
Crowdsourcing Emergency Data in Non-Operational Cellular Networks

Georgios Chatzimilioudisa, Constantinos Costaa, Demetrios Zeinalipour-Yaztia,∗, Wang-Chien Leeb

aDepartment of Computer Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
bDepartment of Computer Science & Engineering, Pennsylvania State University, University Park, PA 16802, USA

Abstract

In overloaded or partially broken (i.e., non-operational) cellular networks, it is imperative to enable communication within the
crowd to allow the management of emergency and crisis situations. To this end, a variety of emerging short-range communication
technologies available on smartphones, such as, Wi-Fi Direct, 3G/LTE direct or Bluetooth/BLE, are able to enable users nowadays to
shape point-to-point communication among them. These technologies, however, do not support the formation of overlay networks
that can be used to gather and transmit emergency response state (e.g., transfer the location of trapped people to nearby people
or the emergency response guard.) In this paper, we develop techniques that generate the k-Nearest-Neighbor (kNN) overlay
graph of an arbitrary crowd that interconnects over some short-range communication technology. Enabling a kNN overlay graph
allows the crowd to connect to its geographically closest peers, those that can physically interact with the user and respond to an
emergency crowdsourcing task, such as seeing/sensing similar things as the user (e.g., collect videos and photos). It further allows
for intelligent synthesis and mining of heterogeneous data based on the computed kNN graph of the crowd to extract valuable real-
time information. We particularly present two efficient algorithms, namely Akin+ and Prox+, which are optimized to work on a
resource-limited mobile device. We use Rayzit, a real-world crowd messaging framework we develop, as an example that operates
on a kNN graph to motivate and evaluate our work. We use mobility traces collected from three sources for evaluation. The results
show that Akin+ and Prox+ significantly outperform existing algorithms in efficiency, even under a skewed distribution of users.

1. Introduction

In the age of smart urban and mobile environments, the mo-
bile crowd generates and consumes massive amounts of hetero-
geneous data [27, 34]. Such streaming data offer the potential
of enhanced science and services, such as emergency and crisis
management services, among others. The availability of such
services is specifically important in scenarios where a cellular
network becomes non-operational.

A cellular network is deemed non-operational when there
is no (sufficient) network connectivity. This might happen due
to damage caused by a disaster (e.g., major flooding), or due
to overloading caused by an unexpectedly large crowd trying to
access telecommunication services simultaneously, e.g., con-
sider the connection problems mobile users have faced during
public celebrations of New Year’s Eve.

Each cellular tower has a limited capacity of users it can
service simultaneously. Specifically, each cellular tower has a
limitation on its communication bandwidth to the carrier (back-
haul bandwidth), a limitation on the aggregate bandwidth ca-
pacity offered by the spectrum and protocol used for wireless
communication, and a limitation on the capacity of the network
gears [24].

∗Corresponding Author: Tel: +357-22-892755; Fax: +357-22-892701
Email addresses: gchatzim@cs.ucy.ac.cy (Georgios

Chatzimilioudis), costa.c@cs.ucy.ac.cy (Constantinos Costa),
dzeina@cs.ucy.ac.cy (Demetrios Zeinalipour-Yazti),
wlee@cse.psu.edu (Wang-Chien Lee)

Figure 1: (left) Large crowd protesting in Syria (Reuters 2014), (right) Woman
using her mobile while waiting for help in China floods (Reuters 2012).

The following are some real-world scenarios making a net-
work non-operational. These are cases where emergency and
crisis management services are needed the most.
Ad-Hoc Event Services. Large ad-hoc events can be cultural
festivals (e.g., Woodstock, Old Car enthusiast gatherings), sport-
ing events, conventions and fairs, ad-hoc demonstrations (e.g.,
Occupy Wall Street 2011) and ad-hoc protests (e.g., Egypt 2013,
Syria 2014, Romania 2014, Hong Kong 2014) as seen in Fig-
ure 1 (left). In such scenarios, being able to monitor and pro-
vide communication within the crowd can aid organizing au-
thorities to better manage the crowd1 and prevent lethal crowd
disasters2,3. Additional services can also be applied, like new
entertainment services4 and crowd-games5.

1WorkingWithCrowds, Online: http://www.workingwithcrowds.com/
2Love Parade disaster, Online: http://goo.gl/2FpIbm
3Hillsborough disaster, Online: http://goo.gl/xvLRlc
4Opphos, Online: https://www.sics.se/projects/opphos
5CrowdControlGames, Online: http://crowdcontrolgames.com/

Preprint submitted to Information Systems December 11, 2015

Crowdsourced Emergency Response. During a disaster, mobile
users can be both victims and rescuers involved not only in re-
ceiving but also providing help from/to their neighboring peers
(see Figure 1 (right)). In this scenario, providing communica-
tion means within the crowd and streaming information to the
first response team is vitally important because it can aid in
organizing the crowd, allocating peer-to-peer aid and experts,
and distributing tools and medicine optimally. This would en-
able better management of the disaster monitoring and response
cycle, where citizens can get involved in decision making, data
acquisition, and advanced planning6. In a real world exam-
ple, it was the citizen’s joint efforts to map the 2012 floods
in China that materialized faster and more accurately than that
government-sanctioned map7.

When the cellular network is non-operational, users can not
rely on online services for their whereabouts, well-being and
communication. Meanwhile, the authorities may not be able to
receive all the information needed for intelligent synthesis in
order to enable advanced services. In other words, the crowd
is not able to generate possibly valuable information (e.g., sen-
sors, tweets) and the authorities are not able to collect this in-
formation. Consider the example of a disaster response, the au-
thorities need to operate in four phases: i) decision making; ii)
implementation in the field; iii) evaluation of the results; and iv)
making decisions. The right situational awareness is the key for
decision making in such cases. The crisis management operator
needs to have the right tools to communicate with the affected
citizens. The operator has to evaluate and monitor the situation
in order to learn and optimize operations in real time. It would
be an omission that could lead to the loss of human lives, if
technology could not support the crowd to generate data (e.g.,
reporting locations, victims using communication and social
services to spread their situation) and the crisis management
operator to collect and process this data during these phases.

It is imperative, therefore, to be able to create some over-
lay network that would connect cellular users by exploiting any
available device-to-device short-range communication technol-
ogy (e.g., Wi-Fi Direct, 3G/LTE direct or Bluetooth/BLE). It is
equally important to ensure that this overlay network is opera-
tional, therefore hot-spots (e.g., too many devices trying to con-
nect to each other), bottlenecks and disconnected components
need to be avoided. For this reason we opt for using a kNN
overlay graph to configure a communication network, since it
guarantees an upper limit of connections per user and according
to the crowd size n we can easily set the parameter k to guar-
antee that the graph is fully connected. Particularly, it leads to
connected topologies if the degree k > log2n [4]. In the Emer-
gency Response scenario for example, the location of the users
in the crowd can be first collected using a breadth-first-search
broadcast over Wi-Fi Direct [32, 19] and then the computation
of kNN overlay network can take place with the propositions
in this work, determining which mobile nodes will connect to
each other.

