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Abstract—Wi-Fi (or WLAN) based indoor navigation appli-
cations for mobiles rely on cloud-based services (s) that take
care of a user’s (u) localization task using structures called
RadioMaps (RMs). It is imperative for u to have a stable Wi-
Fi connection in order to either continuously receive location
updates from s or to download RMs a priori for offline navigation.
Wi-Fi networks however, suffer from intermittent connectivity due
to poor network planning that results in sparse deployment
of access points and effectively areas where Wi-Fi coverage
cannot be guaranteed. This inherently affects the localization
accuracy and therefore the navigation experience of users. In
this paper, we propose an innovative framework for accurate
and fast indoor localization over an intermittently connected Wi-
Fi network, coined Prefetching Localization (PreLoc). In Preloc,
we prioritize the download of RM records based on knowledge
acquired from historic traces of other users inside the same
building. Instead of downloading the complete RM from s to
u, we propose a Probabilistic Group Selection (PGS) strategy,
which identifies RM records that have a higher probability of
being necessary to a user moving inside a target area. We have
evaluated our framework using a real prototype developed in
Android, as well as realistic Wi-Fi traces we collected at the
University of Cyprus. Our experimental study reveals that PreLoc
using PGS and conventional fingerprint-based indoor positioning
algorithms can yield accuracy that is as good as using the same
algorithms with a complete RM, even under scenarios of weak
Wi-Fi coverage.
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I. INTRODUCTION

People spend 80-90% of their time in indoor environ-
ments1, including shopping malls, libraries, airports or uni-
versity campuses. The omni-present availability of sensor-
rich mobiles has boosted the interest for a variety of indoor
location-based services, such as, in-building guidance and nav-
igation, inventory management, marketing and elderly support
through Ambient and Assisted Living [1][2].

To enable such indoor applications in an energy-efficient
manner and without expensive additional hardware, modern
smartphones rely on cloud-based Indoor Positioning Services
(IPS), which either provide the accurate location (position) of a
user upon request or provide structures for offline localization
and navigation. There are numerous IPS, including Skyhook-
Wireless.com, Google.com, Navizon.com, Infsoft.com, Indoo.rs,
IndoorAtlas.com and our in-house Anyplace2 service [3]. These

1US Environmental Protection Agency, http://epa.gov/iaq/
2Available at: http://anyplace.cs.ucy.ac.cy/
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Fig. 1. A user navigates inside a mall. Due to the Wi-Fi network arrangement,
the user gets disconnected from the network at several points in space. This
effectively hinders the accurate localization of the user that relies on a cloud
service for its location updates.

IPS services rely on cloud-based geolocation databases that
maintain information about Wi-Fi Access Points and Cellular
Towers (i.e., the signal intensity of these transmitters at known
locations in space). These IPS geolocation database entries
act as reference points for requested localization tasks, as
explained thoroughly in Section II. In summary, a smartphone
can determine its location at a coarse granularity (i.e., km or
hundreds of meters) up to a fine granularity (i.e., 1-2 meters)
[4], by comparing against the reference points stored in the
geolocation database.

One fundamental drawback with IPS is that mobile users
need to communicate with the service over a Wi-Fi network
while using it. Unfortunately, Wi-Fi networks suffer from
intermittent connectivity [5], i.e., Wi-Fi coverage is irregu-
larly available inside a building usually due to poor network
planning. This inherently affects the localization accuracy and
effectively the navigation experience of users. For example,
Figure 1 illustrates the Wi-Fi connectivity of a smartphone
device while navigating inside a real mall. In particular, a
smartphone user measures the Received Signal Strength (RSS)
from the Access Point (AP) to which it is connected while
being on the move. Particularly, the user experiences periods
where the smartphone device is disconnected (these often
occur when the RSS is below a certain threshold, which is
around -85 dBm) before it reconnects to the next AP.



One could claim that alternative connection modalities
(e.g., 2G, 3G or 4G), could have been used to offset the
drawbacks related to limited Wi-Fi coverage (e.g., to fallback
to mobile internet when necessary). However, mobile internet
alternatives have their own limitations, even if we assumed that
everybody had one, including: (i) limited coverage, due to the
blockage or attenuation of the cellular signals inside buildings
these are not available in deep indoor spaces; (ii) limited quota,
due to the fact that mobile internet might have monthly quotas
that make users unwilling to consume it; (iii) unavailability due
to roaming, given that many users turn their mobile internet
roaming off, when traveling outside their telecom operator,
in order to avoid excessive monetary charges; and (iv) slow
fallback from Mobile Internet to Wi-Fi and vice-versa, up to
several tens of seconds, due to a slow transition process that
mainly relates to old Wireless and Mobile standards (e.g., the
lack of ubiquitous 802.11k, 802.11r and 4G infrastructure).

