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Abstract—Consider a centralized query operator that identifies
to every smartphone user its k geographically nearest neighbors
at all times, a query we coin Continuous All k-Nearest Neighbor
(CAkNN). Such an operator could be utilized to enhance public
emergency services, allowing users to send SOS beacons out to the
closest rescuers, allowing gamers and social networking users to
establish ad-hoc overlay communication infrastructures, in order
to carry out complex interactions. In this paper, we study the
problem of efficiently processing a CAkNN query in a cellular or
WiFi network, both of which are ubiquitous. We introduce an
algorithm, coined Proximity, which answers CAkNN queries in
O(n(k+λ)) time, where n denotes the number of users and λ a
network-specific parameter (λ << n). Proximity does not require
any additional infrastructure or specialized hardware and its
efficiency is mainly attributed to a smart search space sharing
technique we introduce. Its implementation is based on a novel
data structure, coined k+-heap, which achieves constant O(1)
look-up time and logarithmic O(log(k∗λ)) insertion/update time.
Proximity, being parameter-free, performs efficiently in the face
of high mobility and skewed distribution of users (e.g., the service
works equally well in downtown, suburban, or rural areas). We
have evaluated Proximity using mobility traces from two sources
and concluded that our approach performs at least one order of
magnitude faster than adapted existing work.

I. INTRODUCTION

Smartphones are nowadays equipped with a number of sen-

sors, such as WiFi, GPS, accelerometers, etc. This capability

allows smartphone users to easily identify their location in

indoor and outdoor spaces. The extensive sensing capabilities

of these devices have brought a revolution in location-based

mobile applications and services [1].

In this paper, we extend this sensing capability into a whole

new dimension, by allowing smartphones to identify their

geographically closest neighboring nodes at all times. We

devise a technique that answers this query, coined Continuous

All k-Nearest Neighbor (CAkNN), efficiently. Our technique

builds upon well-studied queries like All k-Nearest Neighbors

(AkNN), which compute the kNN for each user in the system

and Continuous k-Nearest Neighbors (CkNN), which monitor

the kNN of a user over time. Applications of the neighborhood

“sensing” capability, would allow somebody that is in a life-

threatening situation to send out SOS beacons to its geograph-

ically closest neighbors. Such a futuristic application could

enhance public emergency services like E9-1-11and NG9-1-

1Federal Communications Commission - Enhanced 911, April 2012,
http://www.fcc.gov/pshs/services/911-services/enhanced911/
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Fig. 1. (a) A snapshot of a cellular network instance, where the 2 nearest
neighbors for u0 are {u1, u2}. Similarly for the other users: u1 → {u0, u2},
u2 → {u3, u0}, u3 → {u2, u0}, u4 → {u2, u3}, u6 → {u0, u1}. (b) An
example application of a Proximity micro-blogging chat.

12. Additionally, such a capability would allow somebody to

engage in a location-based micro-blogging service that enables

users to “follow” or “post-to” their neighborhood while being

on the go. This would in effect facilitate the uptake of location-

based social networks.

Consider a set of smartphone users moving in the plane of

a geographic region. Let such an area be covered by a set

of Network Connectivity Points (NCP) (e.g., cellular towers

of cellular networks, WiFi access points of wireless 802.11

networks etc.) Each NCP inherently creates the notion of a

cell. Without loss of generality, let the cell be represented by

a circular area3 with an arbitrary radius. A mobile user u is

serviced at any given time point by one NCP, but is also aware

of the other NCPs in the vicinity whose communication range

reach u (e.g., cell-ids of different providers in an area, or MAC

addresses of WiFi hot-spots in an area.)

To illustrate our abstraction, consider the example network

shown in Figure 1, where we want to provide a micro-blogging

chat channel between each user u and its k = 2 nearest neigh-

bors. In the given scenario, each user concurrently requires a

different answer-set to a globally executed query, as shown in

the caption of Figure 1. Notice that the answer-set for each

user u is not limited within its own NCP and that each NCP

2Department of Transportation: Intelligent Transportation Systems New
Generation 911, April 2012, http://www.its.dot.gov/NG911/

3Using other geometric shapes (e.g., hexagons, Voronoi polygons, grid-
rectangles, etc.) for space partitioning is outside the scope of this paper.
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has its own communication range. Additionally, there might be

areas with dense user population and others with sparse user

population. Consequently, finding the k-nearest neighbors of

some arbitrary user u could naively involve from a simple

lookup in the NCP of u to a complex iterative deepening into

neighboring NCPs, as we will show in Figure 2(b).

Existing work includes retrieval of the k-nearest neighbors

for mobile users (kNN and all-kNN) [2], [3], [4], [5], [6]

and continuous retrieval of k nearest neighbors of a single

mobile user (continuous-kNN) [7], [8], [9], [10], [11], [12],

[13]. As we will show through our extensive related work,

the problem of CAkNN for spatio-temporal applications has

not been covered in previous work. To address the CAkNN

problem, one can build upon existing work that continuously

provide the kNN to a single user and adapt them to provide the

kNN to all users in the system. Yet, such an approach requires

an instance of those algorithms to run n times, one time for

each user, which is inefficient. Examples of such previous

work are those by Yu et al. (YPK) [12] and Mouratidis et

al. (CPM) [13], which will be described in the next section.