6Insight Project EU, Online: http://www.insight-ict.eu/
7Eric Blattberg “The Crowd Maps Beijing Floods” 2012, Online:

http://goo.gl/0DHZ4v

Figure 2: Our Rayzit [11] crowd messenger enabling users to interact with their
k geographic Nearest Neighbors.

Specifically for mobile environments, valuable information
can be mined based on the relations within k geographically
nearest neighbors (kNN) [37, 15, 36, 23, 25]. Similar to a
graph formed by social relationships, a kNN graph is formed
by connecting each user to its geographically nearest neighbors.
Such a graph can be mined and queried to produce valuable
information, e.g., link prediction, shortest hop-distance, large
connected communities, socialization suggestions, most central
people, most influential people, etc [1].

In this paper, we develop centralized techniques that allow
for the fast computation of the kNN graph in-situ on a mobile
device for non-operational cellular network scenarios. With the
kNN graph at hand, we can then create an overlay network that
connects each victim with its k geographically closest users and
use this to enable a variety of advanced services. The efficiency
of the algorithm allows for frequent re-computations in order
to adapt to the movement of the crowd. Our solution however
is not designed as a continuous operator, where prior network
state is utilized in subsequent network formations, mainly be-
cause of the transient network structure of the crowd. On the
contrary, we opt for a stateless solution that is re-computed
in-situ in an ongoing manner (e.g., every minute). We use
Rayzit [11]8, a real-world crowd messaging framework we de-
velop, as an example that operates on a kNN graph to motivate
and evaluate our work (see Figure 2).

In our previous work, we have presented a centralized al-
gorithm, called Proximity [8], which deals with All k Nearest
Neighbors (AkNN) queries on a server that can collect the geo-
graphic coordinates of users on an ongoing basis. In this work,
we re-focus the problem formulation by tackling the AkNN
query-processing problem in emerging short-range communi-
cation overlay topologies. Particularly, we deal with AkNN
computations directly on a smartphone of a crisis management
operator that physically resides on the place of an emergency
event where an overloaded or partially broken cellular network
may exist. Our new contributions are summarized as follows:

• We adapt the previously proposed Proximity algorithm
to operate in scenarios where the cellular network base

8Rayzit – Rayz your message, Online: http://www.rayzit.com/

2

stations are not operational. Particularly, we apply the
following improvements: i) we deploy a pre-processing
step that partitions the space using an equi-width grid and
implement the Proximity algorithm on top of this parti-
tioning; ii) we propose an optimization that implements a
tighter bound for the candidate set and achieving reduced
CPU time. This new bound still guarantees correctness
of results; iii) we propose a bulk processing method for
the construction of the candidate set that trades slightly
higher memory usage for smaller CPU times; and iv)
we propose a new pruning heuristic for the final search
phase. This heuristic is based on the fact that the can-
didates are already ordered. As a result, the candidate
bound can be decreased as the nearest neighbors for a
specific user are found while the candidate set is scanned.

• We provide an analytical study for the performance, scal-
ability and correctness of our algorithm, showing that it
can perform very well independent of the deployment
scale and the distribution of input objects.

• We conduct an extensive experimental evaluation that val-
idates our analytical results and shows the superiority of
our propositions over competitive algorithms. Particu-
larly, we use three different datasets to test implementa-
tions of proposed algorithms and find significant perfor-
mance improvements.

The remainder of the paper is organized as follows. Section
2 provides the related work on AkNN query processing. Section
3 provides our problem definition, system model and desider-
ata. Section 4 presents the phases and algorithms of our AkNN
framework, and analyzes correctness and complexity. Section
5 presents an extensive experimental evaluation and Section 6
concludes the paper.

2. Related Work

We provide a summary of existing state-of-the-art research
works on neighborhood queries and categorize them according
to the characteristics of these queries. Existing works can be
classified in spatial data applications and spatio-temporal data
applications.

2.1. kNN for Spatial Data

kNN search is a classical problem with many centralized al-
gorithms that find applications in computational geometry [10,
6, 14] and image processing [35, 22]. An All kNN (AkNN)
query, which can be viewed as a generalization of the basic
kNN query, generates a kNN graph. For large datasets resid-
ing on disk (external memory), works like Zhang et al. [42],
Chen et al. [9], and Sankaranarayanan et al. [30] exploit pos-
sible indices on the datasets and propose algorithms for R-tree
based AkNN search. For smaller problems, where data fits in-
side main memory, early work in the domain of computational
geometry has proposed solutions. Clarkson et al. [10] was the
first to solve the ANN problem followed by Gabow et al. [14],

Vaidya [33] and Callahan [6]. Given a set of points, a spe-
cial quad-tree is used in [10, 14, 6] and a hierarchy of boxes
to divide the data and compute the ANN is proposed in [33].
The worst case running time, for both building the needed data
structures and searching in these techniques, is O(nlogn), where
n is the number of points in the system. For the AkNN problem,
the algorithms developed in [10, 6] propose an algorithm with
O(kn+nlogn), while the algorithm in [33] achieves O(knlogn)-
time complexity.

2.2. kNN for Spatio-Temporal Data

In spatio-temporal data applications the datasets consist of
objects and queries that move over time in some Euclidean
space. Existing works in this category only tackle the prob-
lem of answering a k-nearest neighbor query for a single user
over time (CkNN query).

For large-scale disk-resident datasets, Tao et al. [31], Benetis
et al. [3], Iwerks et al. [18], Raptopoulou et al. [28], and Frent-
zos et al. [13] assume that the velocity of the moving objects
is fixed and the future position of an object can be estimated.
Huan et al. [17] assume that there is only some uncertainty in
the velocity and direction of the moving objects. Accordingly,
they propose algorithms to optimize the case were the future po-
sition estimation can also be uncertain. This set of works uses
time parameterized R-trees to efficiently search for the nearest
neighbors. Kollios et al. [20] propose a method to answer NN
queries for moving objects in 1D space. Their method is based
on the dual transformation where a line segment in the native
space corresponds to a point in the transformed space, and vice-
versa. Xiong et al. [38] focus on multiple kNN queries and
propose an incremental search technique based on hashing ob-
jects into a regular grid, keeping CPU time in mind. The main
objective of these works on disk-resident data is to minimize
disk I/O operations, considering CPU time only as a secondary
objective in the best case.