The assumption of Internet connectivity for localization in
outdoor environments using satellite-based Global Navigation
Satellite System (GNSS) does not exist, as these perform
the localization directly on the terminal with no mandatory
location information downloaded from any type of service. On
the other hand though, GNSS have an expensive energy tag that
is negatively affected by the environment (e.g., cloudy days,
forests, downtown areas) and requires an unobstructed line-
of-sight to GNSS satellites making it insufficient for indoor
localization scenarios. Although this work mainly concerns
fine-grain localization scenarios in indoor spaces, our discus-
sion is equally applicable to coarse-grain localization scenarios
in urban outdoor spaces using Wi-Fi, but we will not consider
these scenarios in this paper.

In this paper, we consider that the communication between
smartphone users and IPS suffers from intermittent connec-
tivity and, as such, develop hybrid techniques that exploit the
IPS utility and maintain the localization accuracy continuously.
Particularly, we tackle the following technical challenge:

“Assuming a mobile indoor user (u) and a network that
suffers from intermittent connectivity, thus a finite amount of
time until u gets disconnected, how can the download of RMs
be prioritized in order to enable u to localize continuously and
accurately with a low computational effort?”

We devise the Prefetching Localization (PreLoc) frame-
work, which guarantees that u will continuously localize, and
therefore navigate in an indoor environment, by selectively
prefetching a subset of localization entries from s without dete-
riorating the system’s performance. Our framework is suitable
for intelligent navigation systems [6], location-aware social
networking and guidance applications for smartphones [7] and
others. An indicative scenario supported by our framework
might be: “Navigate from the central bus station to Gate 29
of Terminal 1 inside Heathrow airport”, or “Find the Data
Management Systems Laboratory at the University of Cyprus”.

As an example, consider the illustration of Figure 2 (left).
An arbitrary user u moves between discrete time steps among
points towards building A and localizes itself at each point
using the PreLoc smartphone application. While u requests a
localization from s to navigate through building A, s com-
putes its location and selects a number of location reference
entries, which u prefetches. When u experiences disconnection

Fig. 2. (Left) Indoor localization of user u using the cloud-based IPS s over
a network that suffers from intermittent connectivity (shaded area). (Right)
The RM is clustered and partitioned using our PreLoc framework, which
subsequently selects the most appropriate clusters using our proposed PGS

heuristic. Those clusters are finally prefetched by u from s.

(shadowed area in figure) but still needs to localize, it uses the
prefetched entries that are cached locally to localize itself and
navigate to its destination, as shown in Figure 2 (right).

Particularly, PreLoc operates in three phases: (i) the pre-
processing phase, where s partitions the available reference
locations of a particular area in an offline manner; (ii) the
selection and prefetching phase, where s carefully selects a
small set of partitions and u prefetches the selected partitions
on its device; and (iii) the localization phase, where u localizes
itself using a well known localization technique, e.g., NN,
KNN [8] or Weighted KNN [9], and the available prefetched
location data. For phase (ii), we propose an efficient technique,
coined Probabilistic Group Selection (PGS), to select the
location reference entries that are most likely to be needed
by the user. This is done based on historical users’ movement
data. In cases of intermittent connectivity, u localizes itself
with any prefetched partitions that adequately cover a relatively
long user route without requiring further location information.

Our contributions in this work are summarized as follows:

• We propose an innovative framework, coined PreLoc,
for accurately localizing and navigating in an indoor
space under intermittent Wi-Fi connectivity issues.

• We propose a heuristic for prefetching RM entries,
coined Probability Group Selection (PGS), which uses
historical mobility data collected, clustered and orga-
nized in an offline phase.

• We confirm the efficiency of our propositions using
a real prototype system implemented in Android and
real collected data on a 8,900 m2 university campus.
Our study reveals that PreLoc can yield excellent
accuracy even under scenarios of low Wi-Fi coverage.

The remainder of the paper is organized as follows: Sec-
tion II provides the related work while Section III our sys-
tem model and problem formulation. Section IV presents the
PreLoc framework and describes the proposed techniques that
compose it. Section V presents our experimental methodology
and results, while Section VI concludes the paper.



II. BACKGROUND AND RELATED WORK

In this section, we provide background and related work
on indoor localization as well as intermittent connectivity in
Wi-Fi networks, upon which our propositions are founded.

A. Background on Wi-Fi Indoor Localization

The localization literature is very broad and diverse as it
exploits several technologies. GNSS (e.g., GPS) is obviously
ubiquitously available but has an expensive energy tag and is
also negatively affected from the environment. Besides GNSS,
the localization community [1], [10], [11] proposed numerous
proprietary solutions including: Infrared, Bluetooth, visual or
acoustic analysis, RFID, Inertial Measurement Units, Ultra-
Wide-Band, Sensor Networks, Wireless LANs, etc.; including
their combinations into hybrid systems. Most of these tech-
nologies deliver a high level of positioning accuracy, however
they require the deployment and calibration of expensive
equipment, such as custom transmitters, antennas or beacons,
which are dedicated to positioning. This is time consuming
and implies high installation costs, while the approaches we
discuss operate off-the-shelf on conventional smartphones.