In this paper, we propose a parameter-free algorithm, called

Proximity, to answer all k-nearest neighbor queries continu-

ously. It covers the complete search space in a batch process

by iterating over all user locations just once, making only

a minimal number of comparisons between them. Proximity

exploits a novel data structure, coined k+-heap, for dividing

the search space per NCP and enabling search space sharing

among the mobile users within each NCP. In this way, we

avoid computing a new search space for every user. Our

Proximity framework is robust to high mobility patterns, as

it is stateless and has a fast construction time. Furthermore,

Proximity is robust to skewed distributions of users, as its

space division technique depends solely on the distribution

and communication range of the NCPs.

In summary, this work makes the following contributions:

• We identify and define CAkNN queries, through a de-

tailed categorization of existing work on a variety of NN

problems.

• We propose a novel data structure, coined k+-heap, for

constructing the search space and facilitating search space

sharing. Our structure has a O(1) lookup time for each

entry in the answer-set, O(log(k ∗λ)) insertion time and

O(k + λ) scan time, where λ is the user capacity of an

NCP.

• We propose a novel algorithm, termed Proximity, for

solving the CAkNN problem efficiently. It minimizes the

computational cost for continuously deriving the kNN to

each moving object to O(n(k + λ)) time.

• We show analytically and with an extensive experimen-

tal evaluation the superiority of our specialized CAkNN

solution over the adaptation of state-of-the-art solutions

given to similar problems.

In the following Section II, we present the related work;

Section III defines our system model and the problem. Section

IV presents the Proximity framework and a breakdown of our

data structures and algorithms. Section V presents an analytical

study of the time complexity of our framework. Section

VI presents the experimental evaluation. Finally, Section VII

concludes the paper.

II. BACKGROUND ON kNN QUERYING

We provide a summary of existing state-of-the-art work

that deals with neighborhood queries and categorize them

according to the characteristics of the queries they answer.

Existing work can be classified in spatial data applications

and spatio-temporal data applications.

A. Spatial Data

For applications where data is represented by a linear array,

constant time algorithms have been proposed to solve the All

Nearest Neighbor (ANN) and All k-Nearest Neighbor (AkNN)

problems. There has been extensive work in the field of image

processing and computational geometry (e.g., [14], [15]).

In Euclidean space (and general metric spaces), there has

been also extensive work on solving the ANN and AkNN

problems. For large datasets residing on disk (external mem-

ory), works like Zhang et al. [6], Chen et al. [16], and

Sankaranarayanan et al. [17] exploit possible indices on the

datasets and propose algorithms for R-tree based nearest

neighbor search.

For small ANN and AkNN problems in Euclidean space,

where data fits inside main memory, early work in the domain

of computational geometry has proposed solutions. Clarkson

et al. [2] was the first to solve the ANN problem followed

by Gabow et al. [3], Vaidya [4] and Callahan [5]. Given a

set of points, [2], [3], [5] use a special quad-tree and [4]

use a hierarchy of boxes to divide the data and compute

the ANN. The worst case running time, for both building the

needed data structures and searching in these techniques, is

O(nlogn), where n is the number of points in the system.

For the AkNN problem works [2], [5] propose an algorithm

with O(kn+nlogn) and [4] an algorithm with O(knlogn) time

complexity. Callahan’s [5] main contribution is a parallel

algorithm that solves the ANN problem in O(logn) using O(n)
processors.

B. Spatio-Temporal Data

In spatio-temporal data applications the datasets consist of

objects and queries that move over time in some Euclidean

space. Existing work in this category only tackles the problem

of answering a k-nearest neighbor query for a single user over

time (CkNN query).

For large disk-resident datasets Tao et al. [7], Benetis

et al. [8], Iwerks et al. [18], Raptopoulou et al. [9], and

Frentzos et al. [19] assume that the velocity of the moving

objects is fixed and the future position of an object can be

estimated. Huan et al. [20] assume that there is only some

uncertainty in the velocity and direction of the moving objects

and they propose algorithms to optimize the case were the

future position estimation can also be uncertain. This set of

works uses time parameterized R-trees to efficiently search for

the nearest neighbors. Kollios et al. [10] propose a method

able to answer NN queries for moving objects in 1D space.
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Fig. 2. (a) In Proximity the search space is pre-constructed for all users
of the same cell (e.g., u1 and u2); whereas (b) for existing state-of-the-art
algorithms the search space needs to be iteratively discovered by expanding
a ring search for each user separately into neighboring cells.

Their method is based on the dual transformation where a

line segment in the native space corresponds to a point in

the transformed space, and vice-versa. Xiong et al. [11] focus

on multiple kNN queries and propose an incremental search

technique based on hashing objects into a regular grid, keeping

CPU time in mind. The main objective of these works on disk-

resident data is to minimize disk I/O operations, considering

CPU time only as a secondary objective in the best case.

Main memory processing is usually mandatory for spatio-

temporal applications, where objects are highly mobile. The

intensity of the location updates is very restrictive for disk-

based storage and indexing, and demands optimization in

respect to the CPU time. Yiu et al. [21] in their work find the

users in the proximity satisfying a given distance threshold.

Their objective is to optimize communication cost between

the server and the users.

