use does not
depend directly on the selected reasoning approach. For the rest of this section, we
present the foundations of code migration, parameterised adaptation, compositional
adaptation and aspect weaving and discuss how they can be used in ubiquitous
computing.

5.1. Code mobility

Code mobility in distributed computing is the process of migrating or moving
running program instances, codes or objects from one host to another. The set of
programming languages that support code mobility are denoted in the literature as
Mobile Code Languages (MCL) and they fall into two main categories depending
whether they support strong or weak mobility. If a programming language allows
execution units to move their code and execution state to a different note then it
belongs to strong MCL while if it only allows the migration of the code and some
initialisation data, then it is considered as weak MCL (Carzaniga et al. 1997). The
majority of languages support weak mobility due to the costly and complex issues in
defining and implementing strong mobility.

There are four possible ways of implementing code mobility depending on
whether they comply with the code pushing or code pulling model (Zachariadis 2005).
Code pushing refers to sending a code unit from one processing environment to
another. Code pulling, on the other hand, refers to retrieving a code unit and
deploying it locally. The four code mobility paradigms defined based on the above
classification are:

. Client/Server: The client pushes a request to the server, indicating the code unit to
be executed. It is mostly used in traditional distributed systems, such as in RMI
and CORBA. However, the client-server model does not include actual code
migration, thus it cannot be considered as a software adaptation mechanism.

. Code On Demand (COD): A host requests and subsequently pulls a code unit
from another node. A typical example of COD is software update. Since it is

Table 1. Comparing adaptation reasoning approaches based on their applicability for
ubiquitous computing.

Reasoning approach/
evaluation criteria

Action-
based

Goal-
based

Utility
functions

Case-
based

Reinforcement
learning

1 Resource efficiency H H M L L
2 Context coverage M L H L M
3 Ease of building L M L L L
4 Adaptation openness L L H M M
5 Adaptation coordination H L H M M
6 Evolvability L L H H H
7 Traceability H H L H L

H(High) means that the particular approach is a very good choice with regard to a specific requirement,
M(Medium) means that there is no specific reason for choosing (or not choosing) the approach for its
support on a specific requirement and finally L(Low) means that the approach is not a good choice
concerning a specific requirement.

370 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



not possible to pre-load all the functionality that might be needed throughout
the lifetime of a mobile device (limited resources, unpredictable context
changes), COD can be used for downloading desired functionality from
resources in the environment.

. Remote evaluation: A host pushes a particular code unit to a remote processing
environment. If accepted at the destination, the unit is deployed and executed
there. Common examples include SETI@home (Korpela et al. 2001) and
Distributed.NET (Distributed.net 2009). The remote evaluation paradigm can
be particularly useful for delegating resource-demanding computations from
mobile devices with limited capabilities to powerful, reachable hosts.

. Mobile agents: A mobile agent is an autonomous code unit that is injected into the
network to accomplish specific tasks on behalf of a user or an application. Ada-
ptation in ubiquitous computing can benefit by mobile agents in situations of
network unavailability or limited/costly connectivity. However, they require
strongmobility, to allow for suspending at one node and resuming at another one.

Q-CAD (Capra et al. 2005), is a resource discovery framework that enables pervasive
computing applications to discover and select the resources best satisfying the user
needs, based on the current context situation. The resource selection is based on
Utility Functions (see Section 4.3) that select those resources that maximise the
application’s utility. Code mobility techniques are used for enabling adaptation. In
particular, remote evaluation is used for deploying utility functions on remote hosts
while CoD is used for downloading any remote component needed to perform
adaptation.

Overall, code mobility provides several benefits for software adaptation in
ubiquitous computing. Zachariadis et al. (2003) suggested that techniques from the
area of code mobility may contribute in advancing ubiquitous computing
applications, by allowing for a greater degree of adaptability, dynamicity and
reaction to context. In particular, applications deployed on mobile devices can
dynamically acquire new functionality and services that have not been envisioned at
design time. In addition, code mobility facilitates resource efficiency since mobile
devices can use available resources from nearby powerful hosts. However as
presented in Zachariadis (2005), some heterogeneity, binding and security issues may
arise when using code mobility. For example, the transferred code is usually
compiled for a specific architecture and it might not be compatible with some
hardware platforms or operating systems.

5.2. Parameter adaptation

Parameter adaptation is used for denoting adaptation techniques that affect the
system’s behaviour through the modification of specific program variables. A well-
known example of parameter adaptation comes from the area of networks and the
way the TCP protocol adjusts its behaviour in response to network congestion
(Hiltunen and Schlichting 1996, Kurose and Ross 2002). In the scope of ubiquitous
computing, parameter adaptation is used for modifying the extra-functional
properties of a system that are affected by context changes. For example, the image
render of a mobile device may change the quality of the presented images depending
on the availability of bandwidth and memory. Thus, adjusting specific parameters
may alter the application’s behaviour to improve its fitness to the current context.

Enterprise Information Systems 371

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



However, in highly dynamic systems where unanticipated context changes
occur rather frequently, identifying all the possible context states and calculating
values for the extra-functional properties in advance is not always feasible.
Parameter adaptation is a cheap (in terms of complexity and implementation
effort) and lightweight dynamic adaptation solution, when compared to similar
techniques (such as code migration). It is a proven technique as it has been
recently used in multiple context-aware systems (Fickas et al. 1997, Salber et al.
1999, Flinn et al. 2001, Kortuem et al. 2001, Minar et al. 2000, Sousa and Garlan
2002). However, it is not considered sufficient to be used as a holistic adaptation
solution for ubiquitous applications. Most importantly parameterised adaptation
cannot adopt software components and algorithms left unimplemented during the
original design of the system. Moreover, for applications highly exposed to
frequent context changes, the numerous possible values of discrete configurable
parameters may lead to a combinatorial explosion (Brataas et al. 2007b). This
raises the need for extra adaptation mechanisms which reduce the number of
parameter values under consideration (e.g. delegation of parameter adaptation to
a lower level, where the number of possible reconfigurations is reduced, and
discretisation of large and continuous value ranges to a small set of interesting
values).

5.3. Compositional adaptation

Compositional adaptation goes far beyond the simple code tuning, programmed
during design time, and allows exchange of algorithmic and structural parts of the
system in order to improve a program’s fit to its current environment. Dynamic
recomposition copes with situations where unanticipated conditions or requirements
occur and consequently new adaptation functionality is needed. Because of the great
potential offered in ubiquitous computing by compositional adaptation, several
research groups have contributed to the establishment of a well-defined research
topic. Here, we review main technologies behind compositional adaptation and
subsequently discuss how available approaches can be classified with regard to when
and where compositional adaptation takes place (Aksit and Choukair 2003,
McKinley et al. 2005).

Compositional adaptation is build upon fundamental principles of synchronous
software engineering such as Separation of Concerns (SoC) (Hoffman and Weiss
2001), component-based design (Szyperski 1997), computational reflection (Maes
1987) and architectural models (Floch et al. 2006). SoC is a development principle
(and process) where the business logic (i.e. the functional part) of an application is
developed separately from the cross-cutting concerns (e.g., QoS, security and fault
tolerance). It increases stability, maintainability, reusability and extensibility while
at the same time it simplifies development. Among the several development
techniques that support SoC (generic programming, constraint languages, feature-
oriented development, etc) Aspect Oriented Programming (AOP) appears to be the
most commonly used approach (McKinley et al. 2005) and it is further discussed in
Section 5.4.

Compositional adaptation belongs to the traditional component-based paradigm
where different application concerns are developed into individual components
which can be reused separately to form new applications. Component frameworks, as
defined by Szyperski (1997), regulate how components interact with each other and

372 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



with their environment. They usually implement protocols for connecting
participating components and enforce policies for how component instances
perform specific tasks.