There are also approaches that use radio signals from
mobile Cell Towers, Wi-Fi APs, or their combination, to
offer coarse accuracy that is often 10-30 meters. The signals
are stored in databases constructed offline by contributors
(e.g., an Android phone by default forwards Wi-Fi AP and
Cell Tower data to Google). Subsequently, users can obtain
their current location using a query / response to the cloud-
based localization service. For this category, the localization
is strongly influenced by intermittent connectivity due to the
fact that u must continuously exchange information with s for
every single localization.

Radiomap-based approaches are similar to the latter ap-
proaches [12], but at a much higher density [13]. These might
additionally introduce error due to device diversity reasons [14]
and the human factor [15]. For example, our Anyplace [3] and
open-source Airplace [16] systems, achieve the second highest
known accuracy [4] with an average error of 1.96 meters that
works as follows: in an offline phase, a logging application
records the so called Wi-Fi fingerprints, which comprise of
Received Signal Strength RSS values of Wi-Fi AP at certain
locations (x,y) pin-pointed on a building floor map (e.g.,
every few meters) as well as orientation data. Subsequently,
in a second offline phase, the Wi-Fi fingerprints are joint
into a NxM matrix, coined the Wi-Fi RM, where N is the
number of unique (x,y) fingerprints and M the total number of
APs. Finally, a user can compare its currently observed RSS
fingerprint against the RM in order to find the best match,
using known algorithms such as NN, KNN [8] or Weighted
KNN [9].

Particularly, the K-Nearest-Neighbor (KNN) approach cal-
culates the Euclidean distance di between the user u’s currently
observed fingerprint Vu against all fingerprints Vi in the
RadioMap, i.e., di = ||Vi − Vu||, ∀Vi ∈ RM . Then the K
nearest fingerprints around the user’s device are selected and
the user is positioned using convex combination of those K
locations. However, by considering that all K nearest neighbor
fingerprints are of equal importance (i.e., assigned an equal
weight equal to wi = 1/K) may decrease the localization

accuracy, since fingerprints that are far away may also be
included in the calculation. Therefore, a more effective way
of weighting the K nearest fingerprints is required. In the
Weighted-KNN (WKNN) approach, the K nearest neighbors,
calculated as in KNN, are assigned a weight equal to:

wi ∝
1

||Vi − Vu||

Finally, the user’s location is calculated again using a convex
combination of those K locations, where in this case the farther
locations affect less the calculation than the closer locations.

Discussion: For the final RSS fingerprint comparison step,
we differentiate between the following two cases: a) Wi-Fi
RadioMap Server-Side Approach (SSA), where the localization
takes place on the IPS and which is considered as the base
approach in this work; and b) Wi-Fi RadioMap Client-Side
Approach (CSA), where the RadioMap is downloaded to the
smartphone prior the localization. In SSA, localization can be
achieved with little network messaging and minimal energy
consumption, as the bulk of operation takes place on the
IPS that has an unlimited energy and processing budget.
Unfortunately, since the localization in SSA is carried out by
the IPS, this approach fundamentally suffers from intermittent
connectivity issues. CSA on the other hand, does not suffer
from any network related issues, but unfortunately requires
the download of the RadioMap. As RadioMaps can potentially
be very large (e.g., WiGLE.net had 2.8 billion unique records
by April, 2015), the CSA leads to high overhead time and
the waste of precious and limited smartphone battery and
bandwidth. This applies even if we assumed a finer granularity
(e.g., a 8,900 m2 building requires ≈3MB while a whole
campus around 50-100MB). Our experimental evaluation in
Section V validates this argument.

B. Mobile (Intermittent) Connectivity and Prefetching

In Wi-Fi networks, intermittent connectivity refers to the
frequent disconnection of a mobile node in random time inter-
vals. This often occurs due to the following two reasons [5]:
(i) there is a gap between the coverage of two APs and thus
the connectivity experienced by mobile users passing by will
likely to be intermittent; and (ii) because of physical obstacles
as well as high mobility patterns of the mobile users. In either
case, intermittent connectivity may break data connections, if
the connectivity disruption between a mobile node and an AP
is long enough and the available transfer rate provided is below
a certain threshold. Simple solutions, such as auto-correction
or manual reconnection are not practical due to the excess
overhead that this process requires.

Several techniques have been proposed to tackle the
intermittent connectivity problem in mobile networks such
as mobility management [17], cooperative downloading
schemes [18], AP deployment algorithms [19], prefetch-
ing [20], routing [21], [22] or combinations of those tech-
niques [5]. Prefetching systems in mobile networks aim at
hiding the frequent disconnections and/or the latency of data
transfers over poor and intermittently connected environments.
In particular, a prefetching system predicts what data an
application will request in the future and speculatively retrieves
and caches that data in anticipation of those future needs [20].