Yu et al. [12] (YPK) followed by Mouratidis et al. [13]

(CPM) optimize kNN queries in a similar fashion as Xiong

et al do for disk-resident data. Data objects are indexed by a

grid in main memory (see Figure 2) given a system-defined

parameter value for the grid size. For each query they both

use a form of iteratively enlarging a range search to find the

kNN. For small object speeds and/or low object agility, both

YPK and CPM propose a stateful technique to incrementally

compute the result of a query of the current timestep using

the result of the previous timestep. They define an influence

region for the query inside the grid and depending on what

happens in this region, the new result is computed using the

previous result, minimizing the search space. Whenever the

query object moves or the agility and speed of the objects is

high, both YPK and CPM fall back to their slower stateless

version where at each timestep the result of the query is

computed from scratch. Similar work has been done by Hu

et al. [22] who propose a similar solution to [12], [13], but

also try to minimize the communication overhead by sending

minimum location updates.

C. Shortcomings Of Existing Work

Techniques that optimize disk I/O are unattractive for solv-

ing CAkNN queries, since the CPU latency is the actual

bottleneck as shown by Chen et al. [16]. Moreover, tree-based

techniques proposed for ANN queries require super-linear time

for their structure build-up phase (as [2], [3], [4], [5]) and need

to be updated or re-built in every timestep, which is inefficient.

TABLE I
NOTATION USED THROUGHOUT THIS WORK

Notation Description

NCP network connectivity point

c, C single NCP, set of all NCPs

radiusc range of NCP c

λ the maximum number of users an NCP can serve

u, U a single user, set of all users in the network

n number of users in the network (|U |)

Uc set of users of NCP c

r,R a single user report, all user reports for a single timestep

loc(u) location of user u

ncp(u) the NCP that a user is registered to

ncpvic(u) list of NCPs whose range cover user u

Sc the search space of NCP c

dc distance of kth nearest user to the border of NCP c

kNN(u) the set of k-nearest neighbors of user u

kthc the kth nearest outside user to the boundary of cell c

No previous work tackles the problem of continuous all k-

nearest neighbor (CAkNN) queries specifically. In smartphone

network applications the users are highly mobile with hard-to-

predict mobility patterns and their location distribution is far

from uniform [23]. This makes stateful techniques inefficient

as shown in [12], [13], since keeping previous answers (states)

of the query becomes more of a burden than a help for

faster query evaluation. Furthermore, in proximity applications

considered in this paper, smartphone users are moving and are

both the objects of interest and the focal points of queries.

Our framework, Proximity, is main-memory based and

stateless, i.e., no previous data/calculation of the previous

evaluation round is used in the current round. A stateless

CAkNN solution would solve an AkNN problem at each

timestep. We also compare Proximity analytically to the early

work of computational geometry [2], [3], [4], [5] and show

that the running time complexity of our framework is better

(i.e., O(n(k + λ)) as opposed to O(knlogn)). We compare

Proximity experimentally against an adaptation of state-of-

the-art CkNN solution [12], [13]. Due to the agility of the

realistic mobile datasets used, these works can only make use

of their stateless algorithm, which solves a kNN query in every

timestep. Thus, such adaptations can only optimize a kNN

query for each timestep separately and for each user separately,

building a new search space for each user. We show that our

specialized Proximity framework performs better, mainly due

the batch processing capability of the AkNN queries. The most

significant difference is that the Proximity framework groups

users of the same cell together and uses the same search space

for each group (search space sharing).

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section formalizes our system model and defines the

problem. The main symbols are summarized in Table I.

Let U denote a set of smartphone users moving in the

plane of a geographic region. Let such an area be covered

by a set of Network Connectivity Points (NCP) (e.g., cellular

towers found in cellular networks, WiFi access points found in

wireless networks etc.) Each NCP inherently creates the notion

of a cell, defined as ci. Without loss of generality, let the cell
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be represented by a circular area with radius radiusc. The

number of users λ serviced by an NCP is a network parameter

(cell capacity). A mobile user u is serviced at any given time

point by one NCP, but is also aware of the other NCPs that are

in its vicinity and whose communication range cover it (e.g.,

cell-ids of different providers in an area, or MAC addresses

of WiFi hot-spots in an area, etc.)

Assume that there is some centralized (or cloud-like) ser-

vice, denoted as QP (Query Processor), which is accessible

by all users in user set U . Allow each user u to report its

positional information to QP regularly. These updates have

the form ru = {u, loc(u), ncp(u), ncpvic(u)}, where loc(u) is

the location of user u4, ncp(u) is the NCP user u is registered

to and ncpvic(u) is a list of NCPs in the vicinity of u.

The problem we consider in this work is how to efficiently

compute the k-nearest neighbors of all smartphones that are

connected to the network, at all times. We consider a timestep

that defines rounds where we need to recompute the kNNs of

the users. Depending on the application, this can take place

either at a preset time interval or whenever we have a number

of new user location updates arriving at the server. Formally,

we aim to solve a problem we coin the CAkNN problem.

Definition 1 (CAkNN problem): Given a set U of n points

in space and their location reports ri,t ∈ R at timestep t ∈ T ,

then for each object ui ∈ U and timestep t ∈ T , the CAkNN

problem is to find the k objects Usol ⊆ U−ui such that for all

other objects uo ∈ U −Usol − ui, dist(uk, ui) ≤ dist(uo, ui)
holds.

In order to better illustrate our definition, consider Figure

3, where we plot a timestep snapshot of 7 users u0 − u6

moving in an arbitrary geographic region. The result for this

timestep to a k = 2 query would be kNN(u0) = {u1, u2},
kNN(u1) = {u0, u2}, kNN(u2) = {u3, u0}, kNN(u3) =
{u2, u0}, kNN(u4) = {u2, u0}, kNN(u6) = {u7, u1}.

