
Intelligent Classification and Retrieval of Software Components

Andreas S. Andreou, Dimitrios G. Vogiatzis, George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos Str, P.O.B. 537
CY-1678 Nicosia, Cyprus

E-mail: {aandreou, dimitrv, george}@cs.ucy.ac.cy

Abstract

This work proposes a new methodology for intelligent
classification and retrieval of software components based on
user–defined requirements. The classification scheme utilizes
a dedicated genetic algorithm which evolves a small number
of classifiers by dividing the set of available components
stored in a database into certain subsets (clusters). Each
classifier thus becomes the leader-representative of its
cluster. When a user wishes to trace a component he/she
identifies the desired characteristics (component profile)
which are then compared with the characteristics of the
available classifiers. The closest classifier matching the
required characteristics over a user-defined threshold will
result in the “winning” set of components belonging to its
cluster, which are presented to the user in descending
matching fitness. We have validated our methodology over a
synthetic dataset of components and the results obtained
were very encouraging. Last, we present the web application
developed to support the proposed intelligent classification
method.

1. Introduction

Software components may be conceived as independent and
autonomous units which are offered by vendors and can be
“glued” together, via their public interfaces, to form a
complete software project, which is more reliable than
development ex nihilo [10].
To this end, users of software components have to search
between the components available in the market, evaluate
their characteristics and purchase the most suitable ones for
integration according to the functional requirements and
constraints of their project. However, currently the available
schemes in the market for searching and retrieving
components are insufficient in terms of: a rich set of

characteristics that would allow locating components using
diversified components properties and features with the
ability of combinations, a fast and robust retrieval scheme,
and an efficient mapping of user requirements onto
component characteristics.
We propose an innovative way to classify components with
the aim of offering fast retrieval of the correct components
according to the preferences of the user. In our proposition,
component classification is based on a predefined set of
characteristics, from which the user may select those of
interest (preferences). The user’s preferences are utilized by
an intelligent algorithm to return those software components
the characteristics of which match the preferences up to a
user defined level.
The rest of the paper is organised as follows: Section 2
presents a short literature review. Section 3 presents the
proposed method. Section 4 presents a set of experiments,
followed by a brief presentation of the supporting software
tool. Finally, Section 6 draws the conclusions and suggests
future research steps.

2. Relevant Work

A fundamental problem for software component providers is
that of organising a collection of components for fast
retrieval. Computational Intelligence (CI) technologies such
as evolutionary computation, neural networks, clustering
algorithms [8], and fuzzy sets [2,9] have recently been used
in component based software engineering [6].
There are two popular representation schemes for software
components. The first is based on a controlled vocabulary,
which is organised in a strict hierarchical way. This scheme
has received a lot of criticism as being inflexible and not
producing a good classification [4]. The second approach
postulates a representation which is based on a series of
characteristics (attributes) that assume values. This scheme
is more flexible with regards to expansibility [4], which we
have also adopted in the current work.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

One of the earliest efforts in classification of software
reusable components is based on a faceted scheme [3].
Another influencing component selection system has been
developed in the context of the CdCE project [7]. Finally in
the CLARiFi project a dynamic classification schema has
been adopted [1].

3. An Intelligent Method for Classification and
Retrieval of Software Components

Our method performs intelligent components classification
and fast retrieval of a requested component via a web
accessible software tool. The classification/retrieval
procedures are based on a dedicated genetic algorithm that
processes a set of predefined component characteristics. In
what follows, we describe the basic concepts of our method:
Encoding: An encoding scheme for the software component
characteristics maps their initial form (whatever that may be,
e.g. linguistic terms, numerical types, etc.) to a form that will
be used by a genetic algorithm to discover component
classifiers. In our case we used binary strings (series of 0/1)
to encode the component characteristics, the length of which
depends on the aggregation of the number of bits needed to
represent all possible values of each distinct characteristic.
Classifier Discovery: The genetic algorithm attempts to
discover several different classifiers, each of which classifies
a number of software components into a homogenous set in
terms of characteristics. The classifying sets may have
common elements as the classification process is based on
component characteristics, with which it attempts to find
large groups of components with common values. Typically,
there will be a large number of components classified against
a small number of classifiers (20 in our case). Thus,
searching for a component will be performed by examining
the user preferences against the classifiers rather than the
actual components, something which will result in a fast
process. It is also possible that some components may not be
classified at all as this depends on the selection of a threshold
parameter that specifies the similarity of a component with a
classifier (i.e. the number of perfectly matched
characteristics).
Component Retrieval: This is the situation where a user
tries to locate a specific component. First, she/he determines
the desired values of the component characteristics, thus
forming her/his preferences. Second, she/he sets the
matching threshold value (obviously the lower the threshold
value the more components will be returned). The system
will then encode the user’s request as a bit string and will
compare it against all classifiers. The closest match will
signify the “winning” classifier and will trigger the return of
those components that correspond to this classifier. An
overview of the retrieval process is presented in
Figure 1, where the sets of classified components are
represented as ellipses. The classifier corresponding to each
class of components is drawn next to its set. The classes can
be overlapping as previously mentioned. Moreover, we can
observe a pool of unclassified components that may possibly
occur as a result of the threshold set.

