
Coordinating Web Services Using Channel Based Communication

Theophilos Lemniotes and George A. Papadopoulos

Department of Computer Science
University of Cyprus

75 Kallipoleos Str, P.O.B. 537
CY-1678 Nicosia, Cyprus

E-mail: {theo,george)@cs.ucy.ac.cy

Farhad Arbab

Department of Interactive Systems
CWI

Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

E-mail: farhad@cwi.nl

Abstract

In this work we investigate the use of a new concept in

component communication during the coordination of Web

Services, expressed by the channel based coordinating

communication system called Reo. The role of Reo is to

construct and manage connectors, the latter being patterns of

connected channel communicators. The communication and

coordination of components lying over a distributed address

space has been dealt so far with stream or datagram

connections created and controlled by the participating

calculation and coordination components. Web Services can

take advantage of the Reo channel system that separates

communication from computation concerns using

components that have independent sink and source ports that

can be attached to Web Services components, thus

overcoming the problem of compatibility in distributed

systems. The flow of information is entirely regulated by the

channel interconnections.

1. Introduction

Coordination is important for Web Services: such systems

combine services that are located on different sites and this

combination implies the need for coordination of their

activities in order to regulate the flow of information and

guarantee the reliability of the shared information. The aim

of this study is to integrate a number of languages and

protocols in order to facilitate the transportation of the

functionality of the Reo system ([2]) across the Internet. Reo

is a channel based coordination system. The dynamic

connectors of channels that the functionality of this system

offers are used in the management of the communication of

distant components. The primitives of the Reo coordination

language offer a great variety of synchronous and

asynchronous channels with respect to access rights,

mutability, reliability, grouping of connecting nodes, and

execution model ([1]). The objects are all distributed across

the participating machines and a web service invocation is

achieved with SOAP-XML messages over TCP/IP

connections that at the bottom level implement these

channels. The architecture described is similar to that of an

XML based multiple heterogeneous system ([4]).

2. Reo and Coordination Among Components

In many network architectures, each process in the

network is either client or a server. This channel-based

system is an application of synchronization and

communication (through an adequate channel system) rather

than a combination of proxies of services to build a web

component. This is how the basic architecture of the system

should look like.

Componen

A

Componen

B

Channel

writeread
sinksource

Fig. 1: A Reo Channel

By definition every channel in Reo represents a connector

([2]). More complex connectors are made out of simpler

ones. The create operation creates channels with specified

channel end unique identification variables (cev) that either

can be source or sink end. Every cev is said to coincide on a

node N that it may be connected, with the connect

operation, to one (among many of) component instance(s).

The operation disconnect applies to a channel end likewise,

while read suspends the instance that performs this

operation waiting for a value that can much a data pattern p

that is expected to be read into a variable. The operation take

is a destructive variant of read and the channel loses the

value that is read. Similarly, the write operation suspends

the operation of the calling instance until its value is written

to the source channel end port. Moreover, there is a wait

operation that suspends the operation of the executing

component if some predefined nconds conditions parameters

become true. The node operation join merges two nodes

(with their connectivity) to one, and split produces a new

node N’ and splits the set of channel ends that coincide on a

node N between the two nodes N and N’ according to the set

of the specified edges. The node operation hide hides a

specified node N from participation in the future node-

modifying operations. Further node operations are forget

that changes cev (or connected to it node N) so it no longer

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

refers to the channel end it designates and move that relocates

cev or N to a new location given as loc.

The coordination of web components should include

primitives for channel communication like create, read,

write, etc. ([1]). The construction of and access to a web

component is performed with XML function transportation

([8]). The basic idea is that a web service should be able to

receive and transmit its operation related information to a

sink requestor component via a Reo channel. Moreover, a

third attached component would be able to influence the flow

of data between the original two components with its own

absorption of data ([2]). The components that execute the

Reo operations (read write and take) work with

constructed components that implement a communication

pattern independently, i.e. the server does not have to know

about the requestor. Of course this pattern can change with

the execution of certain commands like create a channel,

connect to a channel and join two channel nodes (these

operations help in the channel management) at run time so

the structure of the formed connectors is not static. These

operations can be classified as the management construction

primitives while the former implement the data message

passing primitives. This functionality is very useful because

it separates the communication components (created by web

channel services components) from the coordination concerns

(incited by the web services). This in turn makes our system

much more flexible with the ability for dynamic change of

the communication pattern while running, as well as for

dynamic change of the coordinating components. The overall

architecture for such a system involves three types of

components:

• The actual web services and client components.