Obviously, the solution for a user u will not always reside

inside the same NCP cell c, but might reside in neighboring

cells or even further (e.g., if neighboring cells do not have

any users). Computing a separate search space for every user

is very expensive. On the other hand, search space sharing

is achieved when the same search space is used by multiple

users and it guarantees the correct kNN solution for all of

them. If we apply this reasoning for all users Uc in c, then

the common search space Sc for Uc would be defined as the

union of the individual search spaces of every user in Uc. We

efficiently build Sc with the assistance of complementary data

structures we devise in this work and explain next. In Figure

3, the search space constructed by our framework for users u0

and u6 is the largest dotted circle.

IV. THE Proximity FRAMEWORK

In this section we start out with an outline of the Proximity

framework and the intuition behind its operation. We then

describe in detail how the search space is built-up using our

k+-heap data structure and its associated insertion and update

algorithms.

4The location of a user can be determined either by fine-grain means (e.g.,
AGPS) or by coarse-grain means (e.g., fingerprint-based geo-location [24]).
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Fig. 3. The search space of cell c is the big circle with the dotted outline.
Any user inside this circle is a kNN candidate for any user inside c.

A. Outline Of Operation

The Proximity framework is designed in such a way that it

is: i) Stateless, in order to cope with transient user populations

and high mobility patterns, which complicate the retrieval

of the continuous kNN answer-set. In particular, we solve

the CAkNN problem for every timestep separately without

using any previous computation or data; ii) Parameter-free, in

order to be invariant to parameters that are network-specific

(such as cell size, capacity, etc.) and specific to the user-

distribution; iii) Memory-resident, since the dynamic nature

of mobile user makes disk resident processing prohibitive; iv)

Specially designed for highly mobile and skewed distribution

environments performing equally well in downtown, suburban,

or rural areas; iv) Fast and scalable, in order to allow massive

deployment; and v) Infrastructure-ready since it does not

require any additional infrastructure or specialized hardware.

For every timestep Proximity works in two phases (Algo-

rithm 1): In the first phase one k+-heap data structure is

constructed per NCP, using the location reports of the users

(lines 1-8). In the second phase, the k-nearest neighbors for

each user are determined by scanning the respective k+-heap

and the results are reported back to the users (lines 9-19).

At each timestep the server QP initializes our k+-heap

for every NCP in the network. The k+-heap integrates three

individual sub-structures that we will explain next (see Figure

5). The user location reports are gathered and inserted into the

k+-heap of every NCP. After all location reports have been

received and inserted, each NCP has its search space stored

inside its associated k+-heap. After the build phase, each user

scans the k+-heap of its NCP to find its k-nearest neighbors.

B. Constructing The Search Space

Here we describe the intuition behind our search space

sharing concept. Every user covered by an NCP uses the same

search space to identify its kNN answer-set.
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Algorithm 1 . Proximity Outline

Input: User Reports R (single timestep), set C of all NCPs

Output: kNN answer-set for each user in U

1: for all c ∈ C do

2: initialize k+c ⊲ Initialize our k+-heap

3: end for

4: for all r ∈ R do ⊲ Phase 1: build k+-heap

5: for all c ∈ C do

6: insert(r, k+c)
7: end for

8: end for

9: U ← users(R)
10: for all u ∈ U do ⊲ Phase 2: scan k+-heap

11: kNNu = ∅ ⊲ Conventional k-max heap

12: c← ru.ncp

13: for all v ∈ k+c do

14: if v is a kNN of u then

15: update(kNNu, v)
16: end if

17: end for

18: report kNN to node u

19: end for

In order to construct a correct search space for each NCP,

we need to be able to identify nodes that might be part of the

kNN answer-set for any arbitrary user of a given NCP. For

instance, consider two users u0 and u6, in Figure 3, which

are positioned on the perimeter of their NCP c. Also, consider

user u2 being outside c and close to u0. In such a scenario,

the search space for c must obviously include u2, as it is

a better kNN candidate to u0 than u6. However, even if we

were aware of the k closest users to c (besides the users in

c), would not allow us to correctly determine the kNN for

any arbitrary user in c. To understand this, consider again

Figure 3 with a 2NN query. u1 and u2 are the two closest

outside nodes to the border of c. Yet, we can visually determine

that u7 is a more appropriate 2NN candidate for u6 than all

aforementioned nodes, i.e., u0, u1, u2.

To overcome this limitation, we define a prune-off threshold,

denoted as kthc, which determines the size of the search space

of c. kthc is the kth closest outside user to the border of c,

which determines the width dc of the search expansion (striped

ring as seen in Figure 4). Inside this ring there are k users

by definition. These k users form the K-set. In our running

example kthc = u2. This guarantees that the search space

will have at least k users. All users at distance less that 2 ∗
radiusc+dc from c’s border, are also part of the search space.

This guarantees that each user inside c will find its actual kNN

inside the search space.

The size of each NCP search space depends on the commu-

nication area of the NCP and the kth closest outside user to the

border of its communication area. The users inside c comprise

set Uc and the users that are at distance greater than dc and

less than 2 ∗ radiusc + dc from the cell’s border comprise set

Bc (grey ring in Figure 4). Set K, set B, and the users Uc

inside c form the search space Sc of c.

