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Abstract. Context awareness is a core feature of modern mobile and ubiquitous
computing systems. Although it has not reached its full potential yet, one can
already observe significant activity in the area of software engineering for sup-
porting the development of context-aware applications. An example of such an
activity is the MUSIC project, which proposes a middleware featuring a generic
and reusable context management system. This paper describes the pluggable
architecture of this system, and explains how it advances the state of the art
through its support for context heterogeneity and better resource utilization. The
former is achieved with the use of a novel architecture, which enables the sepa-
ration of low-level, platform-specific context plug-ins from higher-level appli-
cation-specific ones. The improved resource utilization is achieved through
intelligent activation and deactivation of context plug-ins based on the needs of
the active applications. The proposed approach has been experimentally evalu-
ated and the results indicate that it significantly improves the resource utiliza-
tion in context-aware applications, especially when deployed on lightweight
mobile devices.
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1 Introduction

Context awareness has always been considered as an important aspect of modern mo-
bile and ubiquitous computing systems. In the past few years, the software engineer-
ing community has committed significant efforts in the design and development of
context-aware applications [1, 3, 4, 5, 8]. Some of these efforts have focused on the
design of reusable middleware [10, 11, 12, 13], aiming to automate much of the re-
quired development effort. An example is the Mobile Users in Ubiquitous Computing
Environments (MUSIC) project [14] which attempts to support the development of
context-aware, self-adaptive applications by providing results in two main directions.
First, a development methodology is provided, supported by software development
tools allowing the design and implementation of context-aware, self-adaptive
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applications using the Model Driven Development (MDD) paradigm. Second, it pro-
vides a middleware implementation which is deployed between the Operating System
(OS) layer of the target device and the context-aware applications, with the purpose of
automating much of the context-awareness and self-adaptation aspects of the latter by
enabling reusability of the corresponding mechanisms.

One of the main features of the MUSIC middleware is its provision of a generic,
context management system, capable of handling arbitrary types of context, and being
able to connect to arbitrary numbers and types of context providers and consumers.
This paper describes the architecture and the features of the MUSIC context system,
with a special emphasis on its pluggable architecture. It is argued that as a result of its
pluggability, the proposed architecture provides a high degree of context heterogene-
ity along with high resource utilization. These features are highly important in the
area of mobile and ubiquitous computing because, typically, the devices involved in
such environments are lightweight mobile and embedded devices, and consequently
vary in both technologies and capabilities.

The rest of the paper is organized as follows. Section 2 provides the foundations
and describes the architecture of the MUSIC middleware with emphasis on its context
system. Then, in Section 3 we present the pluggable architecture along with the
mechanisms responsible for the dynamic resolution and activation of the plug-ins.
Following that, Section 4 presents the approach and the results of the experimental
evaluation of the architecture. Finally, Section 5 discusses related work and compares
our approach with it before the paper is concluded with Section 6.

2 Foundations of Context-Awareness and Self-adaptation

By context-aware, we refer to systems that are capable of sensing their context and
reacting based on their knowledge on it. In our approach, we follow one of the most
cited definitions of context, provided by Dey in [1]: “[context is] any information that
can be used to characterize the situation of an entity;, [where] an entity is a person,
place, or object that is considered relevant to the interaction between a user and an
application, including the user and the application themselves”. This definition was
chosen as it is general enough while at the same time it encapsulates the essence of
mobile and pervasive computing environments: the most important context is that
which characterizes the immediate environment where the user and a [computing]
system interact, including the user and the system themselves.

As context-aware systems are capable of reacting to changes, they are considered
important by mobile users and users in ubiquitous computing environments, because
of the high variability which naturally characterizes them. Systems are capable of
reacting to context stimuli in many ways. From a software perspective, a common
method of response is the software adaptation [2]. Generally, software systems react
by means of parameter-based or compositional adaptation, where the former refers to
changes to a specific parameter of the application and the latter refers to more com-
prehensive changes to its composition, possibly by altering its architecture and replac-
ing part of its functionality [8].

To enable self-adaptation, context-aware systems typically implement a control loop
where the situation—i.e., the context—is periodically evaluated and the adaptations are
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decided autonomously—i.e., the user is not involved in the decision control loop. Differ-
ent approaches exist for the implementation of such control loops, many of which build
on results from the artificial intelligence domain: action, goal, or utility function [3]. For
the purposes of this paper, it is assumed that utility functions are used in the control loop
to assign a fitness score to each of the possible adaptation options by evaluating the con-
text conditions [4]. That score—i.e., the utility—is used to rank all the adaptation options
and thus to select the most appropriate one. Eventually, when an adaptation is selected—
i.e., because a variant providing a higher utility than the one currently in use is
found—the system is reconfigured accordingly.

One of the most important novelties of this approach is that it enables the design of
context-aware, self-adaptive applications with reusable components, by separating the
concern of designing the functional aspects of the application from the concern of
supporting context-aware, self-adaptive behavior [5].