• The channel services components.

• The “Channel-end Register” node components.

The latter plays the role of a service register of a web

service whose main task is to offer channel end references

(according to a certain algorithm). So the management of this

channeling system is actually undertaken by node processes

which act like brokers. The former is a candidate for using

the channel-end registry and to do so it has to initially create

a channel locally (with a primitive _create operation).

The returned channel-ends IDs are stored with two respective

node instances. The referred nodes are instantiated by the

node-level create operation.

The actual channel-service components are descriptions of

types of methods like create which implement this

channel service. These descriptions have to be expressed in

WSDL in order to be transmitted over the Internet via SOAP.

The description should include definitions of the operations

performed by the channel service, the required messages, the

data types in use and the chosen communication protocols.

The purpose of the WSDL is to describe these services in

XML form over the Internet. Channel services represented by

node brokers exchange WSDL files to restore connectivity

and perform operations. SOAP comes in once a channel

service is to be invoked. There would be no need for this

intermediate conversion if the system should consider only

interaction between (say) Java programs with RMI calls. The

XML-based Web Services enable the definition of objects

written in any language into language neutral types, and vice

versa.

3. XML declarations for the Reo operations

Below is the declaration of the XML code for the

description of the basic Reo operations as described in

section 2. The purpose of encapsulating these primitives in

XML code is to help in the implementation of the system

through the web services. The coding begins with declaring

the URLs for the xml namespaces that are going to be used:

<?xml version="1.0" encoding="UTF-8"?>

<definitions

name="Reo"

targetNamespace="http://www.yourcompany.com/Reo.wsdl"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.yourcompany.com/Reo.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1="http://www.yourcompany.com/Reo.xsd1">

The <types> element defines the data types that are

used by the web service. For maximum platform neutrality,

WSDL uses XML schema syntax to define data types. In this

example the simpleType is used for the basic operations

of Reo.

<types> <xsd:schema

targetNamespace="http://www.yourcompany.com/Reo.xsd1"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:SOAPENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.yourcompany.com/Reo.wsdl"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1="http://www.yourcompany.com/Reo.xsd1">

xsd:complexType name="ArrayOfString">

<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">

xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0"

name="item" type="xsd:string"/>

</xsd:sequence>

xsd:attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]"/>

</xsd:restriction> </xsd:complexContent>

</xsd:complexType>

xsd:simpleType name="OperationType">

<xsd:restriction base="xsd:ENTITIES">

<xsd:enumeration value="create"/>

<xsd:enumeration value="connect"/>

<xsd:enumeration value="read"/>

<xsd:enumeration value="write"/>

</xsd:restriction> </xsd:simpleType>

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

</xsd:schema>

</types>

The <message> element defines the data elements of

an operation. Each message can consist of one or more parts.

The parts can be compared to the parameters of a function

call in a traditional programming language. They normally
have to do with requests and responses.

<message name="ReadResponse">

<part name="dataMessage" type="xsd:string"/>

</message>

<message name="ConnectRequest">

<part name="endPoint" type="xsd:string"/>

<part name="endPoint" type="xsd:string"/>

</message>

<message name="ReadRequest">

<part name="endPoint" type="xsd:ID"/>

</message>

<message name="CreateReaquest">

<part name="channelType" type="xsd:string"/>

</message>

<message name="ConnectResponse"> </message>

<message name="WriteResponse"> </message>

<message name="CreateResponse">

<part name="endPoint1" type="xsd:string"/>

<part name="endPoint2" type="xsd:string"/>

</message>

<message name="WriteRequest">

<part name="endWrite" type="xsd:ID"/>

<part name="dataMessage" type="xsd:string"/>

</message>

The <portType> element is the most important

WSDL element. It defines a web service, the operations that

can be performed, and the messages that are involved (declared

above). The <portType> element can be compared to a

function library (or a module or class) in a traditional

programming language.

<portType name="ReoPortType">

<operation name="Create">

<input message="tns:CreateReaquest"/>

<output message="tns:CreateResponse"/>

</operation>

<operation name="Connect">

<input message="tns:ConnectRequest"/>

<output message="tns:ConnectResponse"/>

</operation>

<operation name="Read">

<input message="tns:ReadRequest"/>

<output message="tns:ReadResponse"/>

</operation>

<operation name="Write">

<input message="tns:WriteRequest"/>

<output message="tns:WriteResponse"/>

</operation>

</portType>

The <binding> element defines the message format

and protocol details for each port and its operations.