Bc

Kc

u2

u1

u0

u3

u4

u5

u6

Uc

c

x

k=2

kthc = u2

Uc = {u6, u0}

Kc = {u1, u2}

Bc = {u3, u4, u5}

Sc = Uc ∪Kc ∪Bc

width of striped ring = dc

width of grey ring = 2 ∗ radiusc

Fig. 4. An example of the common search space for the users in-
side cell c (white circle) for k = 2. The search space Sc of c is
{u0, u1, u2, u3, u4, u5, u6} and is represented by the big circle with the
dotted outline. Set Sc includes all users inside c (set Uc), the striped ring
(set Kc) and the grey ring (set Bc). Any node outside Sc (e.g., user x) is
guaranteed NOT to be a kNN of any user inside cell c. The 2-nearest neighbors
for the nodes in c are kNN(u0) = {u1, u2} and kNN(u6) = {u0, u1}.

k+-heap structure

k-max-heap K
ordered

list B

list

U

Fig. 5. A visualization of an k+-heap. It consist of a k-max-heap K, an
ordered list B and an ordinary list U .

Definition 2 (K-set): Given a set of users u ∈ U − Uc

outside NCP cell c that is ordered with ascending distance

dist(u, c) to the border of c, set Kc consists of the first k

elements of this set (striped ring in Figure 4).

Definition 3 (kth outside neighbor of the NCP cell):

Given Kc (ordered as in Definition 2), the kth user is called

the kth nearest neighbor of c and denoted kthc.

Definition 4 (B, Boundary Set): Given an NCP denoted as

c and its kth outside neighbor kthc, set Bc consists of all users

u ∈ U − (Uc ∪K) with distance dist(u, c) < dist(kthc, c) +
2 ∗ radiusc from the border of c. In other words Bc consists

of all users u ∈ U with distance dist(kthc, c) < dist(u, c) <
dist(kthc, c) + 2 ∗ radiusc.

Definition 5 (S, Search Space set): Given an NCP c and its

Kc set, the search space Sc of c consists of all users u ∈
Uc ∪Kc ∪Bc (big circle with dotted outline in Figure 4).

In our Figure 4 example, at the end of the build phase, the

k+-heap of c includes users {u6, u0, u1, u2, u3, u4, u5}. This

is the common search space Sc for all users Uc = {u0, u6} of

c, which guarantees to include their exact k-nearest neighbors.
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C. Specialized Heap: The k+-heap

Computing the search space for each cell inefficiently might

be prohibitive for the application scenarios we envision as

detailed in the introduction. In this section, we show in detail

how the search space for an NCP is constructed using our k+-

heap data structure. Recall that as user reports arrive at the

server QP they are inserted into each k+-heap. A user report

either stays inside a k+-heap or eventually gets evicted using

a policy that we will describe later. After all user reports have

been probed through the k+-heap of every NCP, each k+-heap

contains the actual search space of its NCP. Consequently, the

build phase takes a total of n ∗ |C| insertions.

The k+-heap consists of three separate data structures (see

Figure 5): a heap for the set Kc and two lists for Boundary

set Bc and the set Uc. The heap used for set Kc is a

conventional k-max-heap. It stores only the k users outside

c with the minimum distance dist(u, c) from the border of c.

Thus, the heap K has always kthc at its head. The boundary

list is a list ordered by dist(u, c), which stores set B. Its

elements are defined by kthc (see Definition 4). Similarly,

we use a list to store the users Uc ⊆ U of c. Notice

that some NCP cells will be overlapping, so there are areas

where users are inside multiple cells. Such users are inserted

into all lists Uj of cj ∈ C that cover them. The k+-heap

has O(1) lookup time for the kth nearest neighbor of c. It

has worst case O(log(k ∗ |B|)) insertion time and contains

|Sc| = k + |Bc|+ |Uc| elements.

D. Insertion Into The k+-Heap (Algorithm 2 and 3)

When inserting a new element unew into the k+-heap of c,

we distinguish among four cases (see Algorithm 2): i) unew is

covered by c and belongs to set Uc (line 2), ii) unew belongs

to set Kc (line 4), iii) unew belongs to set Bc (line 11), or iv)

unew does not belong to the search space Sc = Uc ∪Kc ∪Bc

of NCP c (line 13). In case (i) the element is inserted into the

Uc list. In case (ii) we need to insert unew into heap K (line

5) and move the current head kthc from K to the boundary

list B (lines 7-8). This yields a new head kth′

c in K (line 9).

Every time the kthc changes, the boundary list B needs to be

updated, since it might need to evict some elements according

to Definition 4. In case (iii) we insert unew into the ordered

boundary list B (line 12). Note that the sets Kc and Bc are

formed as elements are inserted into the k+-heap. The first k

elements inserted in the empty k+-heap define the Kc set. In

case (iv) the element is discarded.

E. Running Example

Using Figure 4 as our network example in timestep t we

will next present the Proximity framework step-by-step.

Server QP initiates a k+-heap for every NCP in C. The

k+-heap consists of heap K, ordered list B, and list U . The

reports that arrive at QP are R = r0, r1, r2, r3, r4, r5, r6, rx.