2.1 Open Context Management System

The MUSIC middleware architecture defines a number of components interacting
with each other to seamlessly enable the self-adaptive behavior of the deployed appli-
cations. These components include the context management, the adaptation reasoner,
and the life-cycle management (which is based on OSGi). This paper focuses on
the design of the context management component, with emphasis on its pluggable
architecture.

One of the main goals of this architecture is to allow the development of context-
aware, self-adaptive systems with a consistent, easy to follow methodology. In this
regard, we designed an architecture that allows the development of the context sens-
ing parts of an application independently of its context consuming parts. With this
approach, when a context aware application is designed, its functional logic is defined
independently of its context sensing logic. While designing the business logic of the
application, its context dependencies need only be defined explicitly in a context
query, or implicitly through a utility function—i.e., defined in its composition plan
[8]. The actual context sensing and processing can be defined independently via plug-
ins, which the middleware is responsible to manage. These context plug-ins are anno-
tated with properties describing their required and provided context types. Thus, it is
possible to dynamically and autonomously resolve context plug-ins and also to seam-
lessly manage their life-cycle—i.e., through underlying middleware.

The design of the context architecture is based on a mutual context space, where
data is stored and accessed via well-defined interfaces. The exact formatting of the
context data in the context space is specified by a context ontology, which guarantees
that independent context providers and consumers can seamlessly interoperate within
the architecture. This is achieved, because the context ontology provides information
not only of the semantics of the abstracted context, but also of their representation—
i.e., how they are modeled as data-structures. The MUSIC context model is described
in details in [6]. In this architecture, the context plug-ins are dynamically attached to
the mutual context space, and they push their sensed context data into the space ac-
cording to their internal logic. Optionally, the plug-ins can also access context data
directly from the context space in order to process it and generate higher-level context
data in return. Explicit access to the context data is provided by means of well-defined
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interfaces enabling both synchronous and asynchronous access to the context data.
These interfaces are complemented with a Context Query Language (CQL) [7], which
provides a powerful and expressive, SQL-like language for specifying and accessing
context data. Finally, the context space is attached to a context storage—i.e., a data-
base—which allows for storing and accessing of historical context data. To prevent
this storage from overflowing, its content is periodically garbage collected to allow
replacement of old and obsolete context values by new ones.

2.2 Middleware-Supported, Context-Aware and Self-adaptive Applications

As already explained, the MUSIC middleware provides support for the deployment of
component-based, context-aware and self-adaptive applications. In this respect, the
applications do not explicitly encapsulate any adaptation logic nor do they include
any adaptation mechanism themselves. Rather, the adaptation reasoning (decision
making) and reconfiguration (parameter-based and compositional reconfiguration) are
automatically handled by the underlying middleware. This is achieved by means of
specially annotated, composition plans.

As it is explained in [8], plans in the form of architectural models can be used to
model the possible adaptations that an application can undergo while at the same time
maintaining its functional properties. These plans formalize, in a recursive manner,
the possible ways in which an application can be composed. Thus, the middleware
automatically computes a set of possible adaptations (in the form of component-
compositions) that each application can apply. This process can be triggered during
several steps of the application life-cycle, such as during the deployment of the appli-
cation or at runtime if changes in the execution context require so.

In MUSIC, this decision-making process is driven by the Quality of Service (QoS)
metadata associated to the application components [4, 8]. MUSIC therefore considers
applications that are developed with a QoS-aware component model, which defines
all the reasoning dimensions used by the adaptation reasoner to select and deploy the
component implementations providing the best utility. The utility of an application
increases when its components better fit the user preferences while minimizing the
resource consumption. Thus, this utility can be considered as a function that measures
the fitness of a plan with regards to the current contextual conditions. Once this
evaluation is applied to all possible alternatives, the adaptation reasoner selects the
one that provides the highest utility. A detailed example of how utility functions are
used to compute the fitness of alternatives based on their context is presented in [8].

The MUSIC middleware follows a layered-approach for interpreting context
changes into adaptation decisions, as illustrated in Fig. 1. At the lowest level, the
hardware, context is retrieved using physical context sensors or OS calls. For exam-
ple, the memory and CPU availability are computed in coordination with the OS,
which typically maintains such statistical information. Other context types, such as
the GPS coordinates, are typically retrieved from hardware-based sensors (e.g., a
GPS Module attached to the device in the case of this example).
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Fig. 1. Layers of Context Reasoning in Self-Adaptive Applications

In order to make that information accessible and understandable to the rest of the
middleware, specialized Context Sensor plug-in components are used. These sen-
sors can in essence be thought of as wrappers around the low-level sensing machinery
or code, similar to the software drivers used to enable interfacing with PC peripherals.
The MUSIC middleware supports the control and introspection of context plug-ins via
the Lifecycle Management module and by implementing a special |ContextPlugin
interface, respectively. The activation and deactivation of sensors is typically dele-
gated further down to the actual physical sensor. For example, in the case of an OS
Sensor, which periodically gets updates on memory availability, deactivation would
cause it to stop poking the OS, thus saving on CPU cycles. Alternatively, when a
hardware sensor—i.e., a GPS Sensor—is involved, disabling it results to the com-
plete shut down of the device, thus saving battery power. The introspection refers to
the capability of accessing metadata associated to context plug-ins. These metadata
provide information concerning the context types and the QoS the plug-ins provide
and require. As it will be discussed in the following paragraphs, introspection is an
essential requirement for enabling the intelligent and autonomous activation and deac-
tivation of the sensors.