Discussion: To the best of our knowledge there is no prior
work that solves the problem of indoor localization in an
environment with intermittent connectivity. Furthermore, there
is no prior work in the literature that adopts a fundamental
prefetching technique for improving indoor localization accu-
racy and optimizing resource consumption on smartphones. In
this paper, we use prefetching for improving both localization
accuracy and resource consumption on smartphones, at the
same time, allowing the user to continuously localize without
any disruptions by prefetching and caching reference locations.

III. SYSTEM OVERVIEW

This section presents the assumptions, system model and
problem formulation of our work. The main symbols used
throughout the paper are summarized in Table I.

A. Indoor Localization using Wi-Fi fingerprints

We assume a planar indoor area I containing a finite set of
locations that are partially covered by a set of Wi-Fi Access
Points AP = {ap

1
, ap

2
, · · · , ap

M
} (see Figure 3). Each api

has a unique ID (i.e., MAC address) that is publicly broadcast
and passively received by anyone moving in the coverage of
api.

The signal intensity at which the ID of api is received
at location l, is termed the Received Signal Strength (RSS)
of api at l, having a value in the normalized range [0..100].
The set of RSS values measured and the ap-IDs read at a
location l is termed fingerprint Vl of location l. A user u at
l attempts to automatically connect to exactly one api ∈ AP
in its vicinity, using a typical but slow transition process or
designated standards (e.g., 802.11k and 802.11r).

We further assume an indoor positioning server s that has
constructed beforehand a RadioMap (RM ). RM maps known
locations l ∈ I (rows) to the fingerprint Vl measured at each
location, where a value of -1 indicates that an api is out of
reach. Any subset of RM rows will be denoted as partial
RadioMap (RMi). Server s uses a localization function loc(),
which can compute an estimation λl′ of location l′ given RM
or RMi and the fingerprint Vl′ at l′. Note that l′ does not have
to be a location recorded within RM .

B. Connectivity Probability in Indoor Environments

In line with the above assumption that the arrangement of
Wi-Fi APs in I results in partial coverage and weak RSS at
some locations, we define an RSS threshold θ, below which
the data transmission rate of a mobile user is practically zero.
Specifically, client u with a fingerprint Vr at timestep of request
r is practically offline if the maximum signal strength maxVr

it receives from the most powerful covering api is below
threshold θ, i.e., maxVr

< θ.

Based on this threshold we define the Connectivity Proba-
bility PI of space I with which a user u succeeds to receive
an answer to its localization request r through s. For ease
of exposition we will assume that a localization request r is
answered by s instantly, therefore, PI denotes the probability
in I that u measures an RSS above θ.

TABLE I. NOTATION USED THROUGHOUT THIS WORK

Notation Description

I , l Indoor space, Location inside I

api, AP Access Point i, Set of all api
s, u, U Positioning Service, User, Set of all u

Vx fingerprint at location or time x (RSSs and ap-IDs)

RM , RMi RadioMap mapping l to Vl, Partial RadioMap

r, R Timepoint of localization request, Set of all r

loc() Localization function exploiting fingerprints and RM

lur Actual location of u for request r

λu
r Estimation of lur computed by loc()

θ RSS threshold below which practically not connected

PI Connectivity Probability of space I

Ar Point Accuracy achieved at timepoint r

α Ar achieved by loc() when RM available

Tr CPU Time cost of u for request r

Fig. 3. System Model: i) user u moving in area I partially covered by access
point set AP , requests localization from s; and ii) a RadioMap RM on s.

Connectivity Probability (PI ) is the probability that u has
a signal strength above θ whenever it sends a localization
request r ∈ R, and is given by

PI =

∑

R

success(r)

|R|
(1)

where success(r) =

{

0 if maxVr
≤ θ,

1 if maxVr
> θ.

C. Research Goal and Metrics

Research Goal. Enable a mobile user to consecutively localize
itself accurately and efficiently in an indoor environment,
where connectivity is intermittent, using an Indoor Positioning
Server holding a RadioMap.

The efficiency of the solutions proposed is measured by
the Point Accuracy [4] achieved by the localization and the
CPU Time needed on the client device.

Point Accuracy (Ar) is the Euclidean error distance between
the location estimation λu

r and the actual location lur of user
u at the timepoint of localization request r, and is given by

Ar = |λu

r − lur | (2)

We assume that a localization function loc() achieves
constant Point Accuracy α for each localization request r if it
has access to the whole RM .



CPU Time (Tr) is the processing time used on the device of
u for running the localization function loc() given a request r
and a subset RMi.

Our research goal can be expressed by the minimization of
the following two objective functions:

minFA =
1

|R|

∑

R

(Ar − α)

minFT =
1

|R|

∑

R

Tr

(3)

D. Baseline Approaches

Existing techniques for indoor localization using Wi-Fi
fingerprinting can be categorized as follows:

i) Server-side approach (SSA): User u measures the Wi-Fi
fingerprint Vr at the timepoint of request r and sends it to
server s. The location estimation λu

r of u is computed on
s executing loc(Vr, RM) and transmitted back to u. In this
scenario, u sends Vu and receives λu

r , without performing any
further computation. Therefore, the value of objective function
FT is minimum (i.e., 0).