Main-memory processing is usually mandatory for spatio-
temporal applications, where objects are highly mobile. The in-
tensity of the location updates is very restrictive for disk-based
storage and indexing, and demands optimization in respect to
the CPU time. Yu et al. [39] (YPK) followed by Mouratidis et
al. [26] (CPM) and Hu et al. [16] optimize kNN queries in a
similar fashion as Xiong et al. do for disk-resident data. Data
objects are indexed by a grid in main-memory (see Figure 3)
given a system-defined parameter value for the grid size. For
each query they both use a form of iteratively enlarging a range
search to find the kNN. Assuming a grid size of

√
n cells, their

stateless solution has a time complexity of O(n1.5) for uniform
distributions and O(n2.5) for the worst-case distribution, where
the search for most of the users needs to be deepened iteratively
until it covers most of the space.

2.3. Mobile User Community Network

Similar to the motivating examples in the previous section,
Konstantinides et al. [21] present a distributed search architec-
ture for intelligent search of objects in a mobile social com-
munity. Their framework is founded on an in-situ data storage

3

o2

o1

(a)

o1

o2

(b)

Figure 3: a) In Proximity the candidate set is pre-constructed for all users of the
same cell (e.g., o1 and o2); whereas b) for existing state-of-the-art algorithms
the candidate set needs to be iteratively discovered by expanding a ring search
for each user separately into neighboring cells.

model, where captured objects remain local on smartphones. It
searches over a sophisticated structure that is computed dynam-
ically and optimizes several conflicting objectives in a single
run. Then a decision-making subsystem is utilized to tune the
retrieval preferences of the query user. Their framework yields
high query recall rates with minimized CPU time on each mo-
bile device.

3. System Model

This section formalizes our system model and design prin-
ciples. Our main notation is summarized in Table 1.

The k Nearest Neighbors (kNN) of an object o from some
dataset O, denoted as kNN(o,O), are the k objects that have the
most similar attributes to o [29]. Formally, given objects oa �=
ob �= oc and ∀ob ∈ kNN(oa, O) and ∀oc ∈ O − kNN(oa, O), it
always holds that dist(oa, ob) ≤ dist(oa, oc)9.

An All kNN (AkNN) query, viewed as a generalization of
the basic kNN query, computes the kNN(o,O) result for every
o ∈ O and has a quadratic worst-case bound. An AkNN search
can alternatively be viewed as a kNN Self-Join operation: Given
a dataset O and an integer k, the kNN Self-Join of O combines
each object oa ∈ O with its k nearest neighbors from O, i.e.,
O ��kNN O = {(oa, ob)|oa, ob ∈ O and ob ∈ kNN(oa, O)}.

Research Goal. Given a set of objects O with their locations
in a bounding area, a resource-poor query processor QP com-
putes the AkNN result of O by minimizing CPU time.

Let O be a set of n mobile users moving in a planar area,
denoted by their current locations, which can either be obtained
at a fine granularity (e.g., GPS and RadioMaps) or coarse gran-
ularity (e.g., Cell ID and Wi-Fi ID databases). Assume that
there is a mobile device, denoted as QP (Query Processor),
which collects the locations of all users in user set O. Our main
desiderata is to minimize CPU time on QP , given that this de-
termines the energy consumption of QP and also determines
how frequently the kNN networks can be re-computed.

9In our discussion, dist can be any Lp-norm, such as Manhattan (L1), Eu-
clidean (L2) or Chebyshev (L∞).

Table 1: Summary of Notation

Notation Description

o,O, n Object o, set of all o, n = |O|
kNN(o,O) k nearest neighbors of o in O
AkNN(O) k nearest neighbors of every o in O
dist(oa, ob) Lp-norm distance between oa and ob
c, C,Oc Cell c, set of all c, objects in c
Sc Candidate Set of c

3.1. Emergency Network Model

In a disaster scenario with a non-operational cellular net-
work, the first task is to construct an ad-hoc communication net-
work that would enable information routing within the crowd.
This can be done using existing technologies (e.g., Wi-Fi Di-
rect [24]) and algorithms [32, 19], assuming that each user can
directly communicate with peers that are within a certain com-
munication radius. With the initial ad-hoc network in place,
each user can send out a request to construct a query routing
tree, using techniques like [40, 41, 2, 7], in order to collect the
location of the users in the crowd and compute the kNN graph.
We assume that only one request completes, e.g., by letting the
request with the oldest initiation timestamp dominate. There-
fore, one user within each connected overlay network retrieves
the needed locations and computes the kNN graph.

4. Centralized AkNN Query Processing

In this section, we introduce Proximity, a centralized AkNN
query processing framework [8] we developed previously. We
then describe the adaptations undertaken to make it functional
for non-operational cellular network scenarios using a grid par-
titioning. Subsequently, we also propose two optimizations,
namely Prox and Akin, which reduce the CPU time for the
AkNN computation. We conclude with some further improve-
ments upon Prox and Akin, coined Prox+ and Akin+, which are
founded on more powerful pruning heuristics than their basic
counterparts.

4.1. Background on Proximity

The Proximity framework is designed in such a way that it
is: i) Memory-resident, since the dynamic nature of mobile user
makes disk resident processing prohibitive; ii) Specifically de-
signed for highly mobile and skewed distribution environments
performing equally well in congested and sparsely-deployed
scenarios; and iii) Infrastructure-ready, since it does not require
any additional infrastructure or specialized hardware.

The original Proximity algorithm exploits the natural geo-
graphic partitioning that is provided by the Network Connectiv-
ity Points (NCP) of a cellular network (e.g., cell towers). This
partitioning allows for the derivation of kNN candidate sets,
which provide the AkNN answer-set in linear time. Particularly,
for every timestep Proximity works in two phases: In the first
phase one k+-heap data structure is constructed per NCP, us-
ing the location reports of users (the k+-heap will be discussed

4

Algorithm 1 . Proximity with Grid Partitioning
Input: User locations O, set C of all grid cells
Output: kNN answer-set for each user in O
1: for all c ∈ C do
2: initialize Sc � Initialize our k+-heap
3: end for
4: for all o ∈ O do � Phase 1: build k+-heap
5: for all c ∈ C do
6: insert(o, Sc)
7: end for
8: end for
9: for all o ∈ O do � Phase 2: scan k+-heap

10: kNN0 = ∅ � Conventional k-max heap
11: c← o.cell
12: for all o′ ∈ Sc do
13: if o′ is a kNN of o then
14: update(kNNo , o′)
15: end if
16: end for
17: end for

����������	
 �����	����	� ����	�

��������	
��
���

Figure 4: A visualization of a k+-heap (denoted as Sc) for a specific cell c,
comprises of three structures: Oc, Kc and Bc .

more thoroughly in 4.2). In the second phase, the k-nearest
neighbors for each user are determined by scanning the respec-
tive k+-heap and the results are reported back to the users.