Every report is inserted into every k+-heap on the QP (see

Algorithm 1, lines 1-5). The order in which the reports are

inserted into a k+-heap does not affect the correctness of the

search space. For our example, assume that the reports are

Algorithm 2 . k+-heap: Insert(unew)

Input: unew, c of unew

Output: k+c

1: kthc ← head(Kc)
2: if dist(unew, c) < radiusc then

3: insert(unew, Uc)
4: else if dist(unew, c) < dist(kthc, c) then

5: insert(unew,Kc)
6: if K heap has more than k elements then

7: kthc ← pophead(Kc)
8: insert(kthc, Bc)
9: Update boundary(head(Kc))

10: end if

11: else if dist(unew, c) < dist(kthc, c) + 2 ∗ radiusc then

12: insert(unew, Bc)
13: else

14: discard unew

15: end if

Algorithm 3 . k+-heap: Update boundary(kthc)

Input: kthc (the kth outside neighbor of NCP c)

Output: Bc updated

1: d← dist(kthc, c) + 2 ∗ radiusc
2: i ← find the element with the maximum distance that is

smaller than d using binary search

3: remove(Bc, i+ 1, end)

inserted in the order seen in the first column of Table II. For

every insertion we can see the contents of k+c in the same

Table. For simplicity we will only follow the operation for the

k+-heap of NCP c.

When report r4 is inserted into k+c it ends up inside heap

Kc, since user u4 is not inside NCP cell c (condition line 2)

and heap Kc is empty. Next, report rx is inserted into k+c and

it also ends up inside heap Kc since this is not full yet. When

r2 is inserted, it ends up inside heap Kc (line 5) and it becomes

the new head of the heap kthc. The old head of the heap was

rx and is popped out of K and is inserted into the Bc list (lines

7-8). The update on the Bc list is triggered (line 9) which,

in this case, does not affect the list. Similarly, when r3 is

inserted the same operations (lines 5-10) take place as with the

insertion of r2. Next, r1 is inserted with the same effect, only

this time the Bc list is altered during its update (line 9). r2 is

the new head of heap Kc and according to Definition 5 defines

a new search space radius d = dist(u2, c)+2∗radiusc (line 1

of Algorithm 3). The report rx inside list Bc has dist(ux, c) >
d, thus it belongs to the tail of the list that is discarded in line 3

of Algorithm 3. When r5 is inserted it ends up directly inside

list Bc (line 12), since it is outside c, further away than kthc

but closer than dist(kthc, c) + 2 ∗ radiusc to the border of c.

Reports r0 and r6 both end up directly inside list Uc (line 3),

since they are covered by c, satisfying the condition in line 2.

After all reports are inserted into the k+-heaps phase 1 of

Algorithm 1 is completed and the search space is ready. For

the second phase of Algorithm 1 the server scans a single k+-

heap for each user. The server can scan the k+-heap of any
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TABLE II
BUILD-UP PHASE OF THE k+-HEAP OF NCP c AS USER LOCATION

REPORTS ARE INSERTED.

Arriving

Reports

Structure

Kc

Structure

Bc

Structure

Uc

Algorithm

2 lines

r4 {r4} {} {} 1,4,5

rx {rx, r4} {} {} 1,4,5

r2 {r4, r2} {rx} {} 1,4-11

r3 {r3, r2} {r4, rx} {} 1,4-11

r1 {r2, r1} {r3, r4} {} 1,4-11

r5 {r2, r1} {r3, r4, r5} {} 1,12,13

r6 {r2, r1} {r3, r4, r5} {r6} 1-3

r0 {r2, r1} {r3, r4, r5} {r6, r0} 1-3

NCP that covers a user u to get the k neighbors of u. In our

Algorithm 1 the server scans the NCP that actually services

the user ncp(u) (lines 12). For users u0 and u6, the server Q

scans k+c = u2, u1, u3, u4, u5, u6 and finds nearest neighbors

{u2, u1} and {u0, u1} for user u0 and u6 respectively.

V. PERFORMANCE ANALYSIS

In this section we analytically derive the performance of the

Proximity framework in respect to computational complexity

and scalability. We adopt worst-case analysis regarding user

distribution and/or user movement pattern as it provides a

bound for all input. Our experimental evaluation in Section

VI shows that our framework performs much more efficiently

than the projected worst-case.

All computations in our framework happen on the server.

NCPs do not participate in any processing; they just relay

reports from the server to the mobile users and vice versa. We

execute the query centrally on the server and assume that all

the data can fit in main memory.

It is safe to say that in network setups, like the one we

described in Section III, the tendency is to maximize the users

serviced n and minimize the number of network connectivity

points |C|, as is the case for cellular network companies [23].

Therefore, we can assume that |C| << n. Furthermore, each

NCP has a predefined communication capacity expressed in

bits/sec [23]. Depending on the user traffic there is always a

limit λ of the amount of users each NCP can serve [25]. λ is

independent of n, since the capacity of the NCP and the user

traffic profiles are independent of n. For simplicity we regard

λ as a network parameter that is constant.

Lemma 1: The build phase of Proximity has time complex-

ity O(nlog(k ∗ λ)).

Proof: The build phase consists of O(n ∗ |C|) insertions

into k+-heaps. Insertion and deletion in heap K of a k+-heap

costs O(logk), since it is a conventional heap with constant

size k. Insertion into the ordered list of size |B| has worst

case cost O(log|B|) using binary search. Similarly, inserting

into and updating the boundary list costs O(log|B|). Thus, the

worst case insertion cost for our novel k+-heap is O(logk +
log|B|) = O(log(k ∗ |B|)) and there are n insertions. Each

NCP has a user limit λ and the boundary region B contains

a finite number a of NCPs, thus |B| = a ∗ λ. a is a finite

number independent of n and α << |C| << n. This makes

O(log(k ∗ |B|)) = O(log(k ∗ λ))

Lemma 2: After all k+-heaps are built, the scanning phase

has time complexity O(n(k + λ)).

Proof: The size of a k+-heap is |Sc| and each user

scans a k+-heap (Theorem 1). Consequently we have n ∗ |Sc|
comparisons. |Sc| = k+|Bc|+|Uc| as defined by Definition 5.

The size of Uc is bounded by the maximum number of users

the NCP can serve |Uc|max = λ. |B| = a ∗ λ as described

in proof of Theorem 1. Thus, |Sc| = k + (a + 1) ∗ λ, which

means that the time complexity of a single round of Proximity

is O(n(k + λ)).

Theorem 1: Each round of Proximity runs in O(n(k + λ))
time.

Proof: Based on Theorem 1 and 2.

Using the NCPs for space partitioning, instead of a reg-

ular grid defined on the server, gives us the advantage of

exploiting the user distribution adaptation that is inherent in

the deployment of wireless or WiFi NCPs. It further frees us

from setting a global parameter that would determine the size

of the grid cell or a technique to adapt the grid size according

to the user distribution, which would make our framework

more complicated and possibly more time consuming.

VI. EXPERIMENTAL EVALUATION

In this section we present an evaluation of the Proximity

framework using two mobility datasets. We describe the ex-

isting work used to compare our method, the datasets used and

the setup of our experiments. We run all the experiments on

an Intel Core2 Duo 2.5Ghz processor with 3GB RAM running

Ubuntu Linux. Note that all figures are plotted with the time

(y-axis) in log-scale, thus the differences in efficiency between

the algorithms are larger than their visual difference.

A. Datasets

Both datasets used in our experiments are realistic synthetic

datasets that have been used in the research area of location-

based services.

1) Oldenburg dataset: The first dataset is derived from the

spatio-temporal generator of [26]. The input of the generator

is the road map of the city of Oldenburg, Germany in an area

of 25km x 25km. The output is a set of vehicle trajectories

moving on this network, where each object is represented by

its location at successive timestamps. A vehicle appears on

a network node, completes a path to a random destination

and then disappears. It’s movement is determined by the road

map (speed limits, the maximum capacity of the roads) and

the inter-dependencies with other vehicles (traffic) [26]. For

the Oldenburg dataset we used a maximum number of 1000-

5000 vehicles. According to the city’s official statistics and its

population of around 160K, this amount of vehicles is realistic

without causing congestion and slow vehicle movement [27].

2) Manhattan dataset: The second dataset derived with the

VanetMobiSim [28] vehicular mobility generator as in [29]. By

employing traffic generation models, VanetMobiSim outputs

detailed mobility traces over real-world city maps that can be

obtained through the U.S. Census Bureau [30]. In particular,

we generated vehicular traffic scenarios on a 3km x 3km
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area in upper-east Manhattan, New York city. All vehicles

were set to follow the Intelligent Driver Model with Lane

Changes (IDM-LC). Vehicle density within these areas was

set to 46.56 vehicles per km2 based on 2006 transportation

statistics for U.S. cities [31] with the top speed of each

vehicle bounded by the road speed limit. Given the above

parameters, VanetMobiSim generated vehicular traffic for a 3

hour period, constantly maintaining 500 vehicles in the roads

of the Manhattan area.

B. Setup

In our setup we place a set of network connectivity points

(NCPs) uniformly in space using a hatched grid arrangement.

According to the theoretical urban base station ranges re-

stricted by urban landscape, we use ranges 1km, 4km and

16km for the Oldenburg dataset and ranges 1km and 4km

for the Manhattan dataset. Any larger radius would lead to a

single base station covering the whole space making Proximity

run like the naive brute-force technique with time complexity

O(n2). Notice that we use the small ranges correspond to

restricted base station communication range due to the urban

landscape.

The query to be answered, by the algorithms compared, is

“Report to each user its k-nearest neighbor peers for every

timestep”. The values used for k are 1, 4, 16, 64, and 256.

C. Adapting Existing Work

Existing work has proposed solutions for the AkNN and

CkNN problems. Adapting an AkNN solution, like [2], [3],

[4], [5], would solve an AkNN query in every timestep. In

Section II, we show that by using this adaptation with the

existing solutions requires super-linear time for the build-up

phase at each timestep. As shown in Section V, our solution

has a better time complexity. No experimental evaluation is

therefore needed to verify this statement.

Another adaptation using existing work is to use state-of-

the-art CkNN solutions for mobile data that minimize CPU

time, like Yu et al. [12] and Mouratidis et al. [13]. Extending

these CkNN solutions to answer CAkNN queries involves

running an instance of them for each user in the system. These

methods use a form of iteratively enlarging a range search to

find the kNN for the user (see Figure 2(b)). The search space

starts from the cell of the user and iteratively visits neighboring

cells until at least k neighbors are found and it is guaranteed

that no further neighboring cell can have user that is closer. For

small object speeds and/or low object agility, both YPK and

CPM propose a stateful technique to incrementally compute

the result of a query of the current timestep, using the search

space computation of the previous timestep. They define an

influence region for the query inside the grid and depending

on what happens in this region, the new result is computed

using the previous result, minimizing the search space.