Design methodologies that clearly separate and externalise adaptation logic from
the application implementation satisfy a fundamental requirement for compositional
adaptation. Middleware-based solutions are the most common for encapsulating
and reusing common adaptation functionality. As a reusable software layer lying
between the operating system and the application layer, middleware enables the
execution of collaborating components in a heterogeneous and distributed execution
environment (Hallsteinsen et al. 2005, da Rocha and Endler 2006) while it avoids
intertwining the adaptation and application logics. On the contrary, alternative
programming language solutions do not separate adaptation concerns and often
introduce intolerable complexity. Typical middleware examples are CORBA,
COM þ and J2EE. Several works (Hallsteinsen et al. 2005, Gjørven et al. 2006,
Geihs et al. 2009a) on self-adaptation use middleware-based approaches in order to
encapsulate the adaptive behaviour of their systems.

Besides middleware, computational reflection and architectural models can also
support externalised adaptation reasoning. The former refers to the ability of a
system to reason about itself (introspection) and act upon this information
(intercession). Reflection is indirectly available through programming language
features or directly implemented in middleware platforms (Capra et al. 2003,Gjørven
et al. 2006). Architectural models have been used traditionally in Model Driven
Architectures (MDAs) and Architectural Description Languages (ADLs) (Pandey
2010) for representing architectural design and implementation of software systems
in static models (Geihs et al. 2009b). However, the current research efforts focus on
making such architectural models available at runtime. The target is to utilise
architectural models as an external (and platform independent) adaptation
mechanism where developers are allowed to represent their systems as compositions
of components and monitor how components interact, what are their properties and
how they adapt, throughout the whole lifecycle of the system. Floch et al. (2006) and
Geihs et al. (2009a), describe how software variability can be encoded into an
architectural model, so an underlying middleware can automatically select, among
feasible application compositions, the one that best fits to the current context.
Variability is achieved by providing different alternative realisations of the
component types constituting an application (i.e. provide the same functionality
with different extra-functional behaviour). An underlying middleware, through a
planning process, generates and evaluates (using utility functions) every possible
application variant. Utility functions (mathematical artefacts and also a well-known
adaptation reasoning approach, see Section 4.3) assign a scalar value to alternative
application variants, depending on their suitability for the current context. As a
conclusion, the most powerful compositional adaptation approaches are supported
by middleware, computational reflection and runtime architectural models. Each one
of the above factors can contribute positively in leveraging the advantages of
compositional adaptation.

5.3.1. When to compose

In respect to when compositional adaptation occurs, we distinguish between two
main categories. Static composition refers to composition mechanisms that take

Enterprise Information Systems 373

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



place either at design, compile or load-time. On the other hand, dynamic composition
includes methods that can be applied at runtime. Generally speaking, later
adaptation solutions are more powerful but they also increase complexity and
may introduce inconsistency and abnormal adaptation behaviour. Although static
composition may introduce a level of adaptability, no mobile self-adaptation
solution would be feasible without dynamic composition. Composition mechanisms
of this category allow replacing and extending structural and algorithmic units of a
program, without halting or restarting its execution. We differentiate between two
types of dynamic composition: Tunable software, that only permits changes to the
extra-functional aspects of an application, and mutable software which allows
recomposition, which may also alter the business logic of a program. Systems
targeting pervasive and mobile environments traditionally belong to the tunable
software classification.

5.3.2. Where to compose

This composition dimension refers to where in the system the adaptive code is to be
inserted. Insertion possibilities include the application code itself or one of the
middleware layers. There is also the possibility of extending the operating system to
incorporate adaptation behaviour. However, we do not consider such adaptation
solutions since they are platform-dependent and do not satisfy the portability
requirement of ubiquitous computing. Conversely, higher middleware levels
effectively support adaptability since they are platform independent and transparent
in respect to the application program. On the other hand, such approaches only
support applications developed against a specific middleware platform. Approaches
that implement compositional adaptation in the application program itself aim to
overcome this limitation. They achieve compositional adaptation either by
implementing all or part of the application code using languages that directly
support dynamic recomposition (such as CLOS, Python, Adaptive Java, etc) or by
weaving the adaptive code into the functional code. Although such methods
maximise portability, they intertwine adaptation and application logics and
complicate the development process.

An alternative solution, gaining momentum for dynamic adaptation in
ubiquitous computing, is to model adaptability at the application level through
adaptation models and encapsulate adaptation services into the high middleware
layers. Such approaches separate adaptation and business logic, facilitate reusability
and accommodate application development. Model-based approaches that support
dynamic software adaptation are based on a model of the system and its context. The
model is regularly developed at design time and utilised throughout the whole
lifecycle of the system. Modelling approaches include, among others, Architectural
Models and ADLs (Garlan et al. 2004) as well as formal methods (Laddaga et al.
2003) and domain specific models (Gabor et al. 2003).

However, existing approaches for model-based adaptation of context-aware
systems mainly focus on Software Architecture models and ADLs. In Section 5.3, we
already discussed how architectural models in MADAM (Floch et al. 2006, Geihs
et al. 2009a) have been utilised at runtime for adapting context-aware applications.
The IST-MUSIC (2009) project builds on the same model-driven development
approach for extending adaptation capabilities of the middleware to support service-
oriented adaptation as well. Henricksen and Indulska (2005) presented a set of

374 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



conceptual models designed to facilitate the development of context-aware
applications by introducing greater structure and improved opportunities for tool
support into the software engineering process. Finally, Sindico and Grassi (2009)
presented initial results of a model driven development framework for context
awareness. Its core element consists of a domain specific modelling language defined
as a UML extension. The language can be used to enrich a UML model of an
application with context elements. The goal is to provide a model transformation
aimed at generating executable code for context-aware applications.

5.3.3. Should we compose?

Compositional adaptation is a more generic approach on self-adaptation that
depends on the implementation language of the self-adaptive application and affects
the whole adaptation loop. Based on the numerous research works that have been
conducted around compositional adaptation (Hallsteinsen et al. 2005, Floch et al.
2006, Gjørven et al. 2006, Geihs et al. 2009a), we claim that it is a powerful solution,
mainly for two reasons. At the reasoning (or decision-making) level, it provides more
flexibility since the reasoning logic is applied on smaller and more autonomous
software artifacts (i.e. components). At the adaptation acting level, dynamic
software reconfigurations are easier to implement while at the same time are more
powerful since they enable algorithmic and structural changes.

However, certain types of adaptations are better covered by alternative solutions.
For example, specific adaptation actions, related to cross-cutting concerns such as,
security and QoS, are better handled by aspect weaving which is covered in the next
section. Moreover, for simple application behaviour modifications, compositional
adaptation should be used in combination with parameterised adaptation which
avoids the overheads and scalability problems (see Section 6.2) that may occur with a
more sophisticated adaptation approach. Finally, the large scale changes permitted
by compositional adaptation often require an underlying framework that realises
dynamic software reconfigurations and controls the adaptation process in general
(Geihs et al. 2009a).

5.4. Aspect weaving

AOP was developed in order to enhance software modularisation by enforcing SoC.
In particular, AOP facilitates the individual implementation of cross-cutting
concerns such as security, QoS, fault tolerance, etc. The implementation of such a
concern is called aspect and specialised descriptions, called pointcuts, indicate the set
of join points where aspects execute. Join points represent runtime conditions that
arise during program execution or locations in the structure of the source code. The
occurrence of such a location or condition triggers the execution of aspect behaviour.
The process of inserting or removing aspects into join points is called aspect weaving
and may occur at run-, load- or compile-time (Kiczales 1996, McKinley et al. 2005,
Grace et al. 2008, Rouvoy et al. 2008a).

Almost immediately, AOP was correlated with the component-based design
paradigm and compositional adaptation. The goal was to enable adaptation of
cross-cutting concerns in applications assembled from complex compositions of
local components and remote services that often deal with non-functional concerns.
This initiative was supported by the development of multiple aspect-component

Enterprise Information Systems 375

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



frameworks, such as JAC (Pawlak et al. 2004), Prose (Popovici et al. 2002) and JBoss
AOP (JBossAOP 2009) that promoted the Aspect Oriented (AO) composition. In AO
composition, aspects define behaviour and composition logic describing where and
when this behaviour is executed. Component frameworks enable aspect-behaviour
reuse through the separation of aspect behaviour from composition logic.