4.2. Proximity with Grid Partitioning

In this section we adapt the Proximity algorithm such that
it is effective even under a non-operational cellular network,
where there are no NCPs to naturally partition the space. In Al-
gorithm 1 we outline the proposed solution that operates over a
grid partitioning of the space into equi-width cells C. In Algo-
rithm 2 we discuss in more detail the specifics of the insertion
procedure of the basic underlying k+-heap data structure.

Algorithm 1 (Outline): Each cell c ∈ C contains a disjoint
subset Oc ⊂ O of objects. Algorithm 1 computes a correct
candidate set Sc for each cell c ∈ C by constructing a k+-heap
data structure for each cell (lines 1-8). In the second phase,
the kNN for each user o ∈ O are determined by scanning the
respective k+-heap and computing kNN(o, Sc) (lines 9-17).

The k+-heap consists of three separate data structures (see
Figure 4): i) an unordered list of internal objects lying inside
the boundary of c (coined Oc); ii) a conventional k-max-heap
(coined Kc) capturing the closest external candidates; and iii)
an ordered list of external boundary objects (coined B c), which
are necessary besides Kc for the correct computation of any
AkNN query.

The Kc and Bc structures are defined according to defini-
tions 1 and 2, respectively. In Definition 3, we conclude with a

Algorithm 2 . k+-heap: Insert(onew, c)
Input: Object to be added onew , Cell c of k+-heap
Output: Sc updated
1: kthc ← head(Kc)
2: if contained inside(onew , c) then
3: insert(onew , Oc)
4: else if dist(onew , c) < dist(kthc, c) then
5: insert(onew , Kc)
6: if K heap has more than k elements then
7: kthc ← pophead(Kc)
8: insert(kthc, Bc)
9: Update boundary(head(Kc))

10: end if
11: else if dist(onew , c) < dist(kthc, c) + diagc then
12: insert(onew, Bc)
13: else
14: discard onew

15: end if

formal definition of the k+-heap (coined Candidate Set, S c).

Definition 1 (Kc, k-max-heap of cell c). Given a set of exter-
nal users O − Oc, which is ordered with ascending distance
dist(o, c) to the border of cell c, set Kc consists of the top-k
elements of this set.

Definition 2 (Bc, Boundary Set of cell c). Given a cell c and
its kth closest external user to the border of c, set Bc consists
of all users o ∈ O − (Oc ∪ Kc) with distance dist(o, c) <
dist(kthc, c) + diagc from the border of c. In other words
Bc consists of all users o ∈ O with distance dist(kthc, c) <
dist(o, c) < dist(kthc, c) + diagc.

Definition 3 (Sc, Candidate Set of cell c). Given a cell c and its
Oc, Kc and Bc sets, the candidate set Sc of c consists of users
o ∈ Oc ∪Kc ∪Bc.

Performance Analysis of Prox: Assuming a grid size of
√
n

cells and uniform data distribution of n objects, Algorithm 1
runs in O(n1.5 log

√
n) time. Particularly, the loop at line 1 runs

in O(
√
n). The loop at line 4 runs in O(n1.5log

√
n), given that

the insertion procedure of the heap runs in O(log
√
n). Finally,

the last loop in line 9 runs in O(n1.5), given that each k+-heap
has O(

√
n) users under a uniform distribution assumption. In

the worst-case distribution, where all users fall in a single cell
this algorithm runs in O(n2) time.

Algorithm 2 (Insertion): We now discuss in more detail the
specifics of the insertion procedure of the k+-heap. When in-
serting a new element onew into the k+-heap of c, we distin-
guish among four cases (see Algorithm 2): i) onew is covered
by c and belongs to set Oc (line 2), ii) onew belongs to set Kc

(line 4), iii) onew belongs to set Bc (line 11), or iv) onew does
not belong to the candidate set Sc = Oc ∪ Kc ∪ Bc of cell c
(line 13). In case (i) the element is inserted into the Oc list. In
case (ii) we need to insert onew into heap K (line 5) and move
the current head kthc from K to the boundary list B (lines 7-
8). This yields a new head kth′

c in K (line 9). Every time the
kthc changes, the boundary list B needs to be updated, since it
might need to evict some elements according to Definition 2. In
case (iii) we insert onew into the ordered boundary list B (line

5

�����

���������
������������	

������������	

��������������������	

����������������

o5

o6

o0

o1

o2

o3

o4

x

��

��

��

Figure 5: (Running Example) The construction of Sc with k=2. The candidate
set Sc of c is {o0, o1, o2, o3, o4, o5, o6} and is represented by the area within
the dotted line with the rounded corners. Set Sc includes all users Oc inside c
(solid line cell), users inside Kc the lighter square ring and the users Bc inside
the darker ring. Any node outside Sc (e.g., user x) is guaranteed NOT to be a
kNN of any user inside cell c. The 2-nearest neighbors for the nodes in c are
kNN(o0) = {o1, o2} and kNN(o6) = {o5, o0}.

12). Note that the sets Kc and Bc are formed as elements are
inserted into the k+-heap. The first k elements inserted in the
empty k+-heap define the Kc set. In case (iv) the element is
discarded.

4.3. Prox: An Optimized Candidate Set Bound

Our initial Proximity algorithm has a suboptimal bound de-
termining the candidate set per cell. Here we propose a tighter
bound, coined Prox, which is founded on the observation that
the K ′

c set inside a k+-heap could have been constructed from
objects that reside both inside a cell and outside a cell, as op-
posed to the original Proximity algorithm, where the K c set
emerged from objects residing outside a given cell only. Partic-
ularly, we use the following definition to define the optimized
candidate set bound:

Definition 4 (K ′
c, smaller Kc). Given a set of any user in O,

which is ordered with ascending distance dist(o, c) to the bor-
der of cell c, set K ′

c consists of the top-k elements of this set.

Note that the difference of Kc to K ′
c is that the former def-

inition includes only users outside cell c. This does not allow
for a tight bound and a minimum cut-off threshold θ c. Partic-
ularly, by expanding the scope of K ′

c, immediately makes B ′
c

smaller or equal in size to Bc. This effectively allows Prox to
process a smaller search space, as the S ′

c set now comprises of
B′

c ∪ Oc ∪ K ′
c, as opposed to Bc ∪ Oc ∪ Kc. Another way to

present the difference is to mention that with Prox, it holds that
dist(kth′

c, c) ≤ dist(kthc, c).

Running Example of Prox: We shall now present a running
example of Prox in Figure 5. Consider that the following ob-
ject locations arrive at QP : O = {o0, o1, o2, o3, o4, o5, o6, ox}.
Every object is again inserted into every k+-heap on the QP
(see Algorithm 1, lines 1-5). The order in which the objects
are inserted into a k+-heap does not affect the correctness of
the candidate set. For our example, assume that the objects are
inserted in the order seen in the first column of Table 2. For

Table 2: Build-up phase of Sc in Prox as object locations are inserted

Object Set K′
c Set B′

c Set Oc

o4 {o4} {} {}
ox {ox, o4} {} {}
o2 {o4, o2} {ox} {}
o3 {o3, o2} {o4, ox} {}
o1 {o2, o1} {o3, o4} {}
o5 {o2, o1} {o3, o4, o5} {}
o6 {o2, o1} {o3, o4, o5} {o6}
o0 {o0, o1} {o2, o3, o4, o5} {o6, o0}

every insertion we can see the contents of S ′
c in the same Ta-

ble (i.e., last three columns). For simplicity, we only follow the
operation on the S ′

c of cell c (that similarly applies to all cells).
When object o4 is inserted into S ′

c it is added to the heap
K ′

c, which records the closest objects around the cell border
of c (both internal and external objects to c). The same logic
applies to the next object ox. At this point, however, the K ′

c

heap gets full (assume it is a 2-max-heap). The third insertion
of o2 into K ′

c evicts ox from K ′
c (given that in Figure 5, o2 and

o4 are the closer to the boundary c than ox). It however does
not discard ox, given that it might still be a good candidate for
some hypothetical other object oy in c (e.g., one that resides on
the opposite site of the cell).

Before transferring it blindly to Bc, ox is checked against
the new threshold: θ′c = dist(o4, c) + diagc. Given that ox is
below θ′c, it is inserted into Bc. Alternatively, ox would have
been discarded. A similar procedure is followed for the next
three insertions, i.e., o3, o1 and o5. It is important to mention
that on each insertion, θ ′c might become smaller. Every time
this happens, objects inside B ′

c have to be re-evaluated and dis-
carded accordingly (e.g., ox is discarded when o1 is inserted).
As a concluding remark, notice that any “inside” object (e.g.,
o6 and o0), is automatically added to Oc but these objects are
also considered for K ′

c (i.e., in our example only o0 qualifies to
be part of K ′

c as it is close to the border c).
Phase 1 of Algorithm 1 is completed and the candidate sets

are ready after all objects are inserted into the Sc sets. In phase
2 the server scans a single S ′

c for each user ox, according to the
cell ox is mapped to. For users o0 and o6, the server QP scans
Sc = o2, o1, o3, o4, o5, o6 and finds nearest neighbors {o2, o1}
and {o5, o0}, respectively.

4.4. Akin: Bulk Candidate Set Construction without a k+-heap

In this section, we introduce an alternative technique, called
Akin, to reduce the CPU time for the candidate set construction.
Our proposition is founded on a bulk construction of the search
space without a k+-heap. Particularly, we adopt the linear-time
heap construction algorithm proposed by Robert Floyd in [12].
The given algorithm, makes the necessity of breaking our initial
search space into three sub-structures unnecessary, given that a
single heap is constructed for the complete search space of each
cell in linear time.

6

Algorithm 3 . Akin(O,Sc) Algorithm
Input: Candidate set Sc and set of objects O
Output: Sc updated
1: construct Min Heap Hc from O based on dist(o, c)
2: kthc = extract top k objects from Hc

3: θc = diagc + dist(kthc, c)
4: for all o ∈ O do
5: if dist(o, c) < θc then
6: Sc = Sc ∪ o
7: end if
8: end for
9: Sc = Sc ∪Oc

In Algorithm 3, we present our Akin algorithm for the search
space construction of cell c ∈ C. Particularly, we scan once
each object o ∈ O to build a k-min heap Hc based on the min-
imum distance dist(o, c) between o and the cell-border (line 1).
The k objects are then scanned from Hc to determine threshold
θc of c. We subsequently scan objects o ∈ O once again to
determine the set Sc of objects that satisfy the threshold (lines
4-8). At the end of the execution, we carry out the union of O c

and Sc to derive the updated search space.

Performance Analysis of Akin: Assuming a grid size of
√
n

cells and uniform data distribution of n objects, Algorithm 3
runs in O(n1.5) time. Particularly, the heap construction in line
1 takes O(n) using the Floyd algorithm. The subsequent loop
in line 4 also takes O(n), consequently the above complexity
is O(n) for each cell. For all

√
n cells the AkNN computation

cost is O(n1.5). In the worst-case distribution, where all users
fall in a single cell this algorithm runs in O(n2) time.

4.5. Internal Pruning of Candidate Set: Prox+ and Akin+

In this section we introduce an internal pruning strategy of
the candidate set Sc, which is applicable to both the Prox and
the Akin algorithms introduced earlier. We denote the respec-
tive algorithms with the extension ‘+’, if they use this further
optimization, i.e., Prox+ and Akin+. The particular strategy
can be applied once the Sc search space has been constructed,
at which point the algorithm is ready to return the AkNN results
for each user.

Particularly, the internal pruning heuristic is founded on the
observation that the internal structures of the Sc structure (i.e.,
Oc, Kc and Bc), can be accessed in a particular order to max-
imize the possibility of converging early-on with the AkNN
result-set for each user. Particularly, the heuristic strategy at-
tempts to refine the pruning threshold θc as soon as possible,
by beginning the exploration of the S c set from Oc, then if nec-
essary proceed to Kc and finally, if again necessary, proceed to
the exploration of Bc. Our experimental evaluation in Section 5
reveals that the internal pruning heuristic provides a significant
improvement to both Prox and Akin.

5. Experimental Evaluation

To evaluate our proposed algorithms we conduct a set of
experiments, using three traces of real datasets, in comparison
with existing state-of-the-art algorithms. We run all experi-
ments on a virtual octa-core computing node.

The goal of this evaluation is to compare the overall effi-
ciency of our proposed algorithms with existing state-of-the-art
algorithms in centralized AkNN query processing. Efficiency is
determined by the running time and, in case of running the al-
gorithm on a mobile device, by the energy consumed. Since our
algorithms are centralized, both running time and energy con-
sumed are proportional to the CPU time needed for the compu-
tation.

5.1. Datasets

In our experiments we use the following realistic and real
datasets (depicted in Figure 6):

Oldenburg (realistic): The initial dataset is generated with the
Brinkhoff spatio-temporal generator [5], including 5K vehicle
trajectories in a 25km x 25km area of Oldenburg, Germany.
The generated spatio-temporal dataset is then decomposed on
the temporal dimension, in order to generate realistic spatial
datasets of 100, 1000 and 10K users.

Geolife (realistic): The initial dataset is obtained from the Ge-
olife project at Microsoft Research Asia [43], including 1.1K
trajectories of users moving in the city of Beijing, China over a
life span of two years (2007-2009). Similarly to Oldenburg, the
generated spatio-temporal dataset is decomposed on the tempo-
ral dimension, in order to generate realistic spatial datasets of
100, 1000 and 10K users.

Rayzit (real): This is a real spatial dataset of 20K coordinates
captured by our Rayzit service during February 2014. We in-
tentionally do not scale this dataset up to more users, in order
to preserve the real user distribution.

Figure 6 (second row) shows the population histograms for
the three respective datasets, when split into nine equi-width
partitions. The standard deviation among the buckets for a total
population of 10K objects is: i) 900 objects in Oldenburg, ii)
2K objects in Geolife, and iii) 33 objects for Rayzit.

5.2. Evaluated Algorithms

We first evaluate the proposed algorithms in order to exper-
imentally validate the ideas and superiority of our propositions.
Our compared algorithms are:

Proximity: This algorithm is proposed in our previous work [8]
for answering AkNN queries in an operational cellular network,
which exploits the natural partitioning determined by the Net-
work Connectivity Points (cell towers). We implement Proxim-
ity on top of the grid partitioning pre-processing step discussed
in Section 4.2.

Prox: This algorithm implements the optimized candidate set
bound, introduced in Section 4.3 and founded on the obser-
vation that the K ′

c set inside a k+-heap could have been con-
structed from objects that reside both inside a cell and outside a
cell.

Akin: This algorithm implements the optimized candidate set
construction algorithm, introduced in Section 4.4. Note that it
does not make use of the k+-heap structure, rather uses a heap
constructed in linear time.

7

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
0) OLDENBURG: Data distribution (n=104)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
0) GEOLIFE: Data distribution (n=104)

 1

 10

 100

 1000

a b c d e f g h i

O
bj

ec
ts

 in
 lo

gs
ca

le
 (

x1
02)

RAYZIT: Data distribution (n=2*104)

Figure 6: Datasets (top row) and population histograms (bottom row) for an indicative 3x3 partitioning.

Prox+: This is the same algorithm as Prox but with the internal
pruning strategy described in Section 4.5. This optimization
allows the final step to terminate earlier.

Akin+: This is the same algorithm as Akin but with the internal
pruning strategy described in Section 4.5. This optimization
allows the final step to terminate earlier.

We also take existing state-of-the-art algorithms for answer-
ing a kNN query for a single user, including Yu et al. [39] and
Mouratidis et al. [26]. We adapt them to answer an AkNN
query. In addition, we compare the adaptation of existing work
to our best algorithms.

YPK and CPM: These methods iteratively enlarge a range search
to find the kNN for the user (see Figure 3b). The search space
starts from the cell of the user and iteratively visits neighbor-
ing cells until at least k neighbors are found. It is guaranteed
that no further neighboring cell can have a user that is closer.
For our experiments, we use this adaptation as a baseline for
comparison.

In Table 3, we summarize the time complexity for each
of the above algorithms according to the respective data dis-
tribution, where “Best” denotes the uniform distribution and
“Worst” the worst distribution that corresponds to each algo-
rithm.

Table 3: Algorithm Complexities under Best-case and Worst-case distributions.

Algorithm Best Worst

Proximity, Prox, Prox+ O(n1.5log
√
n) O(n2)

Akin, Akin+ O(n1.5) O(n2)
CPM/YPK O(n1.5) O(n2.5)

5.3. Evaluation Metrics

CPU time is the metric we use for our evaluation. All al-
gorithms under evaluation are centralized and, thus, do not re-
quire any communication. Therefore, CPU time captures both
the running time and the energy consumed by the computing
node (e.g., mobile device) to run the AkNN algorithm. The

CPU times are averaged over five iterations and are measured
in milliseconds. Note that all figures are plotted with the time
(y-axis) in log-scale, thus the actual difference in efficiency be-
tween the algorithms is larger than it visually appears.

5.4. Control Experiments

In this experimental series, we evaluate our proposed opti-
mizations. We increase the workload by growing the number of
online users (n) exponentially using n = 102, 103, 104 for all
datasets.

All plots in Figure 7 show that Proximity without any op-
timizations has the worst performance. They also show that
using bulk heap construction (i.e., Akin) instead of a k+-heap
(i.e., Prox) we achieve better performance. Looking at the ’+’
optimization (i.e., the internal pruning strategy), it is evident
that Akin+ and Prox+ outperform their counterparts (i.e., Akin
and Prox) every time.

It is interesting to notice that Akin+ does not outperform
Prox+, even though Akin outperforms Prox, and Akin+ outper-
forms Akin. This is happening because the pruning power in-
side the candidate set of Akin+ is smaller compared to Prox+.
As described in Section 4.4, Akin includes also internal objects
in the computation of the Kc set resulting in a Kc area that is
narrower and closer to the cell border. Therefore, when the
kNNs of an internal object can not be guaranteed by the objects
inside the cell (Oc set), then there is a much higher chance for
Akin+ to continue the kNN search in the much larger boundary
set (Bc) instead of guaranteeing the kNNs by just expanding to
the Kc set, as opposed to Prox+.

Comparing the various datasets, we conclude that the more
skewed the dataset is (e.g., Geolife) the more improvement the
speed-up achieved by our optimizations. This stands also when
we look at the growing workload. Generally, the proposed op-
timizations in this paper always outperform our original algo-
rithm Proximity, specifically for large workloads and skewed
datasets where they reach a 10% speed-up (Figure 7b).

8

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

OLDENBURG: Response Time for varying number of users
(k=16)

Proximity
Prox
Akin

Prox+

Akin+

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

GEOLIFE: Response Time for varying number of users
(k=16)

Proximity
Prox
Akin

Prox+

Akin+

(b)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

RAYZIT: Response Time for varying number of users
(k=16)

Proximity
Prox
Akin

Prox+

Akin+

(c)

Figure 7: CPU time for all algorithms using the datasets: a) Oldenburg; b) Geolife; and c) Rayzit. The plots show that: i) Proximity without any optimizations has
the worst performance; ii) Internal Pruning (using the “+”) has a higher impact on Prox rather than on Akin, making Prox+ the algorithm with the best CPU-time
performance; iii) the more skewed the dataset is (e.g., Geolife) the more improvement the speed-up achieved by our optimizations.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

OLDENBURG: Response Time for varying number of users
(k=16)

CPM
YPK

Prox+

Akin+

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

102 103 104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)

Number of online users (n)

GEOLIFE: Response Time for varying number of users
(k=16)

CPM
YPK

Prox+

Akin+

(b)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

104R
es

po
ns

e
tim

e
in

 lo
g-

sc
al

e
(m

s)
Number of online users (n)

RAYZIT: Response Time for varying number of users
(k=16)

CPM
YPK

Prox+

Akin+

(c)

Figure 8: CPU time for the best algorithms using the datasets: a) Oldenburg; b) Geolife; and c) Rayzit. The plots show Prox+ and Akin+ outperform adapted
state-of-the-art AkNN query processing algorithms YPK and CPM that apply iterative deepening principle rather than bulk computation of the search space.