Drawback: This method suffers from intermittent connectivity,
since the Point Accuracy Ar depends on the constant commu-
nication with s. In the case of successful communication, an
optimal Point Accuracy Ar = α can be achieved by loc() using
RM on s. Otherwise, the best estimation that can be made
about the location of u at timepoint r is the last localization
computed by s. In this case, the Point Accuracy is calculated
by Ar = |λ′u

r − lur |, which is the difference between the actual
location lur of u at the current request r and the location
estimation λ′u

r at the last request r′ where u managed to
communicate with s. Therefore, in the SSA approach the Point
Accuracy grows worse when u moves further away from the
last location of connectivity. This means that the smaller the
Connectivity Probability PI of an indoor space I is, the worse
the objective function FA for Point Accuracy grows.

ii) Client-side approach (CSA): User u downloads the whole
RM from s before reaching an area not covered by Wi-Fi (at
a building or floor granularity). Assuming that the download
process has completed, u can now localize itself using the
localization function loc() with its fingerprint Vr and RM as
its input. This technique minimizes the objective function FA

since it achieves optimal Point Accuracy A = α and it is not
affected by intermittent connectivity.

Drawback: The objective function FT is undesirably max-
imized since u performs the localization using the complete
RM locally. This results in the execution of a large number
of unnecessary distance calculations between the current fin-
gerprint and the RadioMap, i.e., di = ||Vi − Vu||, ∀Vi ∈ RM .
For ease of exposition, we do not take into consideration the
CPU Time needed to download RM given that this could have
occurred in an offline phase.

IV. PREFETCHING LOCALIZATION (PreLoc) FRAMEWORK

In this section, we describe our PreLoc framework, present
its underlying algorithms and techniques as well as their
expected performance.

Algorithm 1 . PreLoc Framework Outline

Require: Selection Technique selectEntries(), Selection
size K, RadioMap RM

Ensure: High accuracy localization as client moves
1: client: Vr = measure RSS fingerprint at current location
2: if connected then
3: client: send Vr to s
4: server: λu

r = loc(Vr, RM)
5: RMu

r = selectEntries(λu
r , RM,K)

6: send RMu
r and λu

r to u
7: client: update RMu

8: else
9: client: λu

r = loc(Vr, RMu)
10: end if

A. Outline of Operation

The intuition behind the PreLoc framework is to prefetch
a group of RadioMap entries RMi that can aid localization at
the client side u, in case u looses connection to the server s.
Whenever u has connection to s, it requests localization and
an RMi. On the other hand, whenever u looses connection to
s, it uses any locally stored RMi to compute its own location.

Specifically, u transmits its measured fingerprint Vr to
s. The server computes λu

r using localization function loc()
that processes the Vr and operates on RM . It further selects
a subset of entries RMu

r to be sent to u for successfully
localizing in a disconnected operation state. In the case where
u can not communicate with s then u locally runs function
loc() by processing its measured fingerprint Vr and any existing
RadioMap entries RMu prefetched from s earlier. Therefore
it is obvious that the Point Accuracy A of localization in the
disconnected case depends heavily on three things: (i) the
entries RMu

r prefetched at r, (ii) the number K = |RMu
r |

of entries prefetched at request r, and (iii) how far u moved
from the last connected location.

Next, we present techniques for selecting the entries to be
prefetched and how these heuristics affect the Point Accuracy
in the disconnected case, i.e., with intermittent connectivity.

B. Selection Technique PGS

The entries chosen to be sent to the client u greatly affect
the Point Accuracy A of a disconnected localization state.
Naive solutions include, selecting random entries or selecting
the closest entries to the estimated location λu of client u.

We propose a heuristic for selecting K groups of entries
from RM to be prefetched that are based on historical data of
past user movements and therefore of higher probability that
u will visit based on its current whereabouts. We coin this
heuristic Probability Grouping Selection (PGS).

To compute the probability of visiting a particular location,
we use historical mobility data collected by s to construct a
Dependency Graph (DG) between entries. This approach is
inspired by Web prefetching methodologies [23], [24]. DG
represents the motion habits of clients in the given area. The
graph contains a node for each entry of the area while the
edges represent the transitions from one entry to another. Our
graph is trained using several lookahead window sizes W [25].



The Dependency Graph (DG) is constructed for the pro-
vision of hints for the selection process. The DG algorithm
constructs a DG that includes a node for each RM entry that
has been accessed by other clients in the past. Assume two
entries C1, C2, and an edge C1 → C2 on the graph if and
only if a client has been localized within entry C2 after entry
C1. It should be noted that the path between entry C1 and C2

may contain some intermediate entries. The edge weight is the
ratio of the number of accesses of C2 after C1.

The construction algorithm consists of three phases. In
the first phase a pass over all trajectories is being made that
populates the node set and calculates the frequency of each
node. In the second pass, edges of various depth are added
to the edge set. As a result, the frequency of each transition
for different lookahead windows W is increased. Finally, the
weights (transition probabilities from one entry to another) of
all arcs are calculated.