Further up in the context system’s hierarchy are the Context Reasoners. These
are specialized plug-ins, which do not directly interact with low-level resources—i.e.,
OS and hardware—but rather they compute higher-level information by processing
the provided low-level context data—i.e., collected from sensors. For example, a con-
text reasoner could process the location context data provided by a GPS sensor along
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with the entries in the users’ agenda to assess their occupation (e.g., driving, sleeping,
attending a lecture, etc.).

Similar to context sensors, the context reasoner plug-ins can be introspected and
also they can be deactivated and activated on demand to optimize their resource con-
sumption. Furthermore, they are also associated to metadata—i.e., provided and re-
quired context types and QoS—enabling the middleware to assess when they are
needed and when they are not. The two main differences between context reasoners
and context sensors is that the former deal primarily with higher-level context infor-
mation—i.e., the user is driving versus the user is located at coordinates [x, y]—and
that the former also do not have any dependencies on hardware or software, platform-
specific components.

Further up the layered architecture of Fig. 1 are the Utility Functions. These are ar-
tifacts used by the Adaptation Reasoner to compute the fitness of a component, a
composition or an application to some given context conditions. As such, the utility
functions are typically expressed as mathematical formulas (or small programs),
which combine the values of specific context types with QoS metadata of the relevant
components in order to compute numerical values. Normally, the utility functions
depend on higher level context types, but in some cases they can also depend directly
on lower-level context types.

The utility functions are at the higher level of adaptation reasoning, available to the
middleware. They are right above the Context-aware Application in the presented
hierarchy, but the applications are themselves unaware of both the adaptation logic
and the utility functions. This separation of concerns is achieved by the Plan Reposi-
tory, which maintains metadata associated to the application components.

From the developers’ perspective, the adaptation reasoning is designed and imple-
mented throughout the layers of the presented hierarchy. Although the context rea-
soners could theoretically be kept outside the adaptation reasoning loop, in practice
they are at the core of the adaptation decisions. The reason is that they enable inter-
pretation of low-level context data to higher-level context data which can more di-
rectly influence the adaptation decisions. Most importantly, the context reasoners are
application-oriented, and thus platform independent, as opposed to context sensors
which are generally tightly coupled to the underlying hardware. This separation be-
tween platform-independent context reasoners and platform-specific context sensors
is one of the main advantages of this architecture, as it will be argued in the following
sections.

3 Design of a Pluggable Context Architecture

The architecture of the MUSIC context management system is based on two main
abstractions: context sensors and context reasoners. Both of them correspond to plug-
gable code artifacts implementing the IContextPlugin interface. This allows for
introspection and life-cycle control using the Inversion of Control pattern. In more
detail, this interface specifies methods for activating and deactivating the individual
plug-in components, as well as for accessing its associated metadata (even when inac-
tive). Typically, the activation and deactivation methods delegate the events to the
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underlying machinery (e.g., in the case of hardware sensors) or detach themselves
from a thread (e.g., in the case of a reasoner periodically probing a context value).

The plug-ins’ metadata are defined at design-time from the context sensor (and
reasoner) models. Most notably, the plug-in metadata reflect information on the con-
text types provided and possibly required by the corresponding plug-in. In addition,
QoS metadata can also be associated to plug-in components in a way similar to the
one used for application components (e.g., freshness, accuracy, resource consumption,
etc.). The plug-ins are packaged in self-contained files (typically JAR archives) and,
optionally, along with context-aware, self-adaptive applications. This is particularly
useful in the case of application-specific context reasoners, because the latter are plat-
form-independent (just like the context-aware applications) and thus can be packaged
once and be reused multiple times on different devices (cf. Fig. 1).

At deployment-time, the plug-in components are automatically identified and their
metadata are registered within the context management system. Besides the provided
context types of the plug-in, the context system also evaluates its context needs. This
is required, because in the case of context reasoners, which dynamically synthesize
complex context information based on more elementary types, it has to be verified
that the needed context types are available. This is achieved using a context depend-
ency resolution algorithm.

Finally, the context needs of the deployed applications are continuously evaluated
at runtime by the context management system. Based on the running context needs,
the required context plug-ins are activated, while the rest of them are deactivated to
minimize the resource consumption. As new context-aware applications are deployed,
started, stopped and removed, the Adaptation Reasoner communicates the updated
context needs to the context system which dynamically activates and deactivates the
deployed plug-ins accordingly. The exact data-structures and algorithms involved in
this process are further described in the following subsections.

3.1 Resolution and Activation Mechanisms

The pluggable architecture of the context system is based on a fundamental idea: the
context information is provided by context plug-ins and consumed by context con-
sumers. Both of these entities can be deployed dynamically and there are no guaran-
tees concerning the availability of either. Even further, the plug-ins and the context
consumers can be developed by different teams with no prior knowledge of each
other. In this case, consistency over the format and the semantics of context types is
achieved by means of a common ontology as described in [6].

To handle the dynamic availability of context plug-ins and context consumers, the
context system monitors both and react on events involving changes to their availabil-
ity. For instance, when a new context plug-in is installed or an existing one removed,
the context system must react accordingly. Similarly, when new context consumers—
i.e., context-aware applications—are started or existing ones are stopped, the context
system must also react to ensure that the appropriate context plug-ins are activated
and deactivated accordingly. More accurately, the context system attempts to recon-
figure the set of active plug-ins only when the needed context types change.

To handle the dynamic and autonomic resolution and activation of the context
plug-ins, we define two algorithms. The invocation of the first algorithm, the dynamic



560 N. Paspallis et al.

resolution, is triggered by changes to the availability of context plug-ins: when new
plug-ins need to be installed or existing ones should be removed. It can be assumed
that changes to the availability of context plug-ins at runtime are reasonable because,
often, the developed context-aware, adaptive applications are bundled with their re-
quired context reasoner and perhaps even their needed context sensor plug-ins. The
invocation of the second algorithm, the dynamic activation and deactivation of the
plug-ins is merely depended and triggered by changes to the context needs. Typically,
the context needs change when new applications are started or existing ones stopped.

Table 1. Basic data-structures and algorithms used in the resolving mechanism

Resolution mechanism

Basic data-structures

[all plug-ins] — contains all known (i.e. installed) context plug-ins; this set is updated before
the invocation of the algorithm

[resolved] — a subset of the [all known plug-ins] set, it contains only those plug-ins that have
been found to be resolved; this set is updated during the invocation of the algorithm
[offered] — a mapping of all offered context types to a list of resolved plug-ins offering them

Triggered by
Changes to the [all plug-ins] set

Algorithm
/* first make sure that all resolved plug-ins are included in the [resolved] set */
changes-detected « true;
1. while changes-detected do
changes-detected < false;
1.1. for each p in [all plug-ins] do
1.1.1. if requiredContextTypes(p) C [offered] then
[resolved] ¢« [resolved] U {p}
[offered] < [offered] U {offeredContextTypes(p) =2 p}
changes-detected « true;
end if
end for
end while
/* next make sure that no unresolved plug-ins are included in the [resolved] set */
changes-detected < true;
2. while changes-detected do
changes-detected « false;
2.1. for each p in [resolved] do
2.1.1. if not requiredContextTypes(p) < [offered] then
[resolved] ¢« [resolved] - {p}
[offered] < [offered] - {offeredContextTypes(p) =2 p}
changes-detected « true;
end if
end for
end while
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The first algorithm, depicted in Table 1, is used to resolve the context plug-ins. A
resolved plug-in is one which either has no context dependencies—i.e., context re-
quirements—or all its dependencies are provided by some other resolved plug-ins.
The resolution mechanism defines three data-structures: the all plug-ins set, the re-
solved plug-ins set, and the offered context types map. The first is a set containing all
known—i.e., installed—plug-ins. The second set is a subset of the first one, and it
contains all the plug-ins that are found to be resolved. In practice, the outcome of the
resolution algorithm is the update of this set. The last data-structure is a map. It con-
tains mappings of the context types offered by resolved plug-ins to the list of the
corresponding plug-ins offering it. As the same context types might be offered by
multiple plug-ins, this data-structure provides quick access to all of them.

When a new context plug-in is installed, or an existing one uninstalled, the event is
reflected in the [all plug-ins] set, which consequently triggers the plug-in resolution
algorithm. This algorithm iterates in two phases where first all the plug-ins are tested
to make sure that the resolved ones are included in the [resolved] set and, second, all
the plug-ins in the [resolved] set are tested to ensure that no unresolved instances are
included in it. As the addition of a new plug-in in the [resolved] set can affect whether
other plug-ins are resolved as well, this step is repeated until no changes are observed
(steps 1, 1.1, and 1.1.1). Similarly, when a plug-in is removed from the [resolved] set,
it might cause other plug-ins to become unresolved. So this process is also repeated
until no further changes occur (steps 2, 2.1, and 2.1.1). When the algorithm ends, it is
guaranteed that all the resolved plug-ins, and only those, are in the [resolved] set.

Table 2. Basic data-structures and algorithms used in the activation mechanism

Activation and deactivation mechanism

Basic data-structures

[offered] — a mapping of all offered context types to a list of resolved plug-ins offering them
[needed] — a mapping of all needed context types to a list of the corresponding plug-ins
[active] — a set of all the plug-ins that need to be active

Triggered by
Changes to the [needed] context types set

Algorithm
/* first make sure that all needed plug-ins are included in the [active] plug-ins set */
1. for each C; in [needed] do
1.1 for p in select(offered[C;]) do
[active] & [active] U {p}
[needed] ¢ [needed] U {requiredContextTypes(p) =2 p}
end for
end for
/* next make sure that no unneeded plug-ins are included in the [active] plug-ins set */
2. for each p in [active] do

2.1. if {offeredContextTypes(p) =2 p} N [needed] == J then
[active] < [active] - {p}
[needed] « [needed] - {requiredContextTypes(p) =2 p }
end if

end for
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The next mechanism, depicted in Table 2, maintains that only the plug-ins that are
actually needed by the deployed applications are activated. To achieve this, the con-
text system maintains a list of the currently needed context types which is updated
dynamically. Changes to this set trigger the activation and deactivation algorithm.

The basic data structures used in this mechanism are three: the offered plug-ins set
which is the same described in the resolution mechanism, the [needed] map, which is
used to map the needed context types to the actual components requiring them—i.e.,
both applications and plug-ins—and the [activated] set, which is a subset of the [re-
solved] set described in the resolution mechanism, and which includes the plug-ins
which were decided to be activated. The outcome of the corresponding algorithm is
the update of the [activated] set. Although not explicitly stated in Table 2, the context
system activates and deactivates the plug-ins as they enter and exit the [active] set.

The activation algorithm runs in two phases as well. First, it makes sure that at
least one context plug-in is included in the [active] set for each needed context type.
The selection is done using a special operation: select. As it will be discussed in the
implementation section, this operation can be as trivial as a picking a random or all
the matching plug-ins, or it can be more complex enabling more intelligent selection
of the context plug-ins based on their attached QoS metadata. For instance, if two
plug-ins are available for offering location data, then the selection might be based on
their accuracy, on their battery consumption, or a combination of the two. Once a
plug-in is selected, it is added to the [active] set, and an appropriate mapping from its
required context types is added to the [needed] map. In the second phase, all the plug-
ins in the [active] set are tested against the [needed] map. If no needed context types
are matched to a specific plug-in, then the latter is removed from the [activated] set
and the corresponding mappings of its required context types are removed from the
[needed] map.

3.2 Implementation Issues

As part of the MUSIC middleware, two implementations were provided for the pro-
posed architecture. The first one is a proof-of-concept implementation, where the
plug-ins are handled as individual components. The resolution of the plug-ins takes
place within the context system, along with the selection of the plug-ins to be acti-
vated (line 1.1 of Table 2). For the latter, a brute force approach is used, where all the
plug-ins offering the required context type are selected for activation. In this case, it is
expected that when multiple plug-ins are used to offer data of the same context types,
they act in a complementary way and the context system automatically augments the
sensed data to form mutually accepted values.

The second implementation is more elaborate as it leverages the existing planning
framework of the MUSIC middleware to allow more granular selection of the active
plug-ins. Fig. 2 illustrates an overview of the MUSIC middleware architecture, and de-
picts how the planning-based adaptation is supported. As described in Section 2, the
Planner component supports the planning procedure by operating a generic reasoning
algorithm that exploits metadata included in the available plans. In particular, the plans
are composed based on their type compatibility to describe alternative application con-
figurations. Then, the reasoning algorithm ranks the application configurations by evalu-
ating their utility with regards to the application objectives. This evaluation is achieved
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by computing the offered properties using the Property Predictors associated to each
plan contained in the selected application configuration and retrieved from the Plan Re-
pository.

The Plan Repository component provides an IPlanBroker interface for the
Planner to retrieve plans associated with a given component type during planning.
The Planner may request plans that are compatible with a given variation point, at
which point the Plan Repository will search for matching component types. Any
additional metadata on the required component type will help the Plan Repository to
exclude plans and filter the search space. Plans are typically published to (and dis-
carded from) the Plan Repository by applications and component development tools
using the interface ITPlanRepository, and can thus trigger the Planner for re-
planning of the application if needed (e.g., when a discarded plan is associated to a
running component).
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Fig. 2. Architecture of the Pluggable Context Middleware in MUSIC

The reconfiguration process is handled by the Configurator component and
consists of taking the set of plans selected by the component Planner and
reconfiguring the application. Before deploying the application configuration selected
by the reasoning engine, the component Configurator brings the current application
into a quiescence state, by suspending the execution of its contained components.
Then, if the component described by a plan is in the running or deployed state, the
associated component instance is configured for the variation point and connected to
other components using the component Binder. If the component is in the described
state, then the component is preliminary instantiated and deployed by the component
Platform using the component implementation description associated to the plan. The
result of the reconfiguration (e.g., reference of the deployed instance) is automatically
reflected into the selected plans. Thus, the MUSIC planning-based middleware offers
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a modular and extensible approach for adapting applications built with various types
of component models. In particular, the concept of plan can be derived to support
heterogeneous context plug-ins and their associated metadata. Furthermore, the
components Platform and Binder provide sufficient abstractions for supporting
different types of component. In this second implementation, the interfaces
IPlatform and IBinder are also implemented by the Context Management
System component for supporting the life-cycle management of context plug-ins and
their dynamic deployment and activation. Thus, the context plug-in component
metadata is reflected as a plan, which can be hosted by the Plan Repository and
exploited by the Adaptation Reasoner to control the deployment and activation of
context reasoners and sensors. This means that the resolution algorithm we introduced
is implemented by the Planner component, while the activation algorithm is
implemented by the Configurator component. Thus, based on the result of the
adaptation process that has been triggered by context changes, the Configurator
interprets the selected plans and interacts with the Context Management System to
resolve and activate (resp. unresolved and deactivate) the context plug-ins. Thus, this
implementation unifies the process of adapting both application and technical
components in order to achieve common objectives (e.g., reduce the memory
consumption) in a consistent manner. In particular, conflicts during context plug-ins
resolution are handled by the Planner component, which selects the context plug-ins
providing the best utility to the application. Furthermore, this homogeneous planning
mechanism opens up for support of Context as a Service, by benefiting of the Service-
Oriented Architecture (SOA) support provided by the MUSIC middleware [14]. This
means that context sensors provided by the execution environment (e.g., a location
sensor provided by a WiFi router) can be discovered and exploited by the context
management system.

4 Experimental Evaluation

In order to evaluate the efficiency of the proposed algorithms, we implemented a pro-
totype solution based on the MUSIC context manager and a set of context plug-ins
(both real and simulated). This context manager is used by an application executing a
scenario where the context changes dynamically. While the scenario progresses, we
measure the performance of the algorithms by monitoring the resource consumption
(battery and memory usage) in the device. The scenario is initially executed with the
algorithms disabled, which results in all installed plug-ins being always active. Then,
the scenario is repeated with the dynamic plug-in mechanism enabled which results to
the dynamic activation of the needed plug-ins only.

Our evaluation focuses on PDA devices because resource consumption is more
critical for this type of resource-constrained devices. We selected an HP iPAQ 6910
handheld running Windows Mobile 5.0, because it is equipped with both Wi-Fi and
Bluetooth adapters, a GPS receiver, and GSM phone capabilities. This equipment
allows us to implement and test a rich set of real plug-in sensors in addition to a set of
simulated ones. The exact approach is described in the following subsections.
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4.1 Implementation of the Context Plug-Ins and Experimental Setup

In order to implement the simulated scenario, we have defined the following set of
real and simulated context plug-ins:

Bluetooth sensor plug-in (real) allows to switch on and off the Bluetooth adapter,

Wi-Fi sensor plug-in (real) allows to switch on and off the Wi-Fi adapter,

GSM sensor plug-in (real) allows to switch on and off the phone functionality,

Location sensor plug-in (real) allows to switch on and off the GPS receiver of the

device and to retrieve information on the current geographical position,

RFID sensor plug-in (simulated) simulates the detection of an RFID tag,

e Light sensor plug-in (simulated) simulates the detection and measurement of the
ambient light of the environment where the device resides,

e Weather reasoner plug-in (simulated) based on the location info (e.g. provided

by the GPS plug-in) and on Internet access (provided by the Wi-Fi adapter and

controlled by the Wi-Fi plug-in), it simulates the invocation of a web service pro-

viding weather forecast for a given location.

The context plug-ins were implemented using the Java language, but some operations
(e.g. Bluetooth, Wi-Fi and Phone activation or screen brightness adjustment) required
low-level access to the underlying operating system. Hence, we leveraged the JNI
technology which allows invocation of methods contained in native libraries from
inside Java code. We implemented a native library using the C++ language, which
wraps the calls to the required native methods and links them to the corresponding
Java code, according to the JNI specification. Also, since the focus was on PDAs, a
suitable runtime environment was selected to execute the Java bytecode. We selected
the CrE-ME 4.0 for PDA Java Virtual Machine (JVM) from NsiCom Ltd, which is
based on the JDK 1.3.1 specification and supports the J2ME CDC Personal Profile.

4.2 The Scenario: A Tourist Visiting a City Assisted by a PDA Computer

The scenario selected for our experimentation consists of a sequence of actions per-
formed by a tourist while visiting a city. The tourist uses a handheld PDA device,
which hosts the context middleware described earlier, along with an application,
which defines a set of context needs and reactions to context changes. The reaction
consists of adapting the device configuration to the new context for the objective of
optimizing the resource utilization and maximizing the user satisfaction. This scenario
is inspired and highly related to one of the main pilot applications proposed by the
MUSIC Consortium to demonstrate the capabilities of the middleware.

The scenario is split in phases called “scenes”, having a pre-defined duration. The
next subsection lists the scene description and the context changes that happen in the
environment for each scene. Moreover, the adaptation column describes how the ap-
plication adapts to changes when the plug-in mechanism is enabled. In order to evalu-
ate the effectiveness of the proposed mechanism, we repeated the same scenario hav-
ing the plug-in mechanism disabled. In this case, all the components needed by the
application—i.e., GPS, Bluetooth, and Wi-Fi adapters, RFID reader, Light sensor, and
Phone—were always switched on and the screen brightness was set to max.
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4.3 The Simulation Application

The simulation of the scenario is driven by an application that reproduces the context
changes and the user actions according to the scenes described below. When the ap-
plication is launched with the context plug-in mechanism enabled, all the steps in-
volving plug-in resolution and activation are performed, and the application reacts to
the context changes by performing the corresponding adaptations. On the other hand,
when the context plug-in mechanism is disabled, all needed low-level resources are
switched on at start-up, and no adaptation is performed.

Scene 0 (duration: 95 sec): The tourist leaves the hotel for a tour of the city. He
starts the application on the PDA. As the application requires RFID, GSM and light
sensors, the associated plug-ins are resolved and activated.

Scene 1 (duration: 5 min): The tourist is walking in the street and the weather is
sunny. As the ambient light changes from normal to intense, the screen brightness is
automatically set to maximum (better contrast).

Scene 2 (duration: 10 min): The tourist reaches an area providing a Wi-Fi network.
He now walks in a shady alley and ask to be notified periodically of weather forecast.
As the ambient light changes from infense to normal, the screen brightness is set back
to medium (better contrast and lower power consumption). At the same time, the ap-
plication requires weather information and the weather plug-in is thus resolved and
activated.

Scene 3 (duration: 30 sec): The tourist enters a metro station and the RFID reader
detects a tag providing the following information about the environment: “Station
DUOMO”, no Wi-Fi, no Bluetooth kiosk, and no GSM coverage. Thus, the Wi-Fi,
GPS, and Phone adapters are switched off and the weather plug-in is deactivated
while the Bluetooth adapter is switched on.

Scene 4 (duration: 20 min): The tourist waits in the metro station. As the light sen-
sor detects a change due to the station lights, the screen brightness is set to low in or-
der to save battery.

Scene 5 (duration: 30 sec): The tourist gets off the couch and walks towards the
exit. The RFIT reader detects a tag providing the following information: “Station
LORETO”, Wi-Fi and GSM available, no Bluetooth kiosk. Thus, the Wi-Fi and GPS
adapters are turned on, the weather plug-in is activated and the phone is switched on.

Scene 6 (duration 30 sec): Now the weather outside turns to cloudy. As the light
sensor detects this change, the screen brightness is set to medium.

Scene 7 (duration 10 min): The tourist walks around the city guided by its GPS, re-
ceiving weather forecast on a display whose brightness is set to medium and having
its GSM turned on.

Scene 8: The tourist reaches the hotel and quits the application. As a result, all the
context plug-ins required by the application are now deactivated to release the device
resources.

In addition to the tasks described above, the simulation application performs the
measurements of the memory and battery consumption in a separate thread. It does so
by polling the underlying operating system at a given interval (i.e. every 5 seconds) to
retrieve the resources status. In this way, the remaining battery charge, the actual
memory usage (in terms of bytes and memory load as a percentage), the timestamp of
the measurement and the corresponding scene name are all saved in a file.
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4.4 Experimental Results

As already explained, our goal was to evaluate the efficiency of the context plug-in
mechanism. We repeated the experiment twice: once with the plug-in mechanism
enabled and a second one where it was disabled. All the experiments were initiated
with the battery fully charged and without other applications running, in order to
maintain as an identical execution environment as possible.

The graphs of Fig. 3 depict the trends in memory use (in terms of absolute memory
used in Megabytes and also in terms of system memory load percentage) as a function
of the scenario scenes. As shown in the graphs, the execution with the context plug-in
mechanism enabled was less memory consuming in almost all the scenes. Table 3
shows a summary of the numerical values measured during the experiment. Enabling
the context plug-in mechanism has saved an average of 21.29% of the total memory
used compared to when the context plug-in was disabled. In terms of memory load,
the average gain was 17.44%.
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Fig. 3. (a) Total Memory Usage, and (b) Total Memory Load

The graphs of Fig. 4 depict the battery load during the execution of each step of the
scenario. The first graph shows the trend of the total battery consumption, while the
latter illustrates the relative battery usage for each scene. The execution with the con-
text plug-in mechanism enabled was proven to be more energy efficient in all the
scenes.
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Fig. 4. (a)Total Battery Usage, and (b) Battery usage per scene
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As depicted in Table 3, the activation of the plug-in mechanism has saved 20.95%
of the total battery consumption. In absolute terms, for the used device, it means that
6% of the total battery capacity was saved. Similar results are also reflected in the
relative battery usage per scene, where the average gain was 20.68%. The following
table depicts the experiment measurements in detail.

For the execution of the experiments we used the first implementation described in
section 3.2, where the selection of the activated plug-ins is not dependent on their
QoS properties. As only one plug-in has been defined per required context type, this
selection does not have a significant effect on the measurements.