For our experiments we use the adaptation of [12] and [13]

denoted as YPK and CPM respectively, as a baseline for our

comparison. We implement both the YPK and CPM algorithm

using the optimal value for their cell size for each timestep

separately as defined in [12].

Real world scenarios have mobile phone users that move

in high speeds (e.g., mobile phones on board of vehicles).

Both our datasets use highly mobile object points that force

the YPK and CPM algorithms to use their “overhaul”/“from

scratch” computation of kNN in all of our experiments. This

makes those algorithm slower since previous search space

computations can not be reused and the search space for each

user needs to be computed from scratch at every timestep.

D. Number of Nearest Neighbors (k)

In the first experiment we vary the number of nearest

neighbors and find how the algorithm’s performance scales.

For the first three plots in Figure 6, we use the Oldenburg

dataset and the different phases of the algorithms are plotted

separately. The plots show the performance for constructing

the necessary data structures, finding the k-nearest neighbor

peers for all users and the total time, respectively.

From the top plots in Figure 6, we can conclude that

the build time is the bottleneck for our Proximity algorithm,

whereas for the adapted YPK and CPM algorithms the search

time is the bottleneck. We attribute this to the operating system

overhead to construct our custom data structure. The build time

for our competitors, YPK and CPM, is constant as shown by

the figures and proved in theory in their respective works.

Their space division is independent of the number of nearest

neighbors needed.

On the other hand, the real benefit of Proximity is with

respect to the search time. Figure 6(c) shows that our Proximity

algorithm outperforms its competitors for k values larger than

4. We were unable to obtain the search time of YPK and CPM

for k = 256 due to the long running time and high memory

requirements those algorithms impose. YPK and CPM have

almost identical performance, since both are based on the same

intuition. These algorithms are not scalable in respect to k and

are only efficient when searching for a few nearest neighbors,

k < 4. This is backed by analytical results, since the search

space for YPK and CPM solely depends on and is proportional

to k.

In particular, we found that around 100 seconds is the

average time for our Proximity algorithms to solve the CAkNN

problem. Thus, using a conventional workstation we can report

the k-nearest neighbor peers to each user approximately every

2 minutes. With a high performance server machine, this can

be done in seconds. The efficiency of Proximity is not affected

by k, since the size of the search space for Proximity is barely

affected by k (see Section V).

An even more interesting observation that favors our Prox-

imity algorithm is that its build time even drops as k increases.

This happens because the machine’s memory scheduler makes

more efficient use of buffers when the search spaces are larger.

Thus, NCP communication range makes the build process

shorter. Larger cells means less NCPs with larger capacity to

service users. In exchange we pay a small price in the search

time.

Figure 6(d) shows the combined effect, specifically, the

total time for answering a CAkNN query. It verifies the above

findings. Note that all figures are plotted with the time (y-

axis) in log-scale, thus the differences in efficiency between
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the algorithms are larger than their visual difference. Proximity

performs almost 100 times faster than the adapted previous

work.

E. Maximum Number of Users (Nmax)

Figure 7 shows the performance for varying the maximum

number of users in the Oldenburg dataset. Nmax is a pa-

rameter of the dataset generator that makes traffic build up

to this maximum number and holds it close to this bound.

For this experiment the number of nearest neighbors to find

is set to k = 16. The CPU time needed for answering the

CAkNN query shows that our Proximity algorithm scales with

the number of users in space in realistic traffic scenarios and

outperforms its competitors by an order of magnitude. It can

also be seen that the algorithm do not converge for higher

values of Nmax.

VII. SUMMARY AND FUTURE WORK

We have presented Proximity, an algorithm for continuously

answering all k-nearest neighbor queries in a cellular network.

It is based on a division of the search space based on

the network connectivity points and exploiting search space

sharing among users of the same connectivity point. The

Proximity framework has a better time complexity compared

to solutions based on existing work. Our experiments verify

the theoretical efficiency and shows that Proximity is very well

suited for large scale scenarios.
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Proximity is also easily adaptable to provide some location

privacy in terms of spatial cloaking. It is naturally extendible

to the scenario where users report to the server using spatial

cloaking [32]. The location of a user is represented by an area,

instead of a simple point. We will further investigate privacy

extensions for our algorithms aiming towards strong privacy

in future work. Existing work towards this direction has been

published by Papadopoulos et al [33], where they answer a

single snapshot of a kNN query guaranteeing strong privacy.

Extensions and future plans for this work are also placed in

parallelizing the Proximity algorithm, specializing it for cloud

environments and adapt our search space sharing for user-

defined k values, instead of a system-defined global k value.

The novel problem of continuous all k-nearest neighbor

queries (CAkNN) opens the path for many new and exciting

spatio-temporal applications. Further the smartphone crowd is

constantly moving and sensing, providing large amounts of

opportunistic data that enables new crowdsourcing services

and applications. Beside neighborhood-based applications, the

efficiency of the Proximity framework can be used for novel

social network analysis metrics. For example, we can identify

users that find themselves in the proximity of the most users

or the most diverse crowds or social cliques throughout a day.

Existing metrics in social networks, such as centrality, can

be extended and new ones defined based on the geographical

neighborhood characteristics of a user revealing a new level

of insight into more intricate roles of users in a network.
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