C. Selection size K

The larger the value for K, the larger the area where a
client u will localize with good Point Accuracy A while being
disconnected. As K increases we achieve better accuracy A,
since there is a bigger likelihood that the client locally finds an
entry. On the other hand, as K increases, more CPU Time T is
needed for processing a larger partial RadioMap RMi. Also,
prefetching will be more expensive, since more entries need
to be downloaded every time u connects to s. Therefore, the
optimal value for K depends on the Connectivity Probability
PI of a building. Therefore, there is a tradeoff between CPU
Time T and Point Accuracy A.

For the ideal selection algorithm, where only the entries
that will actually be needed during a disconnection period are
selected, and assuming the ideal probabilistic model where u
is connected in every 1/P requests, then the ideal number of
entries to download is K = 1/P .

D. Localization Algorithm

Given an RSS fingerprint Vr and a partial RadioMap RMi,
we can localize using existing localization algorithms [16]. The
output is a location estimation λu

r from where the given RSS
fingerprint was measured. In our framework, we implemented
the Weighted K Nearest Neighbor (WKNN) localization algo-
rithm [9], where c neighboring entries of the fingerprint are
weighed and used to compute the location.

When value K used for prefetching is smaller than the
value of WkNN parameter c, the accuracy Ar when discon-
nected will always be worse than when connected, even if the
entries prefetched are the ideal ones. Furthermore, using the
PGS selection strategy that is trying to match user movement,
the resulting RMu

r will contain K entries that are more likely
to be spread out linear rather than around the location of the
user. Therefore, even when K is larger than c the accuracy Ar

when disconnected will be worse than when connected.

E. Partitioning the RadioMap

For any localization algorithm to work efficiently, more
than one RM entry is needed around the location to be
computed. Furthermore, RMs in the real world tend to be

very large with hundreds or even thousands of geographically
dense entries. For these reasons we partition the RM entries
into groups and run our selection and localization algorithms
on these groups rather than individual entries. This results in
faster computation and more precise localization. Furthermore,
dealing with RM partitions instead of single RM entries allows
more efficient communication (paging) and prefetching (less
distances computed).

Any partitioning or clustering algorithm can be used for
this preprocessing step [26]. There are two types of partitions
that can be achieved: equi-width and equi-depth [27]. In the
former, each partition will correspond to an area of approxi-
mately the same size and will contain all RM entries within this
area. The advantage of this partitioning type is that the number
of partitions prefetched directly determines the area where the
user can navigate without connection and therefore determines
the Point Accuracy A achieved. The drawback is that the entry
population of each partition might vary greatly, resulting in
great variation in the CPU cost of the client device. In the
latter partitioning type, each partition will have approximately
the same entry population. In this case we have the opposite
advantages and drawbacks.

In this work, we use the BFR equi-width partitioning
algorithm [28] for partitioning RM. BFR is a variant of the
k-means algorithm and is specifically designed to handle very
large disk-resident data sets. Points are read per block, where
the block size is the available space in main-memory. The
points from the previous block are summarized by simple
statistics. Using the first block that arrives in memory we select
L centroids in space. We implemented BFR with Mahallanobis
distance [29], because it is (i) less susceptible to outliers than
closest or farthest point distance, (ii) faster to compute than the
all-point average distance, and (iii) unit-less, scale-invariant,
and takes into account the correlations of the data set.

Greater values for parameter L result in smaller partitions,
which need less communication cost to be downloaded by the
client and less CPU Time to be processed during localization.
The disadvantage of having smaller partitions is that the K
clusters downloaded cover a smaller area, therefore, the Point
Accuracy drops whenever the client looses connection and
moves away from that area.

V. EXPERIMENTAL EVALUATION

This section presents an extensive experimental evaluation
of the PreLoc framework and the proposed RM entry selection
techniques. We start-out with our experimental methodology
and setup followed by our experimental series.

A. Methodology

CSUCY Dataset: this dataset was collected at the Computer
Science (CS) department of the University of Cyprus (UCY).
The building is around 8,900 m2 and has four floors (i.e.,
2,224 m2 per floor). In total, it consists of 45,000 reference
fingerprints taken from ≈120 Wi-Fi APs (wired or hotspots)
installed in the CS and neighboring buildings. On average,
10.6 APs are detected per location. We collected our data
by walking over a path that consists of 2,900 locations. The
CSUCY normalized Radiomap has a size of ≈2.6 MBs (the
initial fingerprint database was much larger).



Fig. 4. PreLoc web-visualizer (top): used for testing and verification of
the partitions and routes generated for our simulations. Clusters are identified
using different colors and number, where routes are indicated as sequence of
numbers connected with solid lines. Airplace [16] (bottom): our in-house
indoor localization and navigation platform extended to support the PreLoc

framework functionalities.

User Routes and Partitioning: In order to evaluate the
scalability of our propositions we have generated realistic user
routes of various scales where a user follows and localizes
at pre-defined locations. The distinct locations are of fixed
distance between each other (e.g., around 5 meters) and the
size of routes varies from 15-30 localizations steps (i.e., a user
moving at a single floor and travels around 50-150 meters). The
RadioMap is also partitioned into L partitions/groups using
the BFR approach as described in Section IV. Both the routes
and the partitions can be viewed and verified using our web
visualizer that is described below.

Metrics and Algorithms: We are interested in localization
accuracy and resource consumption on the client side, there-
fore, our cost metrics are: (i) the average CPU Time (T) on the
client device; and (ii) the average Point Accuracy (A) achieved
in an environment with intermittent connectivity P . These were
measured over all localizations in all routes for varying values
of P . We compare two existing prefetching approaches against
our PreLoc framework. The existing approaches fall under
the category of the Client-Side Approach (CSA) as described
in Section II, where CSA (b) denotes the RadioMap of the
whole building, while CSA (f) denotes the RadioMap of the
current floor. The PreLoc framework is evaluated using three
different RM entry selection techniques: (i) the proposed

Fig. 5. The AnyPlace Indoor Information Service (screenshot relates only
to the Web Viewer) facilitates the task of crowdsourcing models, context and
radiomaps for indoor spaces but also supports intelligent search and navigation
in buildings uploaded publicly or privately.

Probability Group Selection (PGS) technique as described
in Section IV; (ii) the Iterative Deepening Selection (IGS)
technique that selects partitions to be prefetched in an iterative
manner based on the distance to current location; and (iii) the
Random Selection (RS) technique that selects partitions to be
prefetched randomly. To put the results in perspective when
comparing to localization accuracy, we also used the Server-
Side Approach (SSA) that was described in Section II, which
does not prefetch any localization data and thus is prone to
intermittent connectivity problems.

Web Visualizer: We have also developed a web application for
visualization, validation and testing purposes of the partitions
and routes considered in our experiments that follow. Figure 4
illustrates a snapshot of our in-house PreLoc web-visualizer
that shows the partitioning of all available reference locations
(fingerprints indicated with different letters) as well as the four
routes (indicated as sequence of numbers connected by a solid
line) used for the evaluation of our propositions.

Airplace/Anyplace: Finally, the PreLoc framework was built
around our open-source indoor localization engine coined Air-
place [16] (see Figure 4 bottom). It consists of two major
components: the Server and the Client application for Android
smartphones. The Anyplace Client has two modes and operates
either as a Logger or as a Navigator. In Logger mode, the users
may record signal strength information from nearby Wi-Fi
access points and upload that data to the Server. The Navigator
is the main mode of operation that allows users to see their
current location on top of the floorplan map and see the current
location.

Airplace is the predecessor technology for our complete
RadioMap-based indoor positioning and navigation platform
that operates on top of Google Maps with a big data man-
agement Web 2.0 back-end service, coined Anyplace [3] (see
Figure 5). Anyplace allows entities (i.e., users, companies,
organizations, etc.) to realize indoor information management
systems, including product search and point of interest (POI)
navigation, on top of existing wireless network infrastructure
by leveraging rich multi-sensory data available on smart-
phones.
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Fig. 6. Series 1 - Performance Evaluation: of both non-prefetching and prefetching approaches for indoor localization scenarios in terms of average Point
Accuracy A (left) and average CPU Time T (right) while varying the Connectivity Probability P .

B. Series 1: Performance Evaluation

In the first experimental series, we investigate the perfor-
mance of PreLoc using PGS, IDS, and RS strategies with
respect to Point Accuracy (A) and CPU Time (T ). We compare
all approaches as explained in Section V-A. Note that CSA
and SSA represent the boundaries of performance. The trade-
off between accuracy and resource consumption (represented
by T ) should be clearly demonstrated by CSA and SSA. The
former downloads the whole RadioMap (at a building (b) or
floor (f) scale) prior to localizing at the client providing high
accuracy, but consumes maximum resources. The latter con-
sumes minimum resources since the client does not download
anything, but it provides poor accuracy since the frequent
communication with the server-side makes it vulnerable to
poorly and intermittently connected networks.

The overall A of the approaches under consideration is
relatively high (i.e., ≈5m) due to the fact that fingerprints in the
CSUCY dataset are relatively sparse and given that Airplace
does not incorporate advanced features introduced later in
Anyplace (i.e., ≈2m), e.g., Kalman filters, device diversity,
big data, outlier correction, IMU, etc. The results of Figure 6
(left) show that CSA approaches do not suffer from intermittent
connectivity since the RadioMap is always pre-downloaded a-
forehand on the mobile. On the other hand the SSA approach
is negatively affected by the Connectivity Probability P due to
the frequent exchange of information between the client and
the server required. The lower the value of P is, the worse the
accuracy of SSA gets, providing the worst accuracy (≈ 17m)
in the whole series for P = 0.25.