Figure 1. Overview of the system

3.1 Components characteristics and encoding

In the current experimental setting each component is
described with a set of 15 characteristics, which were
identified by examining a component from different
perspectives (functional and non-functional). Our selected
characteristics are: General functionality, Specific
functionality, Platform, Implementation language, Operating
system independence, Synchronisation, Visibility of
implementation, Price, Processor utilisation, Memory
utilisation, Disk Utilisation, Binding, Data encryption, Data
open format compatibility. Each of the aforementioned
characteristics is encoded as a string of 0/1. The encoding of
a component is essentially the series connection of its
characteristics’ bit strings. We calculated the required bits for
all characteristics and concluded to a string length equal to
60 bits. Figure 2 shows an example of a component with
specific characteristics and its relevant bit encoding at the
top.

111011001000011011100110001000001100010100010001001000101001

General functionality: Security
Specific functionality: Secure Email
Operating System Independence: Windows 98, 2000, Me, NT,
XP, Unix, Linux
Implementation language: C#
Platform: Visual Studio .NET
Processor Utilization: 100-200MHz
Memory Utilization: 128MB
Disk Utilization: 100-500KB
Data Encryption: No
Data Open Format Compatibility: No
Password Protected: Yes
Visibility of implementation: Glass box
Price: $1-100
Synchronization: synchronous
Binding: Static

Figure 2. Example of component encoding

.

.

.

Unclassified Components

Classifier 1

Classifier 2

Classifier n
Component

Request
(preferences)

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

3.2 A Genetic Algorithm for identifying the
classifiers

A dedicated GA [5] was developed to evolve candidate
classifiers and select the optimal solution in terms of number
of components in the corresponding classes, which works in
discrete steps as follows:

1. Create a random population of 100 chromosomes -
potential classifiers

2. For every generation of the genetic algorithm:
2.1 Apply crossover to every pair of classifiers,

where each pair is randomly selected
according to a crossover probability

2.2 Apply mutation to a randomly selected
classifier according to a mutation probability

3. Perform component classification: for each of the
100 classifiers:
a. Compare each classifier’s values of

characteristics with those of each component. If
a component is close enough (determined by a
threshold) to a classifier then assign the
component to the class represented by this
classifier. Normally, a large number of
components will be assigned to each
chromosome-classifier

b. Select the top 20 classifiers (chromosomes) in
terms of the number of assigned components.
Then find the average number of assigned
components of the 20 classifiers. This is the
average fitness of the current generation

c. If the average fitness of the current generation is
greater than that of the previous generation then
create a new population by selecting
chromosomes according to their fitness and
repeat from step 3. Otherwise do not create a
new population and repeat from step 2

The above algorithm is repeated until a termination condition
is reached. In our case the algorithm terminates if no
improvement in the average fitness of the population is
observed for 100 generations. A very important parameter is
the value of the threshold, which determines whether a
component belongs to a certain classifier. For example, a
value of 40% means that at least 40% of the values of the
classifier characteristics are identical to those of a
component. This threshold essentially determines the
“success” level of a classifier to gather a rich number of
components in his class.

4. Experiments and Results

The first phase of the experiments was concerned with the
classification of a pool of components, whereas in the second
phase we investigated the retrieval of specific components.
For the classification phase, we created randomly 1000
components, each comprising 60 bits. The results reported
are averages over 100 runs. The classification of the
components is based on the 15 characteristics described in
section 3.1. The threshold parameter is of paramount
importance to our method, since it is a measure of similarity

between the component characteristics and the classifier
characteristics. We set the threshold value to assume the
values of 30%, 40%, 50%, 60%, 70% and 80% for
comparison purposes. The value of 30% produced classifiers,
where each classified almost all of the available software
components. This denotes that the classifiers derived cannot
differentiate between the components. The threshold value of
80% did not produce good results either, because each
classifier classified only between one and three components,
which is also undesirable as it leaves many components
unclassified (recall that there are only 20 classifiers).
Similarly, unsatisfactory were the results when the threshold
was set to 70%.
The results for the threshold values of 40%, 50% and 60%
are listed in Table 2. The “Average” columns denote the
average number of components classified by each classifier,
while the “Not classified”, denotes the number of
unclassified components. The scores for 50% are quite
successful, since there are no unclassified components and
each classifier includes almost half of the components
(47.5%). Thus, in the retrieval phase only half of the
components need to be searched. Moving along the same
lines, the value of 60% is also satisfactory since each class
contains a small number of components (58.3 on average),
but there is a significant number of unclassified components.
The threshold of 40% is the worse since almost all of the
components are classified by each classifier. This threshold,
however, was also included in the retrieval phase for testing
purposes. Furthermore, we have conducted experiments with
5,10 and 15 classifiers but the results were not satisfactory.

Table 2. Experimental result of component classification
by 20 classifiers

Threshold value:
40%

Threshold value:
50%

Threshold value
60%

Average Not
classifie

d

Average Not
classifie

d

Average Not
classifie

d
937.03 0 475.99 0 58.30 312.87

To test the retrieval phase we created 10 random user
requests searching for software components. Then we set the
threshold from 40% to 70% at increments of 10% as shown
in Table 3. We can observe that the 40% threshold returned a
richer number of components, but not all of them were
relevant to the users’ query as expected. The 50% and 60%
values retrieved less but more relevant components. The 70%
threshold returned results for some of the queries only.
However, the few cases for which we obtained results were
highly relevant to the users’ requests.

Table 3. Retrieval Phase Results
40% 50% 60% 70%

Average number of components per classifier

31,9 23 8,2 2,4

The experiments were conducted with a tool that exists both
as standalone system and as a web application. The main
functions of the tool are summarized to searching for

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

software components, inserting a new component in the
database and some administration functions. The tool
differentiates between simple users (reusers) who can only
search for components and producers (component
developers) who can insert new components. In Figure 3 we
can see the characteristics that may be selected when
searching for a component.

5. Conclusions and Future Work

We have designed and implemented an intelligent system for
software component classification and retrieval.
Classification is based on a small set of classifiers which are
evolved (formed) with the aid of a dedicated genetic
algorithm. Each classifier evolved by the GA attempts to
classify the largest possible number of software components
according to common characteristics. Retrieval of the
relevant components may then be performed by comparing
the developer’s requirements with those of the classifiers. If
the requirements are close enough to those of a classifier
then the components that correspond to that classifier are
returned. Thus, comparing a component’s specifications with
only those of the classifiers instead of the entire set of
available components saves a significant amount of time and
effort in the retrieval phase. A threshold is also used when
evolving the classifiers, which determines which is the
degree (percentage) of similarity with a classifier that is
required to classify a component in a certain class. The
threshold value has been found to have a profound influence
in both the classifier’s design phase (with the GAs) and the
retrieval phase. The experiments revealed that the optimal
threshold values for similarity were lying between 40% and
60%. In the future we intend to investigate the optimal action
when a new component becomes available. There are two
possibilities: either to find the closest matching classifier and
to add it to the relevant class or to completely reorganise the
components by running the genetic algorithm once more.
Also, ranking the components that are returned by the system
would be useful, (recall that the system returns all the
components that correspond to a classifier). Such a ranking
scheme could be based on how close a component is to the
classifier or on user specified criteria which put bias on some
characteristics (e.g. memory utilisation is more important
that price). Another direction for enhancing our work will be
based on a semantic interpretation of the user’s/developer’s
queries against a repository which is inspired from the work
presented in [11].

Figure 3. Searching for a component

6. References
[1] CLARiFi, IST-1999-11631, http://clarify.eng.it
[2] E. Damiani and M. G. Fugini, “Automatic thesaurus

construction supporting fuzzy retrieval of reusable
components”, Proceedings of the ACM Symposium on Applied
Computing Tennessee, US, pp. 542-547, 1995

[3] R. P. Diaz, “Implementing Faceted Classification for Software
Reuse”, Communications of the ACM, Vol. 34, No. 5, pp.88-
97, 1991

[4] W. B. Frakes and T. P. Pole “An Empirical Study
Representation Methods for Reusable Software Components”,
IEEE Transactions on Software Engineering archive, vol. 20,
no. 8, pp. 617-630, 1994

[5] D. E. Goldberg, “Genetic Algorithms”, Addison-Wesley, 1989
[6] J. Lee, “Software Engineering with Computational

Intelligence”, Springer, 2003
[7] V. Maxville, J. Armarego, C.P. Lam, “Intelligent Component

Selection”, 28th Annual International Computer Software and
Applications Conference, COMPSAC, pp 244-249, 2004

[8] S. Nakkrasae, P. Sophatsathit and W. R. Edwards, “Fuzzy
Subtractive Clustering Based Indexing Approach for Software
Components Classification”, International Journal of Computer
& Information Science, vol 5, no. 1, March 2005

[9] W. Pedrycz and J. Waletzky, “Fuzzy clustering in software
reusability”, Software – Practice and Experience, vol.27, no.3,
pp.245-270, 1997

[10] C. Szyperski, D. Gruntz and S. Murer, ”Component
Software”, Addison Weslsey, 2002

[11] H. Yao and L. Etzkorn, “Towards a semantic-based approach
for software reusable component classification and retrieval”,
Proceedings of the 42nd annual Southeast regional conference,
pp. 110-115, 2004

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