According to Grace et al. (2008), traditional aspect-component frameworks
support only coarse-grained adaptation since the entire aspect (i.e. behaviour and
composition logic) must be added or removed from the application. AspectOpen-
COM (Grace et al. 2008) aims to provide a finer-grained adaptation where the
elements that compose an aspect can be reconfigured individually. In addition,
Rouvoy et al. (2008a), suggest the integration of AOP principles in a planning-based
middleware to manage adaptation cross-cutting concerns. On one hand the
middleware tries to maximise the user’s satisfaction with the minimum adaptation
and resource cost and on the other hand, the adoption of aspects in combination
with the component-based design, enables the identification and isolated implemen-
tation of cross-cutting adaptation concerns.

Although combining aspect weaving and compositional adaptation has been
proven a viable approach with several advantages (Rouvoy et al. 2008a), there are is
still some criticism related to AOP adoption issues. Programmers need to learn a new
programming language and understand what is actually happening in the aspects
code in order to prevent errors. Currently, there is a lack of visualisation and other
design tools that could assist aspect programming. Finally, given the power of AOP,
a logical mistake in expressing a cross-cutting concern may lead to a widespread
program failure.

5.5. Summary

The existing literature already provides a number of extensive evaluations of
software adaptation acting mechanisms (McKinley et al. 2005, Kell 2008). In this
section, we presented a subset of the possible adaptation techniques, which are better
fitted for mobile and ubiquitous computing. Summarising the results that were
discussed in this section, we argue that compositional adaptation provides the
flexibility needed for adapting applications in highly dynamic environments such as
in ubiquitous and mobile computing. However, it can be argued that a complete
adaptation acting approach should combine more than one acting technique,
depending on the domain that it is applied in. First, parameterisation can
complement compositional adaptation in situations where the desired behaviour is
possible, simply by fine tuning specific application variables. Aspect weaving, on the
other hand, improves modularity and enables handling cross-cutting concerns more
efficiently. Finally, applying techniques from code mobility in some cases can
improve the adaptation process by benefitting from available nearby resources or by
deploying mobile agents in situations of network unavailability or limited/costly
connectivity.

6. Discussion

Pervasive systems, as an evolution of distributed systems (Satyanarayanan 2001),
introduce new challenges in the development of software: increased mobility, scarce

376 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



resources, limited connectivity, etc. These characteristics heavily affect the
adaptation process and the way the developers decide which adaptation mechanism
or reasoning approach to follow. In this section, we discuss some of the key
challenges (Section 6.1) and open research issues (Section 6.2) in adaptation for
ubiquitous computing. The list is by no means exhaustive because dynamic software
adaptation in mobile environments is a multi-dimensional aspect, intermixing
concerns from several domains with some of them being outside the scope of this
work (e.g. security, testing, etc). Finally, we provide some directions for future
research work (Section 6.3).

6.1. Challenges

6.1.1. Distributed adaptation

Distribution plays a special role in dynamic adaptation. First of all the adaptation
reasoner should take into consideration available resources, not only from local but
from distributed devices as well. Then, an adaptation in one node may trigger
adaptations to other nodes, while the discovery of new context sensors and service
providers increases the choices in alternative component implementations and hence,
the adaptation scalability problem as well (see Section 6.2). Furthermore, security
and transactional guarantees need to be strengthened in an unreliable distributed
environment.

Generally speaking, distributed adaptation decisions are classified to centralised
and decentralised. The former refers to approaches where a master node controls the
adaptation reasoning and invokes adaptation services on slave nodes. The latter
implies that distributed nodes are able to make local adaptation decisions and
collaborate with other nodes in order to achieve global adaptation. The research
community has not reached an agreement yet in favour of centralised or
decentralised adaptation reasoning. Centralised adaptation management and
reasoning is much simpler and allows for adaptation reasoning based on complete
and locally available context information. On the contrary, decentralised approaches
introduce complexity and require negotiation among distributed nodes, in order to
achieve convergence of the adaptation loops. In addition, adaptation in decen-
tralised approaches can only produce approximations of the optimal solution
because reasoning is based on partial context information. On the other hand, in
decentralised adaptation there is no need for gathering context information to a
central node. This prevents time-consuming context updates and enables monitoring
of context changes during the adaptation process.

Scholz and Rouvoy (2008) suggested a divide and conquer-based technique for
organising component based adaptation in distributed environments. They propose
a decentralised and distributed solution for splitting and adapting applications into
smaller units (parts) and collections of application units (packs). The idea is to use
the minimum amount of resources in order to partially adapt applications, leaving
untouched application components that have not been affected by the particular
context change that triggered the adaptation. Although a promising approach, it is
still in progress and it has not been validated whether it can drastically tackle
scalability problems without introducing extra overhead and complexity at either
design-time or runtime.

Enterprise Information Systems 377

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



6.1.2. Adaptation with components and services

In ubiquitous computing environments where network connections appear and
disappear unpredictably and devices constantly move, preserving the availability and
QoS of the required and provided services of a self-adaptive application becomes a
challenging concern. In response to this, the emergence of Service Oriented
Architectures (SOA) (Erl 2005) can play an important role in the development of
self-adaptive applications. Services are reusable and composable entities that can be
discovered and exploited dynamically without prior knowledge of their underlying
platform implementation.

SOA is considered an evolution of component-based architectures where services
are dynamically discovered, bound and exchanged. In addition to these, SOA
incorporates a business model where software is provided as a ready-to-use
functionality from a service provider to a service consumer probably after agreeing
to a service contract that defines the capabilities and QoS properties of a service. On
the contrary, component-based systems require that the service consumer provides
the necessary infrastructure for instantiating and executing a software component
implemented by the software provider.

Central to the SOA paradigm is the notion of Service Level Agreement (SLA)
(Heiko 2007), a part of the service contract that describes the expected behaviour of
the service in terms of performance, reliability and other QoS properties. SLA is a
negotiable agreement between service providers and consumers. The former are
responsible for monitoring the service quality and possibly adapting resource
distribution to avoid an SLA violation. Service consumers may also monitor the
provided QoS to avoid blindly trusting the provider.

With the proliferation of service oriented computing, mobile devices that move
about inside ubiquitous environments discover and interact with a dynamic service
landscape. Therefore, additional requirements to self-adaptation arise and new
adaptation mechanisms that utilise service-oriented context information are needed.
State-of-the-art research projects have already provided initial results for accom-
modating service-oriented context changes for adaptation of mobile applications
(Papakos et al. 2009, Romero et al. 2009). For example, Rouvoy et al. (2009)
describe how in IST-MUSIC (2009), a middleware that provides a QoS-driven
generic planning framework for self-adaptive mobile applications, has been extended
to seamlessly support both component-based and service-based configurations. The
framework has been enhanced to adapt to changes in a landscape of ubiquitous
remote services that dynamically come and go, and where the offered service qualities
vary. The planning middleware discovers remote services and evaluates them as
alternative providers for the functionalities required by an application. The
framework exploits these changes to maximise the overall utility of applications.

Based on the above, we argue that a modern self-adaptive system can benefit in
terms of usability, reliability and availability if adaptation facilities in the business
service landscape are also considered. In addition, SOA is suitable for modern
enterprise architecture since it provides flexibility and adaptability through loosely-
coupled integration by utilising system implementation technology such as web
services paradigms (Kong et al. 2009). However, extending traditional component
frameworks to incorporate services is not a straightforward process. Additional
development effort is needed for enabling discovery of new services, monitoring and
detecting changes in service availability and QoS properties. Moreover, considering

378 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



SLA negotiations, violations and service denials during adaptation planning requires
in-depth investigation. Finally, in cases where inter-organisation services are also
considered, we might encounter interoperability problems between providers using
different adaptation decision methods, while the already exponential problem of
adaptation scalability (Section 6.2) is increased due to the plethora of alternative
service and/or component implementations.

6.1.3. Artificial intelligence-based reasoning

As shown in Figure 1, adaptation in ubiquitous computing can be seen as a closed
loop, comprised of three consecutive phases: context sensing and processing,
adaptation reasoning and adaptation acting. This is very similar to the Sense-Plan-
Act (SPA) architecture used in robotics (Brooks 1986), and also extensively studied
in the field of AI (Tesauro and Kephart 2004). Planning in AI is an active research
topic, fuelled by the need for planning the behaviour of autonomous agents.
Although AI-based techniques are usually resource intensive, we believe that
investigating the possibility of applying main concepts of AI planning techniques to
ubiquitous adaptation reasoning is a promising direction.

In AI, planning is the process of generating a sequence of actions whose
execution adapts the system to a desired state (Russell and Norvig 2002). We
distinguish between classical and non-classical planning. The former refers to
planning that occurs in static environments which are fully observable, deterministic,
finite and discrete. Conversely, non-classical planning refers to more sophisticated
approaches, suitable for dynamic and stochastic environments much closer to
pervasive ones. Gradually relaxing restrictions, imposed in classical planning, led to
several non-classical techniques, much more expressive and powerful, but also in
some cases more complex. For example, Temporal planning (Smith and Weld 1999)
extends classical planning by allowing actions to have different durations and also to
overlap each other. As opposed to classical planners where the only objective is
finding the shortest plan, in temporal planning the user is allowed to define multiple
objectives (e.g. better performance, improved quality or a combination of them).
Although temporal planning is a much more expressive and realistic approach than
classical methods, it is often too hard to implement or too domain-specific to be used
as a generic adaptation solution.

Beyond the above classification, Majercik and Littman (2003) provide a multi-
level categorisation of AI planners (Deterministic, Probabilistic and non-probabil-
istic planners, contingent and conditional planners). For each possible classification
several planners have been proposed, indicating that planning in AI is very
flexible, allowing for the development of planners customised to the domain of
interest.

In addition to the aforementioned AI techniques, emerging approaches from AI
have also been proposed for enabling adaptation reasoning. As an example we cite
an approach from Ruiz et al. (2004) where a combination of genetic and rule-
induction algorithms compose the adaptive behaviour of multimedia applications. In
particular, a genetic algorithm is used (after several experimentations and
simulations) to decide when (i.e. under which network conditions) a multimedia
application should adapt in order to maximise user satisfaction. On the other hand, a
rule induction algorithm, called SLIPPER (Cohen and Singer 1999), generates
formal rules that represent the user’s perception of QoS. Of course, such a

Enterprise Information Systems 379

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



representation requires extensive learning examples that have been evaluated and
scored by real users.

Although many concepts from the area of AI can form the basis for sophisticated
software adaptation in ubiquitous computing, we have not seen yet any application
of adaptation reasoning approach, fully based on AI. We believe that the main
reasons for this are the low and often unpredictable performance of such
approaches, their resource demands, as well as the inherent need for modelling the
problem. We consider the incorporation of AI techniques in dynamic compositional
adaptation as an open research problem.

6.2. Compositional adaptation scalability issues

Designing and implementing the adaptation decision process is probably the most
crucial and at the same time the most complex part of component-based, self-
adaptive systems. We have already discussed possible adaptation reasoning
mechanisms and explained how variability can be modelled in component-based
systems through architectural models. We have assumed, however, the existence of
an adaptation planning framework responsible for modelling different variation
points and capable of dynamically searching and selecting the most suitable
component composition for the current context. Most commonly, the evaluation of
alternative composition is implemented using component-wise utility functions that
assess the suitability of alternative application variants to the current context, using
property predictors which provide necessary information about QoS-properties and
resource requirements (Brataas et al. 2007a).

The planning process, which can be triggered either at runtime or during the
deployment of the application, proceeds in two phases. The first one corresponds to
the discovery and assembly of possible application variants as they can be generated
by resolving variation points, defined in the component framework. During the
second phase, the configuration steps are decided in a way that ensures timely and
safely transformation to the new configuration.

Such a variability model, where application variants increase exponentially with
the number of variation points, introduces huge limitations and scalability issues for
resource constrained devices. For example, if an application is composed of five
components and there are five alternative implementations for each one of them, the
application has 55 ¼ 3125 variants. The problem becomes even worse when more
than one application is allowed to adapt simultaneously. Imagine, for example,
having two applications with five components each; in this case the number of
variants increases dramatically to a number approaching 10 millions. Thus, in that
case we would need to (re)evaluate millions of variants and (re)calculate the same
number of utility functions along with their corresponding property predictors.

Dealing with adaptation scalability problems, requires effective ways for
handling large amounts of variants, for instance by reducing the number of variants
that need to be considered. In addition, some inexplicit factors may also affect
adaptation performance. For example, how often should we inspect context changes
and trigger adaptation? What is considered as reasonable adaptation time, and for
how long is the user willing to wait? Is the optimal adaptation variant always
required, even if reasoning for it causes performance tradeoffs?

Several heuristics have been proposed for dealing with scalability problems
imposed by planning frameworks. In Aura (Sousa et al. 2006), for example, the

380 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



authors have managed to restrict the search space by defining two-part utility
functions: the functional preferences and the QoS properties. The overall utility is
calculated as their normalised product (i.e. both utility parts take values between
0 and 1 and hence their product is also restricted in the range [0 . . . 1]).
Functional preferences are more static and already known when evaluating QoS
properties. This is how they introduce an upper bound for the utility score.
Consider for example two services a and b with two possible variants each. The
possible configurations are: (a1, b1), (a1, b2), (a2, b1) and (a2, b2). Assuming
that the already known functional utilities are 0.8, 0.6, 0.4 and 0.2 respectively
then, if during QoS-properties evaluation the combined utility of (a1, b1) is found
to be higher than 0.6, there is no further need for calculating the remaining QoS
utilities, since the overall utility cannot be higher than 0.6. A similar two-step
approach is also adopted by the Q-CAD (Capra et al. 2005) project with the
main difference being that both functional and non-functional requirements are
considered during the first step.

Finally, Khan et al. (2008), describe how to restrict the number of alternative
variants by imposing architectural constraints between components. For example,
choosing one component may only be justified if a second one is chosen as well.
Conversely, two components might be mutually exclusive and only one of them
might participate in a composition plan.

As a conclusion, we believe that the adaptation scalability problem in resource-
constrained devices is a multi-dimensional open problem that needs to be considered
early in the life-cycle of adaptable systems. Available heuristics can only provide
limited solutions and often introduces extra complexity.

6.3. Future directions

6.3.1. Alleviating developers

In Section 4, we presented an extensive evaluation of available adaptation reasoning
mechanisms. From our discussion, and the table in Section 4.5, it can be inferred that
most of the approaches require considerably high development effort from the
perspective of application developers. Context-aware, self-adaptive applications
demand from their developers to make difficult and crucial decisions at design time
that affect the runtime properties of the system such as its performance and evolving
behaviour (e.g. due to the discovery of new components and services, or changes to
the user requirements).

Model-based approaches are supported by the plethora of existing modelling
languages and tools (Object Management Group 2009) that can ease the
development process. Using modelling tools, application developers can define
through architectural models the variation points that will enable dynamic
adaptation. Such architectural models can be enriched with property descriptions
and evaluation mechanisms that enable the adaptation manager to decide on the best
configuration at runtime (Floch et al. 2006). Furthermore, model transformation
approaches (Czarnecki and Helsen 2003) and tools can be used for generating
considerable amounts of code directly from architectural models.

In addition, Context-Oriented Programming (COP), a relatively novel program-
ming paradigm, aims to reduce the complexity of the development of context-aware
applications. In COP context information is considered as a first-class construct of a

Enterprise Information Systems 381

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



programming language, much in the same way that variables, classes, and functions
form the first-class constructs of many modern languages (Keays and Rakotonirainy
2003, Hirschfeld et al. 2008). COP reduces development effort since reasoning about
context is no longer the responsibility of the developer.

Although the aforementioned techniques can alleviate the development process,
they either require modelling the application’s adaptation behaviour or familiarising
with a different programming paradigm. We envision developer-friendly and more
generic approaches and tool support that will enable developers to provide reusable
adaptation functionality while minimising the required effort.

6.3.2. Self-adaptive adaptation reasoning and adaptation balance

In ubiquitous computing, where hand-held devices are exposed to constant mobility,
it is more than possible for the initially selected adaptation strategies to become
obsolete due to significant context changes. If, for example, the user goals and
preferences, or the system requirements change during execution time, the
adaptation logic should be reconsidered. In such circumstances, a truly adaptable
system should be able to reason about and reconfigure the adaptation process itself.
This is a rather complex task where adaptation process should be constructed in a
way that allows adapting itself as if it were a regular adaptable application. For
example in the case of middleware-based adaptation, the underlying middleware
should be able to adapt itself without suspending the currently executing
adaptations. Although some existing approaches (Gjørven et al. 2006, Geihs et al.
2009a, IST-MUSIC 2009) have attempted to provide such a facility, their results are
still under investigation and have not been fully validated.

A significant benefit from having self-adaptive adaptation logic is for achieving
an adaptation balance between application autonomy and user control. A main
objective of pervasive computing is to minimise the user distraction and hence enable
transparent application adaptation to the end user’s preferences. One could argue
that maximising the application’s autonomy will eventually enable the desired calm
technology as it was envisioned by Weiser and Brown (1997).

However, as van der Heijden (2003) explains, taking the control from the user and
giving it to the application increases the user’s anxiety: ‘the personal discomfort that the
end user relates with the use or the behaviour of the system.’ Moreover, increased
autonomy in combination with black-box decision-mechanisms are very likely to lead
to unexpected and unwanted behaviours. Barkhuus et al. (2003) noted that users are
willing to accept loss of control to some extent, as long as the usefulness of an
application overcomes the cost of limited control. But how do we define the threshold
between usefulness and anxiety? Is it the same for every user? Hardian et al. (2006)
stressed the need for finding a balance between autonomy and user control in context-
aware systems, and also revealed the lack of existing work towards this direction.
Hardian, argues that a good balance can be achieved by selectively revealing context
information to the end users which can then judge its accuracy.

Adaptable adaptation reasoning is needed for achieving the so called adaptation
balance. For example, in Kakousis et al. (2008) we suggested a utility function-based
approach for adjusting the adaptation reasoning process itself. Weighted utility
functions have been used for specifying the adaptive behaviour of component-based,
context-aware systems. This approach leverages potential user feedback for
adjusting utility weights in order to optimise adaptation reasoning according to
the user preferences.

382 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Other existing approaches are either primitive or based on end-user programming
which enables adding functionality that has not been anticipated by the system
designer. Unfortunately, the latter is not appropriate for every application domain,
especially for those that involve complex adaptation tasks. Based on the above, we
stress the need for more effective solutions that will allow dynamic optimisation of the
adaptive behaviour through modification of the actual adaptation decision process.

7. Conclusions

In this work we have reviewed the state-of-the-art in software adaptation with
emphasis on applications in mobile and ubiquitous computing. Adaptive mobile
systems are characterised by a major constraint that significantly affects the way that
they should be developed: while the context changes are more frequent than in most
other computing environments, the resources are extremely scarce. This leads to the
necessity for viable software development solutions that facilitate both resource
preservation and maximum adaptation capabilities. Naturally, the development
effort for applications featuring such sophisticated behaviour is drastically increased
and the complexity grows even further as the boundary between cyberspace and real
world fades away. This is also true in the case of enterprises transitioning to the
ubiquitous computing era, where we expect a variety of heterogeneous systems to
communicate in real-time through the internet and provide their functionality in a
decentralised and autonomously adaptive manner. It is argued that self-adaptive
enterprise systems will be more appropriate for handling the increased amount of
data and information from distributed sources (Bechini et al. 2008), as well as for
adjusting the human–computer interfacing (Barkhuus et al. 2003, Schmidt 2000).
Furthermore, we argue that enterprise systems capable of adjusting their behaviour
at run time, accomplishing their own business rules independently, and if necessary
collaborating with decentralised systems (Kong et al. 2009) will be increasingly
desired and successful. Such an increased level of process automation leads to
reduced cost for development and maintenance, since less human intervention is
required and human errors are reduced (Strassner and Schoch 2003).

In this article we have surveyed runtime adaptation reasoning approaches and
acting mechanisms, and presented a classification and critical evaluation of them.
From our discussion, it can be inferred that utility-based reasoning approaches are
gaining momentum in the area of context-aware systems. This is mainly due to their
ability of multi-dimensional evaluation and prioritisation of available variants, as
well as their support for open adaptation. In addition case-based approaches and RL
can also contribute to dynamic software adaptation mainly due to their ability to
learn from past experience and improve their decision mechanism. However, we
argue that there is no one-size-fits-all solution. The decision on which approach to
use depends on several factors such as the adaptation objective, the available
resources, the adaptation frequency and the number of variation points.

With regard to the adaptation acting mechanisms, there is a general consensus
that component-based approaches supported by middleware, reflection and possibly
architectural models, provide the prerequisites for dynamic, context- and QoS-aware
adaptation (Capra et al. 2003, David and Ledoux 2003, Alia et al. 2006, Zachariadis
andMascolo 2006). Indeed, some of the most recent projects in the area, such as QuA
(Gjørven et al. 2006), MADAM (Geihs et al. 2009a) and MUSIC (IST-MUSIC 2009)
have exploited the power of the aforementioned technologies in order to satisfy their
adaptation requirements. In addition, utilising powerful component frameworks is

Enterprise Information Systems 383

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



often beneficial in the development of self-adaptive systems since they support
hardware, networking and operating system interoperability and allow hosting of
services by different providers and at different security levels (Gu et al. 2004).

Finally, in Section 6 we have discussed main research challenges in enabling
dynamic software adaptation in ubiquitous computing. In particular, we indicated
the difficulties in enabling decentralised distributed adaptation and revealed the
necessity for incorporating the available functionality from the service landscape to
the adaptation reasoning process. We discussed the similarities between AI planning
and dynamic software adaptation and described how adaptation scalability issues
may arise in compositional adaptation. Finally, we indicated the need for providing
tools and methodologies to alleviate developers and we argued that self-adaptive
reasoning itself should be open to adaptation and evolution.

We close this article by observing that while the progress in software adaptation
has gone a long way, there is still a great need for further improvement. This article
aimed not only at surveying the state-of-the-art in software adaptation, but also at
contextualising it in the scope of mobile and ubiquitous computing. Finally, it also
discusses a few open research paths that appear promising towards bringing software
adaptation into mainstream software engineering.

References

Aksit, M. and Choukair, Z., 2003. Dynamic, adaptive and reconfigurable systems overview
and prospective vision. In: Distributed computing systems workshops, 2003. Proceedings of
23rd international conference, ICDCS, 19–22 May 2003, Providence, RI, 84–89.

Alia, M., et al., 2006. A component-based planning framework for adaptive systems. In: The
8th international symposium on distributed objects and applications (DOA). Berlin/
Heidelberg: Springer, 1686–1704.

Baldauf, M., Dustdar, S., and Rosenberg, F., 2007. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2 (4), 263–277.

Barkhuus, L., et al., 2003. Is context-aware computing taking control away from the user? Three
levels of interactivity examined. In: Proceedings of Ubicomp 2003. Springer, LNCS, 149–156.

Bechini, A., et al., 2008. Patterns and technologies for enabling supply chain traceability
through collaborative e-business. Information Software Technology, 50 (4), 342–359.

Becker, S., et al., 2006. Towards an engineering approach to component adaptation.
Architecting Systems with Trustworthy Components, Volume 3938/2006, 193–215.

Bell, G. and Dourish, P., 2007. Yesterday’s tomorrows: notes on ubiquitous computing’s
dominant vision. Personal Ubiquitous Computing, 11 (2), 133–143.

Bolchini, C., et al., 2009. And what can context do for data? Communications of the ACM, 52
(11), 136–140.

Brataas, G., et al., 2007a. A basis for performance property prediction of ubiquitous self-
adapting systems. In: ESSPE 007: International workshop on engineering of software
services for pervasive environments. New York, NY: ACM, 59–63.

Brataas, G., et al., 2007b. Scalability of decision models for dynamic product lines. In: SPLC
(2). Tokyo, Japan: Kindai Kagaku Sha Co. Ltd., 23–32.

Brooks, R., 1986. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2 (1), 14–23.

Canal, C., Murillo, J.M., and Poizat, P., 2004. Coordination and adaptation techniques for
software entities. In: Object-oriented technology. ECOOP 2004 workshop reader, chapter
Coordination and adaptation techniques for software entities. Oslo, Norway: Springer, 133–147.

Canal, C., Poizat, P., and Salau’’n, G., 2008. Model-based adaptation of behavioral
mismatching components. IEEE Transactions on Software Engineering, 34 (4), 546–563.

Capra, L., Emmerich, W., and Mascolo, C., 2001. Reflective middleware solutions for context-
aware applications. In: REFLECTION 001: Proceedings of the 3rd international conference
on metalevel architectures and separation of crosscutting concerns. London, UK: Springer-
Verlag, 126–133.

384 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Capra, L., Emmerich, W., and Mascolo, C., 2002. A micro-economic approach to conflict
resolution in mobile computing. SIGSOFT Software Engineering Notes, 27 (6), 31–40.

Capra, L., Emmerich, W., and Mascolo, C., 2003. CARISMA: context-aware reflective
middleware system for mobile applications. IEEE Transactions on Software Engineering,
29, 929–945.

Capra, L., Zachariadis, S., and Mascolo, C., 2005. Q-CAD: QoS and context aware discovery
framework for mobile systems. In: Pervasive Services, 2005. ICPS 005. Proceedings of
international conference, July. Santorini, Greece: IEEE Computer Society, 453–456.

Carzaniga, A., Picco, G., and Vigna, G., 1997. Designing distributed applications with mobile
code paradigms. In: Software engineering, 1997. Proceedings of the 1997 (19th)
international conference, May. Boston, MA: IEEE Computer Society, 22–32.

Charvillat, V. and Grigoraş, R., 2007. Reinforcement learning for dynamic multimedia
adaptation. Journal of Network and Computer Applications, 30 (3), 1034–1058.

Chen, G. and Kotz, D., 2000. A survey of context-aware mobile computing research. Technical
report. Hanover, NH: Dartmouth College.

Cohen, W.W. and Singer, Y., 1999. A simple, fast, and effective rule learner. In: AAAI 099/
IAAI 099: Proceedings of the 16th national conference on artificial intelligence and the 11th
innovative applications of artificial intelligence conference innovative applications of artificial
intelligence. Menlo Park, CA: American Association for Artificial Intelligence, 335–342.

Conan, D., Rouvoy, R., and Seinturier, L., 2007. Scalable processing of context information with
COSMOS. In: Proceedings of the 7th IFIP international conference on distributed applications
and interoperable systems (DAIS007), Vol. 4531. Paphos, Cyprus: Springer Verlag, 210–224.

Czarnecki, K. and Helsen, S., 2003. Classification of model transformation approaches [online].
Available from: http://gsd.uwaterloo.ca/ [Accessed 24 December 2009].

da Rocha, R.C.A. and Endler, M., 2006. Middleware: context management in heterogeneous,
evolving ubiquitous environments. IEEE Distributed Systems Online, 7 (4), 1.

David, P.C. and Ledoux, T., 2003. Towards a framework for selfadaptive component-based
applications. In: Proceedings of distributed applications and interoperable systems 2003, the
4th IFIP WG6.1 international conference, DAIS 2003, Vol. 2893 of lecture notes in computer
science. Paris: Springer-Verlag, 1–14.

Dey, A.K., 2001. Understanding and using context. Personal Ubiquitous Computing, 5 (1), 4–7.
Distributed.net, 2009. distributed.net: Node Zero [online]. Distributed Computing Technol-

ogies, Inc. Available from: http://www.distributed.net/ [Accessed 17 December 2009].
Dobson, S., et al., 2006. A survey of autonomic communications. ACM Transactions

Autonomous Adaptation Systems, 1 (2), 223–259.
Dowling, J., et al., 2005. Using feedback in collaborative reinforcement learning to adaptively

optimize MANET routing. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 35 (3), 360–372.

E-Ink, 2003. Electronic paper displays [online]. Available from: http://www.eink.com/
technology/index.html [Accessed 14 July 2010].

Efstratiou, C., et al., 2002. Utilising the event calculus for policy driven adaptation on mobile
systems. In: 3rd international workshop on policies for distributed systems and networks.
Monterey, CA: IEEE Computer Society, 13–24.

Erl, T., 2005. Service-oriented architecture: concepts, technology, and design, 1st ed – cased.
Boston, MA: Prentice Hall.

Fickas, S., Kortuem, G., and Segall, Z., 1997. Software organization for dynamic and
adaptable wearable systems. In: ISWC 097: Proceedings of the 1st IEEE international
symposium on wearable computers. Washington, DC: IEEE Computer Society, p. 56.

Flinn, J., et al., 2001. Reducing the energy usage of office applications. In: Middleware 001:
Proceedings of the IFIP/ACM international conference on distributed systems platforms,
Heidelberg. London, UK: Springer-Verlag, 252–272.

Floch, J., et al., 2006. Using architecture models for runtime adaptability. Software IEEE, 23
(2), 62–70.

Gabor, K., et al., 2003. . An approach to self-adaptive software based on supervisory control.
In: Self-adaptive software: applications, Balatonfured, Hungary: Springer-Verlag, 77–92.

Garlan, D., et al., 2002. Project Aura: toward distraction-free pervasive computing. Pervasive
Computing, IEEE, 1 (2), 22–31.

Garlan, D., et al., 2004. Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer, 37 (10), 46–54.

Enterprise Information Systems 385

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0

http://gsd.uwaterloo.ca/
http://www.distributed.net/
http://www.eink.com/technology/index.html
http://www.eink.com/technology/index.html


Geihs, K., et al., 2009a. A comprehensive solution for application-level adaptation. Software:
Practice and Experience, 39 (4), 385–422.

Geihs, K., et al., 2009b. Modeling of context-aware self-adaptive applications in ubiquitous
and service-oriented environments. In: Software engineering for self-adaptive systems.
Schloss Dagstuhl, Germany: Springer-Verlag.

Gjørven, E., et al., 2006. Self-adaptive systems: a middleware managed approach. In: J.P.M.F.
Alexander Keller, ed. 2nd IEEE international workshop on self-managed networks, systems
& services (SelfMan 2006). Dublin, Ireland: Springer.

Grace, P., et al., 2008. A reflective framework for fine-grained adaptation of aspect-oriented
compositions. Software Composition, 4954/2008, 215–230.

Gu, T., Pung, H., and Zhang, D., 2004. Toward an OSGi-based infrastructure for context-
aware applications. Pervasive Computing, IEEE, 3 (4), 66–74.

Hallsteinsen, S., Floch, J., and Stav, E., 2005. A middleware centric approach to building self-
adapting systems. In: Proceedings of software engineering and middleware (SEM 2004),
20–21 September 2004, 3437/2005. Linz, Austria: Springer-Verlag GmbH.

Hardian, B., Indulska, J., and Henricksen, K., 2006. Balancing autonomy and user control in
context-aware systems – a survey. In: PERCOMW 006: Proceedings of the 4th annual IEEE
international conference on pervasive computing and communications workshops. Washing-
ton, DC: IEEE Computer Society.

Heiko, A.D., 2007. Web services differentiation with service level agreements [online]. IBM.
Available from: ftp://ftp.software.ibm.com [Accessed 16 February 2009].

Henricksen, K. and Indulska, J., 2005. Developing context-aware pervasive computing
applications: models and approach. Pervasive and Mobile Computing, In, 2, 2005.

Henricksen, K., Indulska, J., and Rakotonirainy, A., 2006. Using context and preferences to
implement self-adapting pervasive computing applications: experiences with auto-adaptive
and reconfigurable systems. Software – Practice and Experience, 36 (11–12), 1307–1330.

Hiltunen, M.A. and Schlichting, R.D., 1996. Adaptive distributed and fault-tolerant systems.
International Journal of Computer Systems Science and Engineering, 11, 125–133.

Hirschfeld, R., Costanza, P., and Nierstrasz, O., 2008. Context-oriented programming.
Journal of Object Technology, 7 (3), 125–151.

Hoffman, D.M. and Weiss, D.M., eds. 2001. Software fundamentals: collected papers by David
L. Parnas. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Hong, D., et al., 2007. Ubiquitous enterprise service adaptations based on contextual user
behavior. Information Systems Frontiers, 9 (4), 343–358.

IST-MUSIC, 2009. IST-MUSIC [online]. IST-MUSIC Consortium. Available from: http://
www.ist-music.eu/ [Accessed 4 March 2009].

JBossAOP, 2009. Framework for organizing cross cutting concerns [online]. JBossAOP Com-
munity team. Available from: http://www.jboss.org/jbossaop [Accessed 13 February 2009].

Kakousis, K., Paspallis, N., and Papadopoulos, G., 2008. Optimizing the utility function-based
self-adaptive behavior of context-aware systems using user feedback. In: On the move to
meaningful internet systems: OTM 2008. Monterrey, Mexico: Springer-Verlag, 657–674.

Keays, R. and Rakotonirainy, A., 2003. Context-oriented programming. In: Proceedings of the
3rd ACM international workshop on data engineering for wireless and mobile access. San
Diego, CA: ACM, 9–16.

Keeney, J. and Cahill, V., 2003. Chisel: a policy-driven, context-aware, dynamic
adaptation framework. In: POLICY 003: Proceedings of the 4th IEEE international workshop
on policies for distributed systems and networks. Washington, DC: IEEE Computer Society,
p. 3.

Kell, S., 2008. A survey of practical software adaptation techniques. j-jucs, 14 (13), 2110–2157.
Kephart, J.O. and Das, R., 2007. Achieving self-management via utility functions. Internet

Computing, IEEE, 11 (1), 40–48.
Kephart, J. and Walsh, W., 2004. An artificial intelligence perspective on autonomic

computing policies. In: Policies for distributed systems and networks, 2004. Policy 2004.
Proceedings of 5th IEEE international workshop. Yorktown Heights, NY: IEEE, 3–12.

Ketfi, A., Belkhatir, N., and Cunin, P.Y., 2002. Automatic adaptation of component-based
software: issues and experiences. In: PDPTA 002: Proceedings of the international
conference on parallel and distributed processing techniques and applications. Las Vegas,
NV: CSREA Press, 1365–1371.

386 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0

http://www.ist-music.eu/
http://www.ist-music.eu/
http://www.jboss.org/jbossaop


Khan, M., et al., 2009. An adaptation reasoning approach for large scale component-based
applications. In: Context-aware adaptation mechanism for pervasive and ubiquitous services
2009, Vol. 19. Electronic Communications of the EASST. Oslo, Norway.

Khan, M.U., Reichle, R., and Geihs, K., 2008. Architectural constraints in the model-driven
development of self-adaptive applications. IEEE Distributed Systems Online, 9 (7), 1.

Kiczales, G., 1996. Aspect-oriented programming. ACM Computer Survey, 28, p. 154.
Kong, J., Jung, J.Y., and Park, J., 2009. Event-driven service coordination for business process

integration in ubiquitous enterprises. Computer Industrial Engineering, 57 (1), 14–26.
Korpela, E., et al., 2001. SETI@home-massively distributed computing for SETI. Computing

in Science and Engineering, 3 (1), 78–83.
Kortuem, G., et al., 2001. When peer-to-peer comes face-to-face: collaborative peer-to-peer

computing in mobile ad-hoc networks. In: Peer-to-Peer Computing, 2001. Proceedings of
1st international conference. Linkoping, Sweden: IEEE, 75–91.

Kurose, J.F. and Ross, K., 2002. Computer networking: a top-down approach featuring the
internet. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Laddaga, R., Robertson, P., and Shrobe, H., 2003. Introduction to self-adaptive software:
applications. In: Self-adaptive software: applications. Balatonfured, Hungary: Springer-
Verlag, 275–283.

Leake, D.B., 1996. Case-based reasoning: experiences, lessons, and future directions. Menlo
Park, CA: AAAI Press/MIT Press.

Leake, D.B. and Sooriamurthi, R., 2002. Automatically selecting strategies for multi-case-base
reasoning. London, UK: Springer-Verlag.

Ljungstrand, P., 2001. Context awareness and mobile phones. Personal Ubiquitous Computing,
5 (1), 58–61.

Long, S., et al., 1996. Rapid prototyping of mobile context-aware applications: the
Cyberguide case study. In: Proceedings of the 2nd annual international conference on
mobile computing and networking. Rye, NY: ACM, 97–107.

Lutfiyya, H., et al., 2001. Issues in managing Soft QoS requirements in distributed
systems using a policy-based framework. In: POLICY 001: proceedings of the international
workshop on policies for distributed systems and networks. London, UK: Springer-Verlag,
185–201.

Lymberopoulos, L., Lupu, E., and Sloman, M., 2002. An adaptive policy based management
framework for differentiated services networks. In: Policies for Distributed Systems and
Networks, 2002. Proceedings of 3rd international workshop. London: IEEE Computer
Society, 147–158.

Maes, P., 1987. Concepts and experiments in computational reflection. SIGPLAN Not, 22
(12), 147–155.

Majercik, S.M. and Littman, M.L., 2003. Contingent planning under uncertainty via
stochastic satisfiability. Artificial Intelligence, 147 (1–2), 119–162.

Manzoni, S., Sartori, F., and Vizzari, G., 2007. Substitutional adaptation in case-based
reasoning: a general framework applied to P-truck curing. Applications of Artificial
Intelligence, 21 (4–5), 427–442.

McKinley, P., et al., 2005. A taxonomy of compositional adaptation. Technical report,
Michigan State University.

Minar, N., et al., 2000. Hive: distributed agents for networking things. Concurrency, IEEE, 8
(2), 24–33.

Moore, G.E., 2000. Cramming more components onto integrated circuits. In: M.D. Hill, N.P.
Jouppi, and G.S. Sohi, eds. Readings in computer architecture. San Francisco, CA: Morgan
Kaufmann Publishers, 56–59.

Noble, B.D. and Satyanarayanan, M., 1999. Experience with adaptive mobile applications in
Odyssey. Mobile Network Applications, 4 (4), 245–254.

Object Management Group, I., 2009. OMG, object management group [online]. Object Mana-
gement Group, Inc. Available from: http://www.omg.org [Accessed 24 December 2009].

Ohmori, S., Yamao, Y., and Nakajima, N., 2000. The future generations of mobile communi-
cations based on broadband access technologies. Communications Magazine, IEEE, 38
(12), 134–142.

Pandey, R.K., 2010. Architectural description languages (ADLs) vs. UML: a review.
SIGSOFT Software Engineering Notes, 35 (3), 1–5.

Enterprise Information Systems 387

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0

http://www.omg.org


Papakos, P., et al., 2009. VOLARE: adaptive web service discovery middleware for mobile
systems. ECEASST, 19.

Pascoe, J., 1997. The stick-e note architecture: extending the interface beyond the user. In:
Proceedings of the 2nd international conference on intelligent user interfaces. Orlando, FL:
ACM, 261–264.

Paspallis, N., 2009. Middleware-based development of context-aware applications with reusable
components. Thesis (PhD). University of Cyprus.

Paspallis, N., et al., 2009. Developing self-adaptive mobile applications and services with
separation-of-concerns. In: E.D. Nitto, A. Sassen, and A. Zwegers, eds. At your service:
service-oriented computing from an EU perspective. Cambridge, MA: MIT Press, 129–158.

Paspallis, N., Kakousis, K., and Papadopoulos, G.A., 2008a. A multi-dimensional model
enabling autonomic reasoning for context-aware pervasive applications. In: Workshop for
human control of ubiquitous systems (HUCUBIS 2008) in conjunction with the 5th annual
international conference on mobile and ubiquitous systems: computing, networking and
services (Mobiquitous). Dublin, Ireland: ACM Press.

Paspallis, N., et al., 2008b. A pluggable and reconfigurable architecture for a context-aware
enabling middleware system. In: Proceedings of the 10th international symposium on
distributed objects, middleware, and applications (DOA008), Vol. 5331 of LNCS.
Monterrey, Mexico: Springer Verlag, 553–570.

Passone, S., Chung, P., and Nassehi, V., 2006. Incorporating domain-specific knowledge into
a genetic algorithm to implement case-based reasoning adaptation. Knowledge-Based
Systems, 19 (3), 192–201.

Pawlak, R., et al., 2004. JAC: an aspect-based distributed dynamic framework. Software
Practice Experience, 34 (12), 1119–1148.

Popovici, A., Frei, A., and Alonso, G., 2003. A proactive middleware platform for mobile
computing. In: Middleware 003: proceedings of the ACM/IFIP/USENIX 2003 international
conference on middleware. New York, NY: Springer-Verlag, 455–473.

Popovici, A., Gross, T., and Alonso, G., 2002. Dynamic weaving for aspect-oriented
programming. In: AOSD 002: Proceedings of the 1st international conference on Aspect-
oriented software development. New York, NY: ACM, 141–147.

Raverdy, P.G. and Lea, R., 1999. Reflection support for adaptive distributed applications. In:
Enterprise distributed object computing conference, 1999. EDOC 099. Proceedings. 3rd
international. IEEE, 28–36.

Romero, D., et al., 2009. Enabling context-aware web services: a middleware approach for
ubiquitous environments. In: Y. Michael Sheng, Jian, and D. Schahram, eds. Enabling
context-aware web services: methods, architectures, and technologies. Lille, France:
Chapman and Hall/CRC, 113–135.

Rouvoy, R., Beauvois, M., and Eliassen, F., 2008a. Dynamic aspect weaving using a planning-
based adaptation middleware. In: MAI 008: Proceedings of the 2nd workshop on
Middleware-application interaction. New York, NY: ACM, 31–36.

Rouvoy, R., Conan, D., and Seinturier, L., 2008b. Software architecture patterns for a
context-processing middleware framework. IEEE Distributed Systems Online, 9 (6), 1.

Rouvoy, R., et al., 2009. MUSIC: middleware support for self-adaptation in ubiquitous and
service-oriented environments. In: B.H.C. Cheng, R. Lemos, H. Giese, P. Inverardi, and
J. Magee, eds. Software engineering for self-adaptive systems, Vol. 5525 of Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, chap. 9, 164–182.

Rubin, A., 2008. The future of mobile [online]. Available from: http://googleblog.blogspot.
com/2008/09 /future-of-mobile.html.

Ruiz, P., Botia, J., and Gomez-Skarmeta, A., 2004. Providing QoS through machine-learning-
driven adaptive multimedia applications. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions, 34 (3), 1398–1411.

Russell, S.J. and Norvig, P., 2002. Artificial intelligence: a modern approach (International
Edition). Pearson US Imports & PHIPEs.

Salber, D., Dey, A.K., and Abowd, G.D., 1999. The context toolkit: aiding the development
of context-enabled applications. In: CHI 099: Proceedings of the SIGCHI conference on
human factors in computing systems. New York, NY: ACM, 434–441.

Satyanarayanan, M., 2001. Pervasive computing: vision and challenges. Personal Commu-
nications, IEEE, 8 (4), 10–17.

388 K. Kakousis et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0

http://googleblog.blogspot.com/2008/09 /future-of-mobile.html
http://googleblog.blogspot.com/2008/09 /future-of-mobile.html


Schilit, B., Adams, N., and Want, R., 1994. Context-aware computing applications. In:
Workshop on Mobile Computing Systems and Applications, 1994. Proceedings, IEEE, 85–
90.

Schmidt, A., 2000. Implicit human computer interaction through context. Personal and
Ubiquitous Computing, 4 (2), 191–199.

Scholz, U. and Rouvoy, R., 2008. Divide and conquer – organizing component-based
adaptation in distributed environments. ECEASST, Article 5, 11.

Shanahan, M., 1999. The event calculus explained. Artificial Intelligence Today: Recent Trends
and Developments, 409–430.

Sindico, A. and Grassi, V., 2009. Model driven development of context aware software systems.
In: International workshop on context-oriented programming. Genova, Italy: ACM, 1–5.

Smith, D.E. and Weld, D.S., 1999. Temporal planning with mutual exclusion reasoning. In:
IJCAI 099: Proceedings of the 16th international joint conference on artificial intelligence.
San Francisco, CA: Morgan Kaufmann Publishers Inc, 326–337.

Sousa, J.P. and Garlan, D., 2002. Aura: an architectural framework for user mobility in
ubiquitous computing environments. In: WICSA 3: Proceedings of the IFIP 17th world
computer congress – TC2 stream/3rd IEEE/IFIP conference on software architecture.
Deventer, The Netherlands: Kluwer, B.V., 29–43.

Sousa, J., et al., 2006. Task-based adaptation for ubiquitous computing. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 36 (3), 328–340.

Strang, T. and Linhoff-Popien, C., 2004. A context modeling survey. In: Workshop on
advanced context modelling, reasoning and management, UbiComp 2004 – the sixth
international conference on ubiquitous computing. Nottingham, UK: Citeseer.

Strassner, M. and Schoch, T., 2003. Today’s impact of ubiquitous computing on business
processes. In: First international conference on pervasive computing, Springer, 62–74.

Sutton, R.S. and Barto, A.G., 1998. Reinforcement learning: an introduction (adaptive
computation and machine learning series). Cambridge, MA: The MIT Press.

Szyperski, C., 1997. Component software: beyond object-oriented programming. Addison-
Wesley Professional.

Tesauro, G. and Kephart, J.O., 2004. Utility functions in autonomic systems. In: Proceedings of
the 1st international conference on autonomic computing, New York: IEEE Computer
Society, 70–77.

van der Heijden, H., 2003. Ubiquitous computing, user control, and user performance:
conceptual model and preliminary experimental design. In: U. Lechner, ed. Proceedings of
the research symposium on emerging electronic markets. Bremen, Germany: University of
Bremen, 107–112.

Wang, P., 1996. The interpretation of fuzziness. IEEE Transactions on Systems, Man, and
Cybernetics, 26, 312–326.

Want, R., et al., 1992. The active badge location system. ACM Transactions on Information
Systems, 10 (1), 91–102.

Weiser, M., 1993. Ubiquitous computing. Computer, 26 (10), 71–72.
Weiser, M., 1999. The computer for the 21st century. SIGMOBILE Mob. Computing

Communications Review, 3 (3), 3–11.
Weiser, M. and Brown, J.S., 1997. The coming age of calm technolgy. In: P.J. Denning and

R.M. Metcalfe, eds. Beyond calculation: the next fifty years. New York: Copernicus, 75–
85.

Wright, A., 2009. Get smart. Communications of the ACM, 52 (1), 15–16.
Zachariadis, S., 2005. Adapting mobile systems using logical mobility primitives. Thesis (PhD).

Department of Computer Science, University College London.
Zachariadis, S. and Mascolo, C., 2006. The SATIN component system – a metamodel for

engineering adaptable mobile systems. IEEE Transactions on Software Engineering, 32 (11),
910–927.

Zachariadis, S., Mascolo, C., and Emmerich, W., 2003. Adaptable mobile applications:
exploiting logical mobility in mobile computing. In: Mobile agents for telecommunication
applications. Heidelberg: Springer Berlin, 170–179.

Enterprise Information Systems 389

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
p
a
d
o
p
o
u
l
o
s
,
 
G
e
o
r
g
e
 
A
n
g
e
l
o
s
]
 
A
t
:
 
1
2
:
0
7
 
9
 
N
o
v
e
m
b
e
r
 
2
0
1
0