The proposed PGS approach of the PreLoc framework
performs as well as CSA and SSA approaches for high values of
P . The accuracy of PGS remains relatively steady and similar
to CSA as P decreases, but approximately three orders of
magnitude better than SSA. This shows that PGS calculates the
correct sequence of fingerprints and therefore it overcomes the
intermittent connectivity issues. Moreover, PGS provides the
best localization accuracy compared to the other two selection
techniques, i.e., IDS and RS, in all cases. Particularly, PGS
provides 20% better accuracy than IDS and > 50% than RS.

Figure 6 (right) shows that CSA as well as the three
selection techniques, i.e., PGS, IDS and RS, are not influenced
by Connectivity Probability P , providing similar results in all

cases. This is due to the fact that all approaches will localize
using a fixed number of fingerprints (i.e., the whole RadioMap
for CSA, K partitions for the selection approaches) regardless
of the value of P or the size of the whole dataset. On the
other hand, for the SSA approach the CPU Time decreases
as P decreases due to the fact that intermittent connectivity
prohibits the communication between the client and the server
resulting in zero CPU effort for localization but also a poor
localization accuracy as illustrated in Figure 6 (right).

C. Series 2: Control Experiments

In the second experimental series, we examine how several
parameters influence the behavior and the performance of
the proposed PreLoc framework with the PGS approach. In
particular, we initially evaluate the PGS accuracy and the CPU
Time for localizing 20 consecutive times in four routes of the
CSUCY dataset for various K and Connectivity Probability P .
We then evaluate the performance of PGS in terms of accuracy
and CPU Time for a varying number of partitions L and K
values.

Figure 7 (left) shows that the accuracy of the proposed PGS
approach is poor for small values of K, while P decreases.
This means that the more intermittently connected a network
is the more information (i.e., reference locations for future
localizations) is needed to be prefetched. This is the reason
why for K = 3 the accuracy is good for low P . A general
observation is that the accuracy is relatively good for both high
P and K. Particularly for K = 3 the accuracy provided by the
PGS is almost fixed. Moreover, the results of Figure 7 (right)
show that the CPU Time needed for localization decreases as
both K and P decrease. This is due to the fact that smaller
K means fewer partial RadioMaps and smaller P means less
communication overhead with the server.

In Figure 8, we study the performance of PGS in terms
of both Point Accuracy A and CPU Time T while varying
parameters K and L and fixing P = 0.5. Here it is important to
realize that the higher the number of partitions in the CSUCY
datasets is, the smaller is the size of each individual partition.
In other words, if we consider two setups L = 10 and L = 30
with K = 3, then the number of reference locations included
in the prefetched partitions in the former setup will be greater
than in the latter setup. The results of Figure 8 (left) show
that the accuracy is influenced by parameter L, since PGS
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Fig. 8. Series 2 - Control Experiments: examining the PGS average Point Accuracy A (left) and average CPU Time T (right) while varying the Connectivity
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performs well for small K only when L is small and the
performance in terms of accuracy quickly deteriorates when L
increases. On the other hand, the accuracy remains relatively
good and steady for large values of K under various values of
L providing similar results. However, the results of Figure 8
(right) show that the PGS performs better when L is high
(i.e., partitions with smaller size) and K is small, since less
CPU Time is required for localization. Therefore, considering
the conclusions drawn from both plots of Figure 8, a good
setting would be L = 30 and K = 3, even though analytically
deriving these remains open for future work.

D. Series 3: Energy and Device Diversity

In the last experimental series, we expose the firmness
and stability of PreLoc framework on a variety of popular
Android devices (i.e., Samsung Galaxy S1, HTC Desire and
Sony Xperia Z1) in terms of A and T , as well as CPU
energy consumption E for varying values of P . The energy
consumption of the proposed approach on various devices is
measured using PowerTutor3. The results in Figure 9 show
that PreLoc provides similar performance in terms of A in all
devices while varying P . The decrease in CPU Time T and
Energy E as P decreases is almost linear and it is due to the
fact that less data are downloaded and processed. Overall, the

3PowerTutor, http://powertutor.org

behavior of PreLoc is consistent under various Android devices
and it is, therefore, correct to argue that PreLoc is stable.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents an innovative framework for fine-
grained and low-cost indoor navigation with smartphones over
intermittently connected Wi-Fi networks, coined Prefetching
Localization (PreLoc). PreLoc operates in three phases: the
pre-processing phase, where the server partitions the avail-
able reference locations of a particular area, the selection
and prefetching phase, where the server selects a number
of partitions to be prefetched, based on historical data of
users’ past movements on that area, and the localization phase,
where a disconnected user localizes itself using a well known
localization techniques and the available prefetched location
data.

We have evaluated our framework using a real prototype
developed in Android, as well as real Wi-Fi traces we collected
on-campus. Our experimental study reveals that PreLoc pro-
vides both accurate localization and consumes less resources
than existing approaches. In the future, we will further examine
the performance of such prefetching approaches, e.g., in terms
of latency showing how long the system had to wait as a func-
tion of the movement trajectories, in outdoor environments, as
well.
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