<binding name="ReoBinding" type="tns:ReoPortType">

<soap:binding style="rpc"

traport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="Create">

<soap:operation

soapAction="capeconnect:Reo:ReoPortType#Create"/>

<input> <soap:body use="literal"/> </input>

<output> <soap:body use="literal"/> </output>

</operation>

<operation name="Connect"> <soap:operation

soapAction="capeconnect:Reo:ReoPortType#Connect"/>

<input> <soap:body use="literal"/> </input>

<output> <soap:body use="literal"/> </output>

</operation>

<operation name="Read">

<soap:operation

soapAction="capeconnect:Reo:ReoPortType#Read"/>

<input> <soap:body use="literal"/> </input>

<output> <soap:body use="literal"/> </output>

</operation>

<operation name="Write">

<soap:operation

soapAction="capeconnect:Reo:ReoPortType#Write"/>

<input> <soap:body use="literal"/> </input>

<output> <soap:body use="literal"/> </output>

</operation>

</binding>

Finally, the <service> element is a collection of

related ports. The name attribute provides a unique name

among all services defined within the enclosing WSDL

document.

<service name="Reo">

<port binding="tns:ReoBinding" name="ReoPort">

<soap:address location="http://localhost:8000/ccx/Reo"/>

</port> </service> </definitions>

4. The Usage of the Reo Operations

The above construction of XML function structures can be

used in the definition of new service composition

specification tools. The characteristics of these tools are:

• The use of the Reo system by all the participating

members (installed on every machine locally).

• The sharing of information regarding the use of the Reo

primitives. The exchange of messages is done at the web

service level and concerns the channel end structures and

references, because the ends of a channel must internally

know each other to keep the identity of the channel and

control communication.

• If the type of a channel is asynchronous it must also have

a reference to the buffer that implements every channel.

• An interface reference from a component to a channel end

restricts the actions of the component to only the

predefined operations on the channel.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

• The predefined operations are create, connect,

disconnect, forget, read, write, move, join,

split. These can be classified into the following

categories:

1. The create operation creates a new channel with a

specified channel type.

2. The connect, disconnect operations connect and

disconnect respectively a specified node to the calling

component instance.

3. The forget operation changes the specified channel

end id and the move one changes the channel end to the

new node.

4. The read, write and take operations perform a

read, a write, or a destructive read from/to a specified

variable to/from the connected specified node.

5. The join operation is a node merging operation

producing a new node from two other specified

nodes. The split operation creates a new node and

splits the attached channel ends between the new and

the old one according to a specified list.

The type of the chosen channels plays an important role

in the outcome of the mode of execution of the node

operations. The synch channels offer synchronous unbuffered

transmission and the FIFO channels offer asynchronous

unbounded buffered transmission. Buffers can generally be

used as sequencers and Synch/SynchDrain channels as flow

regulators. The mapping of the messages is achieved by the

references to the buffers and/or the channel ends.

5. A Case Study Involving Web Services

Using the definitions of the previous chapter the web

resources can be encapsulated in distributed objects, and the

web can be transformed from a collection of clients and

servers (serving web pages) into an object space of distributed

objects ([7]). The requests between such objects should be

carried out via a web browser, as shown in Fig. 2.

Fig. 2: Distributed objects in an object space

The web browser communicates with another through a

local representative that each Distributed Shared Objects

(DSO) has as shown in Fig. 3. The details of this

architecture will be explained later on.

5.1 Using Channels in a Web Component Case
Study

Channels offer the necessary subtle connectivity required

in the implementation of such diversity and complexity as

the Distributed Object Space over the Internet. Moreover the

operations on Reo channels can be used as a language for the

Fig. 3: A distributed shared object

coordination of concurrent services or as a connector

constructing language for the binding of the component

spaces (connectors) in a component based system.

The use of WSDL representation of component classes

and its corresponding XML expression should be regarded as

the means for the construction of a message that will incite a

channel operation at a remote (hosting) side. In this case it

could relate to a class or method associated with the use of

Reo channels that exist on this remote site. Each information

source should have a channel where requests can be issued.

Clients to a channel end have to be aware of their cev ID

(reference). The XML message contains the code for some

Reo operations with the corresponding cev references. These

messages cause one or more remote executions in the sites

hosting the Reo services. In the present web component case

study we deal with the formation of DSOs which reside in

different web sites.