5.5. Comparison Against Existing Work

In this experimental series, we compare our best algorithms
(i.e., Prox+, Akin+) against the state-of-the-art (i.e., YPK, CPM).
Again, we increase the workload of the system by growing the
number of online users (n) exponentially usingn = 10 2, 103, 104

for all datasets (other than Rayzit, which is kept at 104 as ex-
plained previously).

Figure 8 shows that there are only two instances where a
state-of-the-art algorithm (i.e., YPK) outperforms any of our
algorithm (i.e., Akin+), i.e., for the lightest workloads n =
102. Looking at the workload, it shows that the our algorithms
achieve greater speed-up as the workload increases. Compar-
ing datasets, it is evident that the more skewed the dataset the
greater the speed-up achieved by our algorithms.

It can clearly be observed, that the algorithms proposed in
this paper outperform existing approaches for any workload and
skewness of dataset. The more skewed the dataset is (i.e., Ge-
olife) the more improvement the speed-up of our algorithms,
specifically they reach a 10% speed-up (Figure 8b). This is in
line with our theoretical comparison in Table 3, where the time
complexity of the state-of-the-art is greater for the worst-case
data distribution.

6. Conclusions

In this paper, we develop techniques that generate the kNN
graph of an arbitrary crowd of smartphone users that intercon-
nect through a short-range communication technology, such as,
Wi-Fi Direct, 3G/LTE direct or Bluetooth v4.0 (BLE). We present
two efficient algorithms, namely Akin+ and Prox+, optimized
to work on a resource-limited mobile device. These algorithms
partition the user space and compute shared candidate sets per
partition. Prox+ uses a custom heap data structure to update
the candidate set as new users are inserted, whereas Akin+ uses
a bulk bottom-up construction of a simple heap to compute the
candidate set once all users have been inserted. Our experi-
ments verify the theoretical efficiency and shows that Prox+
and Akin+ are very well suited for large scale and skewed data
scenarios.

Acknowledgments

This work was supported by an Appcampus Award (Microsoft,
Nokia and Aalto University, Finland). It has also been sup-
ported by the third author’s startup grant at the Univ. of Cyprus,
EU’s FP7 “Mobility, Data Mining, and Privacy” project, EU’s
COST Action MOVE “Knowledge Discovery for Moving Ob-
jects” and an industrial award by MTN Cyprus.

9

References

[1] C. C. Aggarwal “An Introduction to Social Network Data Analytics”.
Springer USA, 2011.

[2] P. Andreou, A. Pamboris, D. Zeinalipour-Yazti, P. K. Chrysanthis, G.
Samaras. “ETC: Energy-Driven Tree Construction in Wireless Sensor
Networks”. In Proceedings of the 10th International Conference on Mo-
bile Data Management (MDM’09), pp. 513–518, 2009.

[3] R. Benetis, C.S. Jensen, G. Karciauskas, and S. Saltenis. “Nearest neigh-
bor and reverse nearest neighbor queries for moving objects”. In Pro-
ceedings of the 2002 International Symposium on Database Engineering
& Applications (IDEAS’02), pp. 44–53, 2002.

[4] B. Bollobs. “Modern graph theory”. Springer Science & Business Media,
Vol. 184, 1998.

[5] T. Brinkhoff. “A framework for generating network-based moving ob-
jects”. Geoinformatica, Vol. 6, pp. 153–180, 2002.

[6] P.B. Callahan. “Optimal parallel all-nearest-neighbors using the well-
separated pair decomposition”. In Proceedings of the 34th IEEE Annual
Foundations of Computer Science (SFCS’93), pp. 332–340, 1993.

[7] G. Chatzimilioudis, D. Zeinalipour-Yazti, D. Gunopulos. “Minimum-hot-
spot query trees for wireless sensor networks”. In Proceedings of the
9th ACM International Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE ’10), pp. 33–40, 2010.

[8] G. Chatzimilioudis, D. Zeinalipour-Yazti, W.-C. Lee and M.D. Dikaiakos.
“Continuous all k-nearest neighbor querying in smartphone networks”. In
Proceedings of the 13th IEEE International Conference on Mobile Data
Management (MDM’12), pp. 79–88, 2012.

[9] Y. Chen and J.M. Patel. “Efficient evaluation of all-nearest-neighbor
queries”. In Proceedings of the 23rd IEEE International Conference on
Data Engineering (ICDE’07), pp. 1056–1065, 2007.

[10] K.L. Clarkson. “Fast algorithms for the all nearest neighbors problem”.
In Proceedings 24th Annual Symposium on Foundations of Computer Sci-
ence (FOCS’83), pp. 226–232, 1983.

[11] C. Costa, C. Anastasiou, G. Chatzimilioudis and D. Zeinalipour-Yazti.
“Rayzit: An Anonymous and Dynamic Crowd Messaging Architecture”,
In Proceedings of the 3rd IEEE Intl. Workshop on Mobile Data Manage-
ment, Mining, and Computing on Social Networks (Mobisocial’15), Vol.
2, pp. 98-103, IEEE Computer Society, 2015.

[12] R.W. Floyd. “Algorithm 245: Treesort”. Commun. ACM 7, 12 (December
1964), pp. 701-., 1964.

[13] E. Frentzos, K. Gratsias, N. Pelekis and Y. Theodoridis. “Algorithms for
nearest neighbor search on moving object trajectories”. Geoinformatica,
Vol. 11, pp. 159–193, 2007.

[14] H.N. Gabow, J.L. Bentley and R.E. Tarjan. “Scaling and related tech-
niques for geometry problems”. In Proceedings of the 16th ACM sympo-
sium on Theory of computing (STOC’84), pp. 135–143, 1984.

[15] V. Hautamaki, I. Karkkainen and P. Franti. “Outlier Detection Using k-
Nearest Neighbour Graph”. In Proceedings of the 17th International Con-
ference on Pattern Recognition (ICPR’04), Vol. 3, 2004.

[16] H. Hu, J. Xu and D.L. Lee. “A generic framework for monitoring con-
tinuous spatial queries over moving objects”. In Proceedings of the 2005
ACM SIGMOD International conference on Management of data (SIG-
MOD’05), pp. 479–490, 2005.

[17] Y.-K. Huang, S.-J. Liao and C. Lee. “Efficient continuous k-nearest neigh-
bor query processing over moving objects with uncertain speed and direc-
tion”. In Proceedings of the 20th international conference on Scientific
and Statistical Database Management (SSDBM’08), pp. 549–557, 2008.

[18] G.S. Iwerks, H. Samet and K. Smith. “Continuous k-nearest neighbor
queries for continuously moving points with updates”. In Proceedings of
the 29th international conference on Very large data bases - Volume 29
(VLDB’03), pp. 512–523, 2003.

[19] P. Kolios, A. Pitsillides and O. Mokryn. “Bilateral routing in emergency
response networks”. In 20th International Conference on Telecommuni-
cations (ICT’13), pp. 1–5, 2013.

[20] G. Kollios, D. Gunopulos and V.J. Tsotras. “Nearest neighbor queries in
a mobile environment”. In Proceedings of the International Workshop
on Spatio-Temporal Database Management (STDBM’99), pp. 119–134,
Springer-Verlag, 1999.

[21] A. Konstantinidis, D. Zeinalipour-Yazti, P. Andreou, G. Samaras and P.
K. Chrysanthis “Intelligent search in social communities of smartphone
users”. Distributed and Parallel Databases (DAPD13), Vol. 31, pp. 115–
149, 2013.

[22] T.H. Lai and M.-J. Sheng. “Constructing euclidean minimum spanning
trees and all nearest neighbors on reconfigurable meshes”. IEEE Trans-
actions of Parallel Distributed Systems, 7, pp. 806–817, 1996.

[23] N. Lathia, S. Hailes and L. Capra. “kNN CF: a temporal social network”.
In Proceedings of the ACM conference on Recommender systems (Rec-
Sys’08), pp. 227–234, 2008.

[24] Y.-B. Lin and I. Chlamtac. “Wireless and Mobile Network Architectures”.
John Wiley & Sons, Inc., 2000.

[25] W. Liu, J. Wang and S. Chang. “Hashing with graphs”. In Proceedings of
the 28th International Conference on Machine Learning (ICML’11), pp.
1–8, 2011.

[26] K. Mouratidis, D. Papadias and M. Hadjieleftheriou. “Conceptual parti-
tioning: an efficient method for continuous nearest neighbor monitoring”.
In Proceedings of the ACM SIGMOD international conference on Man-
agement of data (SIGMOD’05), pp. 634–645, 2005.

[27] E.C. Ngai, M.B. Srivastava and L. Jiangchuan. “Context-aware sensor
data dissemination for mobile users in remote areas”. In Proceedings of
the IEEE INFOCOM’12, pp. 2711–2715, 2012.

[28] K. Raptopoulou, A.N. Papadopoulos and Y. Manolopoulos. “Fast nearest-
neighbor query processing in moving-object databases”. Geoinformatica,
Vol. 7, pp. 113–137, June 2003.

[29] N. Roussopoulos, S. Kelley and F. Vincent. “Nearest neighbor queries”.
In Proceedings of the ACM SIGMOD international conference on Man-
agement of data (SIGMOD’95), pp. 71–79, 1995.

[30] J. Sankaranarayanan, H. Samet and A. Varshney. “A fast all nearest neigh-
bor algorithm for applications involving large point-clouds”. Computers
& Graphics, Vol. 31, Iss. 2, pp. 157–174, 2007.

[31] Y. Tao, D. Papadias and Q. Shen. “Continuous nearest neighbor search”.
In Proceedings of the 28th international conference on Very Large Data
Bases (VLDB’02), pp. 287–298. 2002.

[32] S. Trifunovic, B. Distl, D. Schatzmann and F. Legendre. “Wi-Fi-Opp:
ad-hoc-less opportunistic networking”. In Proceedings of the 6th ACM
workshop on Challenged networks (CHANTS’11), pp. 37–42, 2011.

[33] P.M. Vaidya. “An o(n log n) algorithm for the all-nearest-neighbors prob-
lem”. Discrete Computational Geometry, Vol. 4, pp. 101–115, 1989.

[34] C.-J. Wang and W.-S. Ku. “Anonymous Sensory Data Collection Ap-
proach for Mobile Participatory Sensing”. IEEE 29th International Con-
ference on Data Engineering Workshops, pp. 220–227, 2013.

[35] Y.-R. Wang, S.-J. Horng and C.-H. Wu. “Efficient algorithms for the
all nearest neighbor and closest pair problems on the linear array with
a reconfigurable pipelined bus system”. IEEE Transactions of Parallel
Distributed Systems, Vol. 16, pp. 193–206, 2005.

[36] X. Wu, V. Kumar, Q. Ross, et al. “Top 10 algorithms in data mining”.
Journal of Knowledge and Information Systems, Springer Verlag, Vol.
14, pp. 1–37, 2008.

[37] C. Xia, H. Lu, B. Chin Ooi and J. Hu. “Gorder: an efficient method for
knn join processing”. In Proceedings of the 30th international conference
on Very large data bases (VLDB’04), pp. 756–767, 2004.

[38] X. Xiong, M. F. Mokbel and W. G. Aref. “Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases”.
In Proceedings of the 21st IEEE International Conference on Data Engi-
neering (ICDE’05), pp. 643–654, 2005.

[39] X. Yu, K. Q. Pu and N. Koudas. “Monitoring k-nearest neighbor queries
over moving objects”. In Proceedings of the 21st IEEE International
Conference on Data Engineering (ICDE’05), pp. 631–642, 2005.

[40] D. Zeinalipour-Yazti, P. Andreou, P. K. Chrysanthis and G. Samaras.
“MINT Views: Materialized In-Network Top-k Views in Sensor Net-
works”. In Proceedings of the 8th International Conference on Mobile
Data Management (MDM’07), pp. 182–189, 2007.

[41] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, G. Samaras and A.
Pitsillides. “The MicroPulse Framework for Adaptive Waking Windows
in Sensor Networks”. In Proceedings of the 8th International Conference
on Mobile Data Management (MDM’07), pp. 351–355, 2007.

[42] J. Zhang, N. Mamoulis, D. Papadias and Y. Tao. “All-nearest-neighbors
queries in spatial databases”. In Proceedings of the 16th International
Conference on Scientific and Statistical Database Management (SS-
DBM’04), pp. 297–306, 2004.

[43] Y. Zheng, L. Liu, L. Wang and X. Xie. “Learning transportation mode
from raw gps data for geographic applications on the web”. In Proceed-
ings of the 17th international conference on World Wide Web (WWW’08),
pp. 247–256, 2008.

10