Table 3. Results of the measurements obtained during the experimentation. TMU(MB): Total
Memory Usage (in Megabytes); TML(%): Total Memory Load (in percentage); TBU(%):Total
Battery Usage (in percentage); BPUPS (%): Battery Percent Used Per Scene (in percentage)

TMU (MB TML (%) TBU (%) BPUPS (%)
Scene P off |P on A% P ot |P on A% P o |P_on A% P o |P_on A%
Zero 019 0149 0.0 1 1| o000l o030 o019 3784 030 0.9 37.84
init 407 180 55.76 8 4 500 083 054 34571 048 032 3218
Scene 1 567 321 43.42 12 71 417 400 343 1427 313 286 859
Scene 2 574 345 39.82 12 el 333 941 840 1080 538 492 8.3
Scene 3 574 482 16.07 12 10| 167 975 863 1149 020 019 34.07
Scene 4 599 488 1853 12 11| 833 2107 1673 2062 11.28 806 28.56
Scene 5 599 506 15.46 12 11 833 2138 1687 2109 027 010 6463
Scene 6 599 506 15.53 12 11| 833 2169 17229 2059 027 030 -12.76
Scene 7 6.06 545  9.99 13 12| 769 2764 2233 19229 592 507 14.36
Scene 8 463 471  -1.69 10 10) of 2796 2265 1898 025 027 -9.09)

AVG AVG AVG AVG

A%: 21.29 A%: 17.44 A%: 20.95 A%: 20.64

5 Related Work

Many works exist in the literature proposing various models, methodologies and ar-
chitectures for the creation of context-aware applications. The Context Toolkit [1] is
one of the first works in the area of context management. In this framework, the users
program interpretation and aggregation functionality in monolithic blocks, one inter-
preter and one aggregator per application which must encapsulate the entire context
processing logic. However, the management of system resources consumed by con-
text sensors and reasoners is not addressed.

The context manager of Draco [10] is organized around a database and an ontology
broker. The component-based approach is chosen for its ability to dynamically adapt
the context management system to changing conditions of applications’ requirements
and context devices. The objective is to (un)deploy on demand functional context
management components, such as filtering, history, or transformation. However, the
adaptation process in Draco is driven by the objective of saving storage space, but
does not support the description and the management of context dependencies.

Similar to our work, the COSMOS framework [11] defines an architecture where in-
dividual components (called context nodes) are composed to implement the desired logic
of a context-aware application. From a point of view, the context nodes correspond to
context plug-ins in our architecture. Also similar to our approach, the context nodes are



A Pluggable and Reconfigurable Architecture 569

responsible to infer higher level context information from data gathered at lower architec-
tural layers. Like our approach, the COSMOS approach aims to allow the development
of context-aware applications where the context-awareness logic is separated from the
business logic. However, in COSMOS the context nodes are merely logical units of
composition, while in MUSIC the plug-ins correspond to deployable components. This
implies that in our case plug-ins can be dynamically activated and deactivated in a way
which controls resource consumption. From an architectural point of view, COSMOS
also differs in the sense that the context nodes are directly connected to each other, while
in MUSIC all the plug-ins are attached directly to the context system, which acts as a hub
to route context notifications as needed.

RCSM [12] is an object-oriented framework where each context source (users, sen-
sors, operating system, remote hosts) is separated. But, the authors do not tackle the
issues of the synchrony of the treatments or of the control of system resources for
context management. PACE [13] presents a similar architecture in which context data
are stored in a database. The meta-data (temporality, quality, etc.) are added either to
context data or to relations between them. The authors indicate clearly that they did
not have a look at issues, such as scalability or performance.

6 Conclusions and Future Work

The main contribution of this paper is the specification of a pluggable and extensible
context architecture that allows the dynamic activation and deactivation of context
plug-ins on demand. It has been showed that this mechanism improves the resource
utilization of the target devices, which is quite important in the case of small mobile
and resource-limited devices. Another contribution of the proposed architecture is that
it promotes component-oriented software engineering by separating the task of
developing context providers—i.e., sensor and reasoner plug-ins—from the task of
developing context consumers—i.e., context-aware applications. In this way, the de-
velopers design reusable context plug-ins by specifying the required and provided
context types. These types can be specified in an unambiguous manner using the pro-
vided context ontology [6]. On the other hand, the developers of context-aware appli-
cations do not need to be aware of the details of the implementation of context
providers. Rather, they only need to define the context types needed by their applica-
tions and handle the provision of these context types as a separate task—i.e., reuse
existing plug-ins or develop custom ones when needed. In the case of context-aware,
self-adaptive applications, context needs can be expressed either directly or indi-
rectly—i.e., annotated in the context queries [7] and utility functions [4] of their
corresponding plans.

Although not implemented yet, the proposed approach can naturally facilitate the
development of context plug-ins using the MDD paradigm. It is an ongoing process of
the MUSIC Consortium to specify an MDD-based methodology for the development
of context plug-ins, automating the adoption of relevant patterns and the reuse of
common mechanisms. We also plan to extend the plug-in metadata with extra infor-
mation describing additional features such as accuracy per context type, cost of
sensing (e.g., in terms of CPU and memory consumption, as well as on battery drain).
This would allow for more intelligent management of the available resources and the
context plug-ins, especially in the case where multiple providers are available for the
same context types and the system needs to choose only one.
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