Here the web resources can be encapsulated in distributed

objects and the web is transformed from a collection of

clients and servers (serving web pages) into an object space

of distributed objects ([7]). In our implementation this is

achieved via the requests between such objects that are carried

out via a web browser.

The web browser communicates with another through a

Local Representative that each DSO has as shown in Fig. 4.

The details of this architecture will be explained below.

5.2 The Binding of a Candidate Object

To communicate with a DSO, clients must bind to the

object. This causes a new Local Representative (LR) of the

DSO to be created at the client’s address space, effectively

connecting that address space to the rest of the DSO. To

achieve this, the binding process has two main phases:

• Find where a host side of the DSO is, and

• Initialise a Local Representative.

Object Space

Web
Resource

Distributed
Object

Web

Browser

Request

Distributed Shared ObjectWeb
Browssers

Local
Represent

ative

Network
Connection

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Fig. 4: The route for binding

The shared objects of this system are all hosted under a

common class (Globe) name. A proxy called the translator

accepts requests from the DSO browser that the client uses.

A filter can sort out Globe related URLs. Such names are

forwarded to a special Globe gateway, which performs the

binding to the object and the callings of the appropriate

methods. The aim of every client request and binding is to

obtain its own LR in its own address space, effectively

connecting that address space to the rest of the DSO

The name given by the client is passed to the name

service (NS). At this point there is an interprocess

communication between the translator site and the Globe

Gateway. For the mobile channel system to be operable we

consider that a channel has already been created on every site

with a Local Representative. The binding process then,

proceeds along the following steps:

1. The first stage of the clients binding process begins by

sending the name ID of a DSO to the name service which

maps names to location transparent object handles (OH).

2. Then the name service returns an object handle.

3. The object handle is passed to the location service.

4. The location service retrieves a contact address.

5. A contact address represents a contact point of the DSO.

Contact addresses identify a LR that should be loaded into

the client’s address space. The contact address contains an

implementation handler. This is sent to the

implementation repository, which in turn returns a class

archive.

6. The class archive is in turn used by the class loader for

extracting the implementation code in order to create the

actual LR, so that the client’s address is connected to the

rest of the DSO.

The overall view of information exchange is shown in fig. 5.

6. The Advantages of the DSO
Communication Through Reo Channels

The communication between the DSO address space and a

potential member is done with the use of channels, one from

each object of a particular address space. Every member

Fig. 5: The overall view of the binding process

address possesses the ends of two channels One of them is

ready to receive applications from potential new members.

The XML-connect predicate is used by every applicant to

supply the cev ID to a DSO site. This connects the specified

channel end cev to the component instance that contains the

active entity which performs this operation. The XML

message sends the cev ID to the site that ‘owns’ this channel.

The execution of connect at a site results in the ‘attachment’

of the calling procedure to the called channel end. The Reo

commands are executed locally, i.e. all channels are created at

member sites or candidate member sites. For example to have

the binding operation performed with the use of channels,

both the web browser and the translator have to own at least

one channel each, one for requesting and one for replying

respectively. The sites are remote and the web browser

component sends its cev ID to the translator component

along with a connect XML message. The channel-end level

primitives are indicated by the underscore.

ChannelEnd(timelimit,translator_loc)

The translator performs a connect operation with the

received cev ID and connects to the browser’s channel end.

_connect(timelimit,cev_wb) //primitive channel operation

From then on the client’s browser will receive

information from its created channel. Likewise, the browser

can perform the operation connect with the cev ID of the

translator and so get a request through the client’s channel,

e.g. the translator performs:

ChannelEnd(timelimit,webBrowser_loc)

And the browser responds with:

_connect(timelimit,cev_trans)

The translator belongs to the object space where the

channels are already created and connected. So the following

read and write operations have to be performed. The gateway

has a channel for receiving (read) information for binding

while the components name service, location service and

Object Space

Web

Resource

Distributed

Object

Web
Browser

Translator
URI

f i l t e r

Globe
Gateway

bind

i

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

implementation repository have a special channel that reads

requests from the gateway. The channel of the gateway

moves from the name service to the location service and from

there to the implementation repository in order to perform

the binding.

_connect(timelimit,cev_nameService)// to NS site

UseChannel_write(timelimit,var)

_write(timelimit, cev_nameService)

_connect(timelimit,cev_locService)// to LS site

UseChannel_write(timelimit,var)

_write(timelimit,cev_locService)

_connect(timelimit,cev_implemService)// to IR site

UseChannel_write(timelimit,var)

_write(timelimit, cev_implemService)

At every binding stage, the NS, LS, and IR components

respond with performing a write operation on the channel

that the gateway owns.

_connect(timelimit,cev_gateway)// to Gateway

UseChannel_write(timelimit,var)

_write(timelimit, cev_gateway)

Once the binding is completed the join operation is

executed by the web browser site’s local representative and

the local representative of the gateway in order to Join the

node that contains the rest of the object space channels.

ChannelEnd(timelimit,translator_loc)// to translator site

_connect(timelimit,cev_gateLR)

join(node_webBrowser, node_translator)

7. Conclusions and Related Work

In this paper we investigate the use of a channel operation

system in coordinating web services. The new-formed system

is process oriented in the sense that the processes

participating in the construction of a distributed object

perform the channel operations.

The flow of data does not decide the execution of a read or

a write. On the other hand the relocation of a channel does

not influence the reliability of the data carried. The outcome

from this is a configurable net of components that

connect/disconnect to and from nodes at run time.

At the node level nodes with their attached channel ends

can join and split between them. This allows the dynamic

reconfiguration of connections at real time and the redirection

of flow of data between the member objects.

The set of operations on channels introduced in this work

essentially provides a solution for the composition of a

communication pattern among components through the

XML encapsulation of the Reo primitives. The major

advantage is that a web server is enough for the passage of

the execution messages. The construction and management of

the communication concerns of the created channels can take

advantage of the fast evolving web communication protocols.

The use of channel composition in the coordination and

synthesis of component-based systems (web-based or

otherwise) is a promising approach. This paper extends the

work presented in [3] where channel based coordination is

applied to commercial software development environments

and [6] where the case of real-time software composition (and

coordination) is being examined. Finally, the survey on

coordination models and languages ([5]) presents a tour de

force of this field.

References

[1] F. Arbab, F. S. de Boer, J. G. Scholten and M. M.

Bonsangue, “MoCha: A Middleware Based on Mobile

Channels”, 26th International Computer Software and

Applications Conference (COMPSAC 2002), Oxford,

England, 26-29 August, 2002, IEEE Computer Society

Press, pp. 667-673.

[2] F. Arbab and F. Mavaddat, “Coordination through

Channel Composition”, 5th International Conference

on Coordination Models, Languages and Applications,

(Coordination 2002), York, UK, 8-11 April, 2002,

LNCS 2315, Springer Verlag, pp. 22-39.

[3] A. Chimaris and G. A. Papadopoulos, ‘Control-Driven

Coordination Based Assembling of Components’,

Twenty sixth Annual International Computer Software

and Applications Conference (COMPSAC 2002),

Oxford, England, 26-29 August, 2002, IEEE Press, pp.

572-577.

[4] G. Gardarin, F. Sha and T. D. Ngoc. “XML-based

components for Federating Multiple Heterogeneous

Data Sources”, 18th International Conference on

Conceptual Modeling, (ER '99), Paris, France, 15-18

November, 1999, pp. 506-519.

[5] G. A. Papadopoulos and F. Arbab, ‘Coordination

Models and Languages’, Advances in Computers,

Marvin V. Zelkowitz (ed), Academic Press, Vol. 46,

August, 1998, pp. 329-400.

[6] G. A. Papadopoulos and F. Arbab, ‘Coordination of

Systems With Real-Time Properties in Manifold’,

Twentieth Annual International Computer Software and

Applications Conference (COMPSAC’96), Seoul,

Korea, 19-23 August, 1996, IEEE Press, pp. 50-55.

[7] M. van Steen, F. J. Hauck and A. S. Tanenbaum, “A

Scalable Location Service for Distributed Objects”,

Second Annual Conference of the Advanced School for

Computing and Imaging (ASCI’96) , Lommel,

Belgium, 5-7 June, 1996, pp. 180-185.

[8] S. Szykman, J. Senfaut and R. Sriram. “The Use of

XML for Describing Functions and Taxonomies in

Computer-based Design”, 1999 ASME Design

Engineering Technical Conferences (19th Computers

and Information in Engineering Conference), Las

Vegas, NV, 12-15 September, 1999, Paper No.

DETC99/CIE-9025.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	footer1:

