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Abstract

An important problem in unstructured peer-to-peer (P2P) networks is the effi-
cient content-based retrieval of documents shared by other peers. However, existing
searching mechanisms are not scaling well because they are either based on the idea
of flooding the network with queries or because they require some form of global
knowledge.

We propose the Intelligent Search Mechanism (ISM) which is an efficient, scalable
yet simple mechanism for improving the information retrieval problem in P2P sys-
tems. Our mechanism is efficient since it is bounded by the number of neighbors
and scalable because no global knowledge is required to be maintained.

ISM consists of four components: A Profiling Structure which logs queryhit messages
coming from neighbors, a Query Similarity function which calculates the similarity
queries to a new query, RelevanceRank which is an online neighbor ranking function
and a Search Mechanism which forwards queries to selected neighbors.

We deploy and compare ISM with a number of other distributed search techniques
over static and dynamic environments. Our experiments are performed with real
data over Peerware, our middleware simulation infrastructure which is deployed on
75 workstations. Our results indicate that ISM outperforms its competitors and
that in some cases it manages to achieve 100% recall rate while using only half of
the network resources required by its competitors. Further, its performance is also
superior with respect to the total query response time and our algorithm exhibits
a learning behavior as nodes acquire more knowledge. Finally ISM works well in
dynamic network topologies and in environments with replicated data sources.
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1 Introduction

Peer-to-peer (P2P) networks are increasingly becoming popular because they
offer opportunities for real-time communication, ad-hoc collaboration [12] and
information sharing [10,16,22] in large-scale distributed environments. Re-
cently the P2P model has also been proposed in [3,14,28] as an alterna-
tive model to WWW-crawling based systems to cope with information that
changes frequently. Peer-to-peer computing is defined as the sharing of com-
puter resources and information through direct exchange. The most distinct
characteristic of P2P computing is that there is symmetric communication be-
tween the peers; each peer has both a client and a server role. The advantages
of P2P systems are multi-dimensional; they improve scalability by enabling
direct and real-time sharing of services and information; enable knowledge
sharing by aggregating information and resources from nodes that are located
on geographically distributed and potentially heterogeneous platforms; and,
provide high availability by eliminating the need for a centralized component.

In this paper we consider the information retrieval problem in P2P networks.
Assume that each peer has a database (or collection) of documents (see fig-
ure 1) which represents the knowledge of the peer. The documents can be
collections of text, audio, video or other semi-structured documents. Each
peer shares its information with the rest of the network through its neighbors.
A node searches for information by sending query messages to its peers. With-
out loss of generality we assume that the queries are collections of keywords
and that a querying peer is interested in finding all the documents that contain
a set of keywords. A peer receiving a query message evaluates the constraint
locally against its collections of documents. If the evaluation is successful, the
peer generates a reply message to the querying peer which includes the iden-
tifier of all the documents that correspond to the constraint. Once a querying
peer receives responses from its peers it afterwards decides which documents
to download. Our goal is to decrease the number of messages sent per query
while at the same time maintain a high recall rate.

The information retrieval problem is a more complex operation than tradi-
tional search techniques based on object identifiers or filenames, currently
being used in P2P systems [5,10,16]. The Information Retrieval (IR) commu-
nity has over the years developed algorithms for precise document retrieval
in static data environments (such as a corpus of documents). However these
methods are not directly applicable to P2P systems where there is no central
repository, there are large numbers of documents, and nodes are joining and
leaving in a dynamic and ad-hoc manner. Given the information explosion in
the last few years, the advances in public networks along with the deployment
of powerful personal computing units by end users; we believe that the P2P
computing model may dominate the traditional Client-Server model in the
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Fig. 1. Information Retrieval in P2P systems. Each node possesses a collection
of files (text, audio or video) and nodes want to perform content-based searches over
the document collection of other nodes.

coming years, and that P2P systems are going to become applicable to a wide
set of applications.

Note that searching based on the file contents is not possible in most current
P2P systems [5,10,22]. In those systems searching is done using file identifiers
instead (such as the name of the file or the documentId). Although this allows
deployment of efficient search and indexing techniques it restricts the ability
of P2P users to perform content-based searches.

There are generally three type of search techniques: i) centralized (e.g. nap-
ster [22]), ii) hybrid (e.g. kazaa [16] and gnutella v0.6) and iii) purely decen-
tralized (e.g. gnutella v0.4 [10]).

In centralized search techniques, each peer uploads an index of its files to
the index server as it joins the network. These are centralized processes that
exploit large databases and parallel approaches to process queries, and work
extremely well. In the P2P information retrieval context however, they have
several disadvantages. The biggest disadvantage is that the index needs to be
an inverted index over all the documents in the network. This means that the
index node has to have sufficient resources to setup and maintain such settings.
Although hardware performance and costs have improved, such centralized
repositories are still expensive and prohibitive in dynamic environments where
nodes are joining and leaving.

Hybrid search techniques improve scalability, by employing one (or possibly
more) peers with long-time connectivity and high bandwidth connection and
capacity. These have additional functionality in that they become indexes for
the contents of other peers or form a backbone infrastructure which can be
utilized by other less powerful nodes.

Finally in purely decentralized search techniques each node acts independently
and the actual searches are performed using brute force techniques (e.g. by
broadcasting the query). However, query broadcasting becomes an expensive
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Fig. 2. Searching in a peer-to-peer network with Breadth First Search (BFS): Each
peer forwards the query to all its neighbors.

operation given that such networks are extremely large. Therefore efficient
information retrieval in such settings becomes a challenging task.

2 Information Retrieval in Pure P2P Networks

In this section we provide a brief overview of techniques and algorithms that
can be used to perform content-based searches in P2P system. We consider a
network of n nodes (peers), with average degree r (with r << n), that is, each
peer is directly connected to around r other peers. For a given peer u, the
peers in N(u) are those nodes in the network that have a direct connection to
u. Formally, for a given peer u, let Du be the set of documents that are stored
in u. Without loss of generality, assume that each document d is a sequence
of keywords, and let s(d) be the (unordered) set of keywords in d. Given a
query q, itself a set of keywords, the result of the query should be the answer
set {(d, u)| where q ⊂ s(d) and d ∈ Du}, that is, the documents that include
the keywords in q that are stored in peer u.

2.1 The ”naive” Breadth First Search (BFS) Technique

BFS is a technique widely used in P2P file sharing applications, such as
Gnutella [10]. BFS sacrifices performance and network utilization in the sake
of its simplicity. The BFS search protocol in a peer-to-peer network (see fig-
ure 2) works as follows. A node v generates a Query message q when it wants
to search for contents located on other peers. v propagates q to all of the peers
in N(v). When a peer u receives a Query request, it first propagates q further
by again using the neighbors in N(u) (except the sender), and then searches its
local repository for relevant matches. If some node w has a match, w generates
a QueryHit message to transmit the result. The QueryHit message includes
information such as the number of corresponding documents and the network
connectivity of the answering peer. If, for example, node v receives a QueryHit
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Fig. 3. Searching in a peer-to-peer network with Random Breadth First Search
(RBFS): Each peer forwards the query to a random subset of its neighbors.

from more than one peer, it may choose to do the actual download from the
peer with the best network connectivity. QueryHit messages are sent along
the same path that carried the incoming Query messages.

The disadvantage of BFS is that a query is consuming excessive network and
processing resources because a query is propagated along all links (including
nodes with high latencies). Therefore the network can easily become a bottle-
neck. One technique to avoid flooding the whole network with messages for
a single query is to associate each query with a time-to-live (TTL) field. The
TTL field determines the maximum number of hops that a given query should
be forwarded. In a typical Gnutella search the initial value for the TTL is
usually 7, which decreases each time the query is forwarded. When the TTL
becomes 0, the message is no longer forwarded. We will show in section 6 that
this technique is not adequate for reducing messaging and that we can further
improve on that.

2.2 The Random Breadth-First-Search (RBFS) Technique

In [15] we propose and evaluate the Random Breadth-First-Search (BFS) tech-
nique that can dramatically improve over the naive BFS approach. In RBFS
(see figure 3) each peer u forwards a search message to only a fraction of
its peers. Node u randomly selects a subset of N(u) to propagate the search
request. The fraction of peers that are selected is a parameter 1 to the mech-
anism. The advantage of this technique is that it does not require any global
knowledge. Every node is able to make local decisions in a fast manner since it
only needs to select some small percentage of its incoming and outgoing con-
nections. On the other hand, this algorithm is probabilistic. Therefore some
large segments of the network may become unreachable if some node does not
understand that a particular link would lead the query to such segments.

1 In our experiments we used a fraction of 0.5 (a peer propagates the request to
half its peers, selected at random).
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Fig. 4. The >RES heuristic is able to identify stable neighbors and neighbors con-
nected with many others. However it fails to explore nodes which contain content
related to a query.

2.3 Directed BFS and the Most Results in Past (>RES) Heuristic

In [34], Yang et al., present a technique where each node forwards a query to
some of its peers based on some aggregated statistics. The authors compare
a number of query routing heuristics and mention that the The Most Results
in Past (>RES) heuristic has the best satisfaction performance. A query is
defined to be satisfied if Z, for some constant Z, or more results are returned.
In >RES a peer u forwards a search message to the k peers which returned
the most results for the last 10 queries. In their experiments they chose k = 1
turning in that way their approach from a Directed BFS into a Depth-First-
Search approach.

The technique is similar to the Intelligent Search Mechanism we propose in
section 3, but uses simpler information about the peers, and is optimized
to find Z documents efficiently (for a fixed Z) rather than finding as many
documents as possible. The nature of >RES (see figure 4) allows it to explore
the larger network segments (which usually also contain the most results) and
the most stable neighbors (the peers that have routed back many queryhits),
but it doesn’t manage to explore the nodes which contain content related to the
query. We therefore characterize >RES a quantitative rather than qualitative
approach.

2.4 Other Related Techniques and Algorithms

Routing Indices: In [6], Crespo et al., present a hybrid technique where
each peer builds indices using aggregate information on the contents of the
documents of its peers. This technique is essentially a push update technique
where each peer sends to its peers information about its documents (along
with updates every time a local update happens), thus it is complementary to
our approach where the profiles get updated when a peer answers a query.
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Random Walkers and Probabilistic Searches: In the Random Walker
model, which is presented in [20], each node forwards a query message by
selecting a random neighbor and the query message is called a walker. This
model however doesn’t use any explicit technique to guide the query to the
most relevant content. Another similar technique to Random Walkers is the
Adaptive Probabilistic Search (APS) [30] algorithm. In APS each node deploys
a local index, which captures the relative probability of each neighbor to be
chosen as the next hop for some future request. The main difference with Ran-
dom Walkers is that in APS a node utilizes feedback from previous searches
to probabilistically guide future walkers, rather than forwarding the walker at
random. The APS algorithm is shown to offer improved performance over the
random walker model.

Randomized Gossiping and Semantic Spaces: In the PlanetP [7] system,
participating nodes build a global inverted index which is partially constructed
by each node. The framework is based on bloom filters, which capture the
index of some node, and which are randomly gossiped across the community.
In a different approach, the pSearch [29] system explores semantic spaces by
using advanced techniques from the Information Retrieval field. It uses the
Vector Space Model (VSM) and Latent Semantic Indexing (LSI) to generate
a semantic space which is then distributed on top of a CAN [24] structured
P2P overlay. pSearch is not designated for unstructured networks making it
therefore not applicable in the context of purely distributed overlays.

Distributed IR: A number of algorithms have been proposed in [4,8,11,31,32]
for distributed information retrieval in traditional database settings. In these,
assuming that we want to submit a query to a subset of the databases avail-
able, the problem is to decide which databases are more likely to contain the
most relevant documents. However, these algorithms assume that the query-
ing party has some statistical knowledge about the contents of each database
(for example, word frequencies in documents), and therefore have a global
view of the system. In addition, most techniques assume an always-on envi-
ronment. Recent work [18,23] shows that the performance can be improved, if
the collections are conceptually separated.

Exploiting the P2P Network Structure: In a different approach, local
search strategies that take advantage of the structure of power-law networks
can be employed [1]. The algorithm explores nodes with high connectivity
first. Essentially this is a directed depth-first-search mechanism.

Centralized Approaches: In centralized systems there is an inverted index
over all the documents in the collection of the participating hosts. These in-
clude commercial information retrieval systems such as web search engines
(e.g. Google, Inktomi) as well as P2P models that provide centralized indexes
[21,22,33]. These techniques represent an altogether different philosophy, and
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they are not directly comparable. In general, one trades simplicity and robust-
ness with improved search time and more expensive resources. Centralized
approaches are faster and guarantee to find all results while the decentralized
approaches allow always fresh content and are less costly.

Searching Using Object Identifiers: Distributed file indexing systems
such as Oceanstore[17], CAN[24] and Chord[27] allow peers to perform effi-
cient searches using object identifiers rather than keywords. These systems,
usually referred as Structured Overlays or Distributed Hash Tables (DHT), use
a specific structure with some hashing scheme that allows peers to perform
object lookup operations getting in return the address of the node storing the
object. Lookups are achieved by following a path that increasingly progresses
to the destination. These systems have been designed to optimize object re-
trieval by minimizing the number of messages and hops required to retrieve
the object, as opposed to Unstructured Overlays (e.g. Gnutella [10]), in which
the network structure doesn’t provide any lookup guaranties.

A disadvantage of DHTs is that they consider only the problem of searching
for keys, and thus cannot perform content-based retrieval. Recent work in [13]
shows that content-based query resolution is feasible in DHT systems if these
are using Rendezvous Points (RP). More specifically the framework proposes
the registration of the content (i.e. attribute-value pairs that describe the
content) at RPs. Queries might then be routed, using Chord, to a predefined
set of RPs which consequently resolve the query.

Freenet [5] is another distributed information storage and retrieval system that
uses instead an intelligent Depth-First-Search (DFS) mechanism to locate the
object keys in the system. The advantage of DFS search is that a small set of
peers can be queried quickly and efficiently; however by its nature it can take
a long time if we want to find all the results to a query.

2.5 Our Contribution

In this paper we consider a fully distributed technique for addressing the
information retrieval problem in pure P2P networks. More specifically:

• We propose the Intelligent Search Mechanism (ISM), which is an efficient,
scalable yet simple mechanism for improving the information retrieval prob-
lem in P2P systems. ISM is entirely distributed, requires only local knowl-
edge and therefore scales well with the size of the network.

• We provide an extensive experimental study, using our distributed newspa-
per infrastructure, which shows that our algorithm scales to large datasets,
works well in dynamic environments, achieves high recall rates and reduces

8



networking costs. We compared the performance of ISM with other popu-
lar techniques and show that ISM outperforms its competitors and that it
exhibits a learning behavior.

The remainder of the paper is organized as follows: In section 3 we present
the Intelligent Search Mechanism. In section 4 we make an analytical study of
the characteristics of the compared techniques. Section 5 describes our simula-
tion methodology and our middleware infrastructure. In section 6 we present
our experimental evaluation over static and dynamic environments by using
different datasets and topologies and section 7 concludes the paper.

3 The Intelligent Search Mechanism (ISM)

The Intelligent Search Mechanism (ISM) is a new mechanism for information
retrieval in P2P networks. The objective of the ISM algorithm 2 , is to help
the querying peer to find the most relevant answers to its query quickly and
efficiently rather than finding the larger number of answers.

Our algorithm exploits the locality of past queries by using well established
techniques from the Information Retrieval field. Our technique is entirely dis-
tributed and a node can make local and autonomous decisions without coor-
dinating with any other peers, which therefore leads to reduced networking
and processing costs. Keys to improving the speed and efficiency of the infor-
mation retrieval mechanism is to minimize the communication costs, that is,
the number of messages sent between the peers, and to minimize the number
of peers that are queried for each search request. To achieve this, a peer esti-
mates for each query, which of its peers are more likely to reply to this query,
and propagates the query message to those peers only (see figure 5).

The Intelligent Search mechanism for distributed information retrieval consists
of four components:

(1) A Profiling Structure that a peer u uses to keep a profile for each of its
peers in N(u). The profile keeps the most recent past replies of each peer.

(2) A Query Similarity function that a peer uses locally to find the similarity
between different search queries.

(3) RelevanceRank, which is a peer ranking mechanism that a peer u runs
locally using the profiles of its peers and some query. The mechanism
ranks the peers in N(u), so that u can send the search query to the peers
that will most likely have an answer.

(4) A Search Mechanism to send the query to the peers. This is the only

2 An earlier version of the algorithm was presented in [15].
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Fig. 5. Searching in a peer-to-peer network with the Intelligent Search Mechanism
(ISM): Each peer uses the knowledge it obtains from monitoring the past queries
to propagate the query messages to only a subset of the peers.

mechanism used by a node to communicate with its peers. It is the same
mechanism employed by the Gnutella protocol for communications be-
tween peers.

3.1 Profiling Structure

To decide to which peers a query will be sent, a node ranks all its peers with
respect to a given query. The number of peers that a query will be sent is a
parameter that is defined by the user. To rank its peers, each node maintains
a profile for each of its peers. The profile contains the list of the most recent
past queries, which peers provided an answer for a particular query as well as
the number of results that a particular peer returned. Although logically we
consider each profile to be a distinct list of queries, in the implementation we
use a single Queries table which records the described information.

Some node accumulates the list of past queries by continuously monitoring and
recording the Query and the corresponding QueryHit messages it receives. For
each node this list is incomplete, because each node can only record informa-
tion about those queries that were routed through it. In order to limit the
number of queries in each profile a node uses a size limit T . Once the repos-
itory is full, the node uses a Least Recently Used (LRU) policy to keep the
most recent queries in the repository. Since the node keeps profiles for its d
neighbors only, the total size of the repository is O(Td).

The Profiling Structure of a host Pl is shown in table 1. As we can see,
each query qj that was routed through Pl is logged along with the peers
{P1, P2, ..., Pd} from where a queryhit came from. If no queryhits where routed
back for a particular query, such as the query "industrial waste disposal",
then the Connections and Hits column contains a null, otherwise it contains
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Table 1
Profiling Structure Snapshot. It shows from which neighbors (i.e. {P1,P2...})
each queryhit came from and the corresponding arrival time (timestamp).

Query Keywords GUID Connections & Hits Timestamp

amazon rain forest G568FS (P1,50),(P4,80),...,(P5,10) 10000000

industrial waste disposal OF34QA NULL 10001000

... ... .... ...

new fuel sources LQI65D (P2,20), (P3,30) 10012300

the S(Pi, qj) pair which shows the number of results that came from peer Pi
for query qj. The ranking function’s performance is bounded by the number
of entries and therefore yields good performance when the number of entries
in the table is limited.

3.2 Query Similarity Function: The Cosine Similarity

In order to find the most likely peers to answer a given query we need a function
Qsim : Q2 → [0, 1] (where Q is the query space), to compute the similarity
between different queries. Since the queries are sets of keywords, we can use
query similarity metrics, such as the cosine similarity, which are deployed in
the information retrieval field. We make the assumption that a peer that has
a document relevant to a given query is also likely to have other documents
that are relevant to other similar queries. This is a reasonable assumption if
each peer concentrates on a set of topics.

The cosine similarity metric [2,26] (formula 1) between 2 vectors (~q and ~qi) has
been used extensively in information retrieval for nearest neighbor searches,
and we use this similarity function in our setting as queries consists of key-
words. Let L be the set of all words that have appeared in queries. We define
an |L|-dimensional space where each query is a vector. For example, if the
set L consists of the words {A,B,C,D} and we have a query A,B, then the
vector that corresponds to this query is (1,1,0,0). Similarly, the vector that
corresponds to query B,C is (0,1,1,0). In the cosine similarity model, the sim-
ilarity (sim) of the two queries is simply the cosine of the angle between the
two vectors.

sim(q, qi) = cos(q, qi) =

∑
(~q ∗ ~qi)√∑

(~q)2 ∗
√∑

(~qi)2
(1)

Although we use the cosine similarity, the choice of the similarity function
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between two queries is orthogonal to the rest of the technique. We could
therefore plug into our framework any other numeric similarity metric for
documents which can be computed locally. Such metrics, which are listed
in [26], are the Jaccard coefficient, the dice coefficient and the inner product.

3.3 Peer Ranking and RelevanceRank

For each query received by a node Pl, Pl uses the profiles of its peers to find
which ones are more likely to have documents that are relevant to the query.
To compute the ranking, Pl compares the query to previously seen queries
and finds the most similar ones. We formalize this procedure by defining the
RelevanceRank (RR) function (formula 2), which is used by a node Pl to
perform an online ranking of its neighbors and which will allow Pl to determine
the most relevant neighbors to forward a query to. To compute the ranking of
each peer Pi, Pl compares q to all queries in the profiling structure, for which
there is a queryhit, and calculates RRPl(Pi, q) as follows:

RRPl(Pi, q) =
∑

j=”Queries answered by Pi”
Qsim(qj, q)

α ∗ S(Pi, qj) (2)

where the similarity metric Qsim is the cosine similarity, which was described
in the previous subsection, and S(Pi, qj) is the number of results returned by
Pi for query qj.

RR allows us to rank higher the peers that returned more results. In addition,
we use a parameter α, which allows us to add more weight to the most similar
queries. For example, when α is large then the query with the largest similarity
Qsim(qj, q) dominates the formula. Consider for example the situation where
peer P1 has replied to queries q1 and q2 with similarities Qsim(q1, q) = 0.5 and
Qsim(q2, q) = 0.1 to the query q, and peer P2 has replied to queries q3 and q4

with similarities Qsim(q3, q) = 0.4 and Qsim(q4, q) = 0.3 respectively. If we
set a = 10, then Qsim(q1, q)

10 dominates, since 0.510 + 0.110 > 0.410 + 0.310.
However for α = 1 the situation is reversed because all queries are equally
counted, so P2 gets a higher relevance rank. Setting α = 0 we count only the
number of results returned by each peer (essentially, the >RES heuristic).

In order to understand how the RR function works consider the following
example. Peer Pl wants to send a query q to only two of its three peers P1,
P2 and P3. For simplicity assume that α = 1 and that ∀i, j S(Pi, qj) = 2. Let
q1, q2, q3, q4, q5 be the queries that Pl has information about (in its profiling
structure), with Qsim(q, q1) = 0.8, Qsim(q, q2) = 0.6, Qsim(q, q3) = 0.5,
Qsim(q, q4) = 0.4, and Qsim(q, q5) = 0.4. Now if peer P1 answered q1, peer
P2 answered queries q2 and q3, and peer P3 answered queries q4 and q5, then
we compute the aggregate similarities of the three peers to the query q as
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Fig. 6. With Random Perturbation we give node A the opportunity to break the
cycle (A,B,C,D) in which queries may get locked and therefore allow it to explore
a larger part of the network and find the correct answers.

follows: RRPl(P1, q) = 0.81 ∗2 = 1.6, RRPl(P2, q) = (0.61 +0.51)∗2 = 2.2, and
RRPl(P3, q) = (0.41 + 0.31) ∗ 2 = 1.4. Therefore Pl chooses to send the query
to only peers P1 and P2.

3.4 The Search Mechanism

The Search Mechanism deployed by ISM is very similar to the mechanism used
in the Gnutella Network. A node utilizes its pre-established, socket connec-
tions, to its peers, to forward the query messages. The main difference is that
ISM utilizes the profiling structure along with the RR function, to evaluate a
neighbor’s relevance prior to forwarding a query message.

When a peer u receives a Query request, it first performs an online ranking
of its neighbors by invoking RR. The RR function evaluation that a peer
performs is cheap, given that the profiling structure is kept small and in-
memory. After node u finds the k peers with the highest relevance rank, for a
given threshold k, it forwards the Query to these peers only. It then searches
its local repository for relevant matches. As with the Gnutella protocol if
some node w has a match, w generates a QueryHit message and transmits the
results along the same path that carried the incoming Query message.

3.5 Random Perturbation

One problem of the technique we outline above is that it is possible for search
messages to get locked into a cycle. The problem is that the search will fail
then to explore other parts of the network and may not discover many results.

Consider for example figure 6 and the following scenario: Peer A receives a
query q which has no answer from nodes A,B,C or D. Suppose that A chooses
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to forward q to B,C and D because these nodes have successfully answered a
similar query in the past. Therefore A doesn’t choose node E which, this time,
could lead him to the correct results. Consequently, q gets locked in a cycle
(i.e. A,B,C,D) and fails to explore other segments of the network which may
contain documents in its answer set.

To solve this problem, we pick a small random subset of peers 3 and add it to
the set of best peers for each query. As a result, even if the best peers form a
cycle, our mechanism will explore a larger part of the network that can poten-
tially lead us to additional results that would otherwise remain unexplored.

3.6 Extend ISM to Different Environments

Although we propose the ISM mechanism for keyword-based searches, the
basic mechanism can be used for general content-based retrieval and general
datasets in peer-to-peer systems as long as a similarity function between the
queries can be provided. For example in the context of content-based image
retrieval a query could be of the form: q =”Find the images which contain
approximately x% Gray, y% Red and z% Black”. To use the ISM mechanism,
we need an appropriate similarity measure between such queries that exploits
the color feature. A simple solution would be to consider the 3-dimensional
space defined by taking the Gray, Red and Black axes. In this space, each
query defines a 3-dimensional point and the distance between the queries is
simply the Euclidian distance [25] of the points.

The ISM mechanism described in the previous subsections could easily become
the query routing protocol for some hybrid P2P environment. In such an en-
vironment some nodes, known as SuperPeers or UltraPeers, form a backbone
infrastructure which can be utilized by other less ”powerful” nodes. In this
context ”powerful” SuperPeer nodes are those that exhibit long-time network
connectivity, have high bandwidth connections and capacity. The rest nodes,
which we denote as RegularPeers, are usually less stable and powerful. Such a
model has been successfully incorporated in several systems, such as Kazaa[16]
and Gnutella[10] v0.6, mainly because it allows the network size to grow to
millions of users and because it differentiates short-time connection and mo-
dem users, which would otherwise become the bottleneck in query routing,
from other more powerful users (e.g. ADSL, cable modem users).

ISM could be deployed in a hybrid P2P environment (see figure 7) in the
following way: First some RegularPeer v obtains a list of active SuperPeers
(through some out-of-band mechanism). It then connects to one (or more)

3 In our experiments we additionally select one random peer.
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Fig. 7. Searching in a Hybrid P2P Network using ISM: Each RegularPeer posts its
queries to its first immediate SuperPeer. The SuperPeer then forwards the query to
only a subset of its neighboring SuperPeers using the ISM Mechanism.

SuperPeers and posts its queries when it wants to search for data. The Su-
perPeer u will then utilize the ISM mechanism and forward the query to a
selective subset of its SuperPeer neighbors, rather than broadcasting it to all.
Therefore the number of messages used at the SuperPeer level is expected
to be reduced significantly. The SuperPeer u might also forward the query
to all its dependent RegularPeer nodes although by keeping full indexes or
bloom filters of their data, it is expected to be much more efficient. Once the
query reaches some node which has an answer to the query, either SuperPeer
or RegularPeer, it then sends a queryhit back along the same path the query
message was received.

4 Analysis of the Proposed Techniques

In this section we describe an analysis of the proposed techniques, in compar-
ison with the Gnutella protocol, which is a BFS Algorithm with some TTL
(Time-To-Live) parameter that limits the depth a query travels. We concen-
trate on the recall rate, that is, the fraction of documents our search mechanism
retrieves, compared to the other mechanisms, and the efficiency of the tech-
nique, that is, the ratio of number of messages that the different techniques
use in order to retrieve a similar set of results for the same search.

4.1 Performance of the Random BFS Algorithm

We first consider the performance of the Random BFS technique where each
peer selects a random subset of its peers to propagate a request. In a P2P
network with a random graph topology, this mechanism searches only a subset
of the nodes in the graph. This will result in fewer messages compared with
the BFS algorithm.
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Consider a random graph G with n nodes and e edges, which has average
degree d. For a given node u, let Nk(u) be the set of nodes at distance at
most k from u. When a node u starts a Gnutella search with a TTL = k
(Time To Live, as per the Gnutella search protocol), u sends approximately
d messages to its neighbors, each being propagated k times. Since the BFS
mechanism explores all the edges in the graph, the number of messages send
by the Gnutella protocol is at least |Nk(u)| |Nk(u)|

n
d.

Assume on the other hand that each node only propagates the message to a
randomly chosen subset of its neighbors, of size d

m
(for a suitably chosen m).

Using the same TTL (k), if |Nk(u)| is smaller than n/2, the expected total
number of messages sent is ( d

m
)k, and the expected number of vertices that

this random BFS process visits is at least 1
2
( d
m

)k. This is because if |Nk(u)|
is smaller than n/2, then most of the nodes visited in each iteration are new
nodes. Consider a node v of distance i (i < k) from u. If |Nk(u)| < n/2, with
high probability each edge of v is connected to a node not in Ni(u). Setting
1
2
( d
m

)k = |Nk(u)|, we have that, if |Nk(u)| ≈ n/2, the random BFS needs at
most a fraction of 4

d
of the number of messages used by the Gnutella protocol

to visit approximately the same number of vertices.

4.2 Performance of the Intelligent Search Mechanism

The previous discussion indicates that propagating a query to only a subset
of neighbors in a random topology is more efficient than using the Gnutella
protocol. However this approach is approximate, and cannot guarantee that
all nodes in Nk(u) are found. Consider for example a case where two large
sub-graphs are connected by one edge. If the node attached to that edge does
not choose this edge, the other sub-graph will never be explored.

The Intelligent Search technique we outlined in the previous section attempts
to identify edges that are likely to have good information. Nevertheless, the
accuracy of the mechanism clearly depends on how accurately a peer can com-
pute which of its peers is likely to answer a given query. Work on distributed
information retrieval has shown that current techniques for database selec-
tion can give good performance. Recent work [4] shows that even incomplete
knowledge is sufficient to achieve good results. Their presented experiments
show that requesting a random set of documents from a collection is sufficient
to obtain accurate estimates on the word frequencies in this collection. These
results are directly applicable only for the case that each peer has full statisti-
cal information for its peers. Our setting is different because the information
we collect is incomplete; we keep only the queries that peers reply to, rather
than all the documents in the actual replies. Nevertheless, this information
is useful because the union of the queries a peer has replied to is a subset of
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Table 2
Top 20 Queries on the Gnutella network in June 2002 (offensive queries marked
with ’ ’). The total set includes 15 million query messages.

# Query Occurr. % # Query Occurr. %

1 divx avi 588, 146 3, 88% 6 s mpg 27, 895 0, 18%

2 spiderman avi 50, 175 0, 33% 7 Eminem 27, 440 0, 18%

3 p mpg 39, 168 0, 25% 8 eminem mp3 25, 693 0, 16%

4 star wars avi 38, 473 0, 25% 9 dvd avi 25, 105 0, 16%

5 avi 29, 911 0, 19% 10 b 24, 753 0, 16%

the union of the documents stored in this peer. In addition this information
is certainly very useful when very similar queries repeat. We also note that
the more efficient search allows us to use a larger TTL compared with the
Gnutella protocol, while still having a smaller number of messages overall.

Our proposed algorithm is designed to work well in environments where there
is high locality of similar queries. In order to see what the real trends are,
we made an extensive analysis of the network traffic found in a real P2P net-
work [35]. In June 2002 we crawled the Gnutella network with 17 workstations
for 5 hours and gathered 15 million query messages. Table 2 presents the rank-
ing of the top 10 queries. We can clearly see that most queries are submitted
in large numbers and hence there exist a high locality of specific queries. This
observation is exploited by our proposed Intelligent Search Mechanism.

5 Experimental Evaluation Methodology

Our experimental evaluation focuses on: (i) the recall rate, that is, the fraction
of documents each of the search mechanisms retrieves, and (ii) the efficiency of
the techniques, that is, the number of messages used to find the results as well
as the required time to locate the results. As the baseline of comparison we
used the results retrieved by the BFS algorithm, which almost provides us with
the results we would get if we queried the collection as a corpus of documents.
We chose to implement the algorithms that require only local knowledge (i.e.
BFS, RBFS, >RES and ISM) which makes them directly comparable.
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Fig. 8. Data Replication scheme for the TREC-LATimes dataset

5.1 Description of Datasets

We use three series of experiments which are based on the Reuters-21578 and
the TREC-LATimes datasets.

(1) Reuters-21578. This document collection consists of 21, 578 articles
that appeared on the Reuters newswire in 1987. In order to generate
some specialized knowledge for each node we categorized the documents
by their country attribute. This process resulted in a 31MB dataset of
104 country files, each of which had at least 5 articles, with a total of
22, 769 articles. Each document is stored and queried using the GMD-
IPSI XQL engine [9], which allows efficient querying of XML documents
but which doesn’t provide any additional IR functionality (e.g. stemming,
stop-words, etc.). We used this dataset to evaluate the algorithms over a
random topology of 104 peers where each node has an average degree 4

of 8. We will refer to these peers as the Reuters-21578 Peerware.

(2) TREC-LATimes. This document collection consists of randomly se-
lected articles that appeared on the LA Times newswire from 1989 to
1990. The size of this dataset is 470MB and it contains approximately
132,000 articles. These articles were horizontally partitioned into 1000
documents each of which was subsequently indexed using the Lucene [19]
IR API. These indexes, which are disk-based, allow the efficient query-
ing of text-based sources using many IR features. We then generate a
random topology of 1000 peers in which each peer shares one or more of
the 1000 documents (see figure 8). We use this scheme in order to pro-
vide some degree of article replication. We don’t use the ”qrels” relevance
judgments, since the compared algorithms don’t attempt to address the
issue of precise document retrieval. We will refer to these peers as the
TREC-LATimes Peerware.

4 random graphs with more than log n average degree are almost certainly con-
nected.
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Fig. 9. a) graphgen’s visualization of a random graph of 104 peers (degree=4) and b)
The Discarded Message Problem: Node Pk does not forward query q with TTL2=6
since it has already forwarded q with TTL1=4.

5.2 Peerware Simulation Infrastructure

In order to benchmark the efficiency of the information retrieval algorithms, we
have implemented Peerware 5 , a distributed middleware infrastructure which
allows us to benchmark different query routing algorithms over large-scale P2P
systems. We use Peerware to build a decentralized newspaper network which is
organized as a network of nodes. Our experiments are performed on a network
of 75 workstations (each hosting a number of nodes), each of which has an
AMD Athlon 800MHz-1.4GHz processor with memories varying from 256MB-
1GB RAM running Mandrake Linux 8.0 (kernel 2.4.3-20) all interconnected
with a 10/100 LAN. Peerware is written entirely in Java and comes along
with an extensive set of UNIX shell scripts that allow the easy deployment
and administration of the system.

Peerware consists of three components: (i) graphGen which generates network
topologies (see figure 9a) and configuration files for the various nodes partici-
pating in a given experiment, (ii) dataPeer which is a P2P client that is able to
answer to boolean queries from its local xml repository using either the GMD-
IPSI XQL Engine [9] or Lucene [19], and (iii) searchPeer which is a P2P client
that performs queries and harvests answers back from a Peerware network.
Launching a Peerware of 1000 nodes can be done in approximately 30 seconds
while querying the same network can be performed in around 250ms-1500ms.

5 Details about the Peerware infrastructure can be found in [36].
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Fig. 10. Query Term Frequency distributions for the REUTERS10x10 and
REUTERS400 querysets.

5.3 The Discarded Message Problem

One problem that affected the evaluation of the compared search techniques
was the Discarded Message Problem (DMP) (see figure 9b). We define the
DMP problem in the following way: Node Pk receives some query q with
TTL1 at time t1. Pk first checks if it has forwarded the same query (identi-
fied by GUID) in the past. If yes, it will immediately discard the message in
order to avoid forwarding the message several times. If not, it will decrease
TTL1=TTL1-1 and forward q to some of Pk’s peers. Now what happens if node
Pk receives the same query q with some TTL2, where TTL2 > TTL1 at some
time t2, where t2 > t1? Most of the commercial P2P clients will discard q. The
result of the DMP problem is that a query reaches fewer nodes than estimated.
We fix the DMP problem by allowing the TTL2 message to proceed, since this
may allow q to reach more peers that its predecessor TTL1. Of course there
is some redundancy which will add up in the ”number of messages” graph.
Unfortunately without this fix the BFS behavior is not predictable. The ex-
perimental results presented in this work don’t suffer from DMP which is
the reason why the number of messages is slightly higher (≈ 30%) than the
expected number of messages.

6 Experimental Results

In this section we describe a series of experiments that attempt to investi-
gate the efficiency of the ISM algorithm over its competitors BFS, RBFS and
>RES. We use five different querysets and evaluate the described algorithms in
static and dynamic versions of the Reuters-21578 and TREC-LATimes Peer-
wares. A static version of a given topology is one in which nodes are not
leaving or joining during the experiment, while a dynamic version is one in
which nodes leave and join back after some predefined interval. We also vali-

20



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1  2  3  4  5  6  7  8  9  10

N
um

be
r o

f m
es

sa
ge

s 
us

ed

Number of queries (x10)

Number of messages w/ 10x10 queries and TTL=4

Intelligent Search
Random BFS

BFS
>RES

 0

 20

 40

 60

 80

 100

 120

 140

 0  1  2  3  4  5  6  7  8  9  10

P
er

ce
nt

ag
e 

of
 D

oc
um

en
ts

 fo
un

d 
(%

)

Number of queries (x10)

% Documents found w/ 10x10 queries and TTL=4

Intelligent Search 
Random BFS

BFS
>RES

Fig. 11. Messages (left) and Recall Rate (right) used by the 4 Algorithms and
the Reuters10x10 queries (TTL=4) over a static Reuters-21578 Peerware.

dated the efficiency of our proposed technique when data is replicated across
the P2P network. Finally we investigated how well our technique scales when
the network topology grows.

6.1 Maximizing Recall Rate by minimizing Messaging and Time

For the first experiment we used a static version of the Reuters-21578 Peer-
ware, which is the network of 104 nodes described in 5.1. Since there is no
standardized query set for this corpus, we generated two synthetic sets which
are based on term sampling (see figure 10). More specifically we generated the
following querysets:

(1) Reuters10x10, which is a set of 10 random queries which are repeated
10 consecutive times. Each random query consists of 4 query terms and
each term has a length larger than 4 characters.

(2) Reuters400, which is a set of 400 random queries which are uniformly
sampled from the initial 104 country files. With this assumption we make
sure that the queries will refer to all the nodes rather than only a subset
of them. We didn’t choose to use real queries from the Gnutella network,
such as "mpeg avi superman", since they were related to audio/video
resources and were largely irrelevant to the Reuters-21578 dataset.

Reducing Query Messages. Our objective in this experiment was to mea-
sure the number of messages used and the percentage of documents found in
the case where the query messages have a TTL of 4. Figure 11 (left) shows the
number of messages required by the four query routing techniques. The figure
indicates that Breadth-First-Search (BFS) requires almost 2,5 times as many
messages as its competitors with around 1050 messages per query. BFS’s recall
rate is used as the basis for comparing the recall rate of the other techniques
and is therefore set to 100%. Random Breadth-First-Search (RBFS), the In-
telligent Search Mechanism (ISM) and the Most Results in the Past (>RES)
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Fig. 12. Messages (left) and Recall Rate (right) used by the 4 Algorithms and
the Reuters10x10 queries (TTL=5) over a static Reuters-21578 Peerware.

on the other hand use all significantly less messages but ISM is the one that
finds the most documents. That is attributed to the fact that ISM improves
its knowledge over time. More specifically ISM achieves almost 90% recall rate
while using only 38% of BFS’s messages. On the same figure 11 (right) we can
see that both >RES and ISM start out with a low recall rate (i.e. 40-50%)
because they are initially both choosing their neighbors at random. Therefore
their recall rate is comparable to that of RBFS. In all figures presented in this
paper the values shown are the averages of 10 consecutive requests.

Digging Deeper by Increasing the TTL. In the previous experiment we
showed that by using RBFS, >RES or ISM we can significantly reduce the
number of messages but we suffer from low recall. In the second experiment
we are taking advantage of the reduced messaging of RBFS, >RES and ISM
and increase the TTL parameter, which will allow us to reach more nodes
deeper in the graph. Figure 12 shows that by increasing the value of the
TTL field of the search requests (TTL=5), ISM discovers almost the same
documents with what BFS finds for TTL=4. More specifically, ISM achieves
100% recall rate while using only 57% of the number of messages used in
BFS. Another important observation is that the results for both RBFS and
ISM are consistent with our analysis, and show that it is possible to search
the majority of the P2P network with significantly fewer messages than the
brute force algorithm.

Reducing the Query Response Time. We define the Query Response
Time (QRT) as the interval which elapses between t1 which is the time a node
q sends out a query, until t2 which is the time that q receives the last result
from the network. Figure 13 shows the Query Response Time (QRT), as a
percentage of the time taken for the BFS algorithm, for the three algorithms
ISM, >RES and RBFS. BFS’s QRT is in the order of 4-6 seconds while the
others use only ≈30-60% for TTL=4 and ≈60-80% for TTL=5 of that time.
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the REUTERS10x10 queries over a static Reuters-21578 Peerware when the queries
have TTL=4 (left) and TTL=5 (right).

From the graphs we can clearly see that the average QRT for BFS is quite large.
This happens because BFS uses more messages which subsequently congest the
network and which finally increase the total querying time. From the graphs
we can also see that by increasing the TTL from 4 to 5 the average QRT
increases. This happens because in the latter case we are exploring larger
segments of the graph which consequently also produces more messages. A
final point to denote is that although ISM and >RES use about the same
amount of messages, ISM requires slightly more time than >RES because its
decision involves some computation over the past queries.

Our study of the experimental results shows that QRT is directly affected
by the actual response time rn of a node n. rn which is the interval that
elapses between the time a query q is dequeued from n’s queue until q is sent
to all required k neighbors. In the Reuters experiments we found that rn is
usually 1-5 ms but it might be in some cases as high as 2500ms. This happens
because in our setting several Peerware nodes run on the same physical host,
which introduces large delays generated by context switching between the
many hundreds of concurrent threads, and because of the Network File System
(NFS), which is used by all nodes for query lookups and logging operations. In
the TREC experiments, which are presented in 6.2, we change our architecture
and had each peer to read and write from local disk only. This allowed us
to query the 1000-node network in 250ms-1500ms. Therefore QRT doesn’t
provide a framework for measuring the absolute responsiveness of the various
algorithms but is rather only used to relatively compare them.

Improving the Recall Rate over Time. In the previous section we used
the Reuters10x10 queryset which suits well the ISM algorithm since the query
terms are repeated many times. In this experiment we use the Reuters400
queryset, in which the query term repetition is very low (see figure 10b). In
figure 14 we can see that the ISM mechanism improves its recall rate over
time approaching nearly 95% recall rate while using again ≈38% of BFS’s
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Fig. 14. Messages (left), Recall Rate (middle) and Actual Time (right) for the
4 algorithms using REUTERS400 queries over a static Reuters-21578 Peerware.

messages. From the messages graph we can also see that during queries 150-
200 two major outbreaks occur in BFS. This is basically an indication that
some connections (i.e. sockets) broke down and that some query messages
were lost. This network instability is incurred by the overwhelming amount of
messages propagated by the BFS algorithm. The graph with the actual time
is finally presented on the right of the same figure. It shows that BFS again
requires significantly more time than the other three approaches. The QRT
for RBFS, >RES and ISM is also high, as in the previous subsection, because
the actual response time is affected by the architecture of the experiments.

An interesting point in this set of experimental results is that ISM requires
a learning period of about 100 queries before it starts competing the perfor-
mance of the >RES heuristic. This is attributed to the fact that the query
term frequency is very low for the Reuters400 queryset (see figure 10b). ISM
starts exploiting the locality of past queries only after its profiling structure
gets populated adequately. The >RES heuristic on the other hand, is able
to immediately identify the network segments that return the most results.
Therefore the learning period of the >RES heuristic is significantly smaller
(i.e. within the first 25 queries). We expect that ISM’s learning period is ac-
ceptable given that nodes won’t disconnect right after they get connected. The
learning period of ISM will only become a problem, as we will see in section
6.3, if the network topology is highly unstable (>20% node failures).

6.2 Scalability and Data Replication

Thus far we have seen that with ISM, >RES and RBFS it is possible to
achieve reduced messaging and time while retaining high recall rates. In this
section we investigate two other important issues which are scalability and
data replication. The second experimental series is performed over a static
TREC-LATimes Peerware (described in section 5.1), which is a network of
1000 nodes in which each node possesses replicated news articles. We did this
experiment in order to test if the ISM algorithm is able to scale well if the
network grows. Furthermore, the incorporated data replication scheme is more
realistic than the horizontal partitioning scheme that we have seen so far.
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Fig. 15. Query Term Frequency distributions for the TREC100, TREC10x10
and TREC50x2 querysets.

For the evaluation of the TREC-LATimes corpus we will use, as indicated by
NIST, the TREC topics 300-450. One problem with the provided 150 queries is
that the query term frequency is very low and most terms are presented only
once. This is not a realistic assumption since studies on real P2P networks
(e.g. [35]) indicate that there is a high locality of query terms. Therefore
we used the 150 queries to derive three new querysets. More specifically we
generated the:

(1) TREC100, which is a set of 100 queries, out of the initial set of 150
topics, which return at least one 50% relevant article 6 .

(2) TREC10x10, which is a list of 10 randomly sampled queries, out of the
initial 150 topics, which are repeated 10 consecutive times.

(3) TREC50x2, for which we first generated a set a =”50 randomly sampled
queries out of the initial 150 topics”. We then generated a list b of another
50 queries which are randomly sampled out of a. TREC50x2 is then the
queries in a and b randomly shuffled.

We will use the TREC100, TREC10x10 and TREC50x2 querysets to evalu-
ate the ISM algorithm. These querysets also attempt to address the fact that
the performance of the presented algorithms varies under query sets of dif-
ferent term distribution. The query term frequency distribution for the three
querysets is presented on figures 15.

Searching in a large-scale network topology. In our first experiment we
present the number of messages and the recall rate using the TREC100 query-
set, shown in figure 16. We again choose a smaller TTL parameter for BFS,
(i.e. TTL=5), with which we reach 859 out of the 1000 nodes. By choosing
a TTL parameter of 6 and 7 we are able to reach 998 and 1000 nodes at a
cost of 8, 500 messages/query and 10, 500 messages/query respectively. The
average QRT for the BFS case is in the order of 1.5 seconds but results start
streaming back to the query node within the first few milliseconds.

Similar to our previous results (figures 11,12), the figures indicate that BFS
requires again almost 2.5 times more messages than the other techniques. In

6 The deployed relevance metric is Lucene’s[19] default metric.
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Fig. 16. Messages (left) and Recall Rate (right), for the TREC100 queryset and
TTL=6 over a static TREC-LATimes Peerware.

addition, the recall rate validates our hypothesis that ISM won’t exhibit any
learning behavior if the frequency of terms is very low. The lack of repetitive
query terms, in the queries, neutralizes ISM’s profiling structure which accu-
mulates information that it is never going to be utilized by RelevanceRank.

The effect of high term frequency. Our second experiment uses the
TREC10x10 and TREC50x2 querysets and attempts to validate our claim
that the recall rate will improve dramatically if the frequency of terms is high.
The TREC10x10 experiment (see figure 17 top) reveals that ISM is able to
achieve an even higher recall rate than what BFS finds for TTL=5. After the
learning phase of the first 20 to 30 queries it scores 120% of BFS’s recall by
using four times less messages. This shows how prohibitive BFS becomes as
the TTL ring expands.

The TREC50x2 queryset reflects a more realistic set, since a few terms occur
many times in queries and most terms occur less frequently. For the TREC50x2
queryset (see figure 17 bottom), we observe that ISM monotonically improves
its recall and at the 90th query it again exceeds BFS performance. On the
other hand both RBFS’s and >RES’s recall fluctuate, which indicates that
>RES may behave as bad as RBFS if the queries don’t follow some constant
pattern (such as the one in the 10x10 queries).

6.3 Searching in Dynamic Network Topologies

Network failures in P2P systems are commonplace because of (i) the misusage
exhibited at the application layer (e.g. users shut down their PCs without
disconnecting), (ii) the overwhelming amount of generated network traffic or
even (iii) because of some poorly written P2P clients. Such failures generate
a dynamic environment in which peers are leaving or joining the network in
an ad-hoc manner. In this section we aim to experimentally find the recall
rate of the BFS, ISM and >RES algorithms under different levels of network
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Fig. 17. Messages (left) and Recall Rate (right), for the TREC10x10 (top) and
TREC50x2 (down) querysets respectively over a static TREC-LATimes Peerware.

failure. The observations will allow us to empirically define the maximum
failure threshold to which the different techniques are tolerant to.

In order to simulate a dynamic environment we generated a scenario in which
nodes are leaving or joining in a completely random way but the total num-
ber of suspended nodes at any given moment is statistically no more than
drop rate, where drop rate is a given threshold. More specifically we have in-
troduced into each peer p a drop rate parameter which allows each peer to
make a distributed decision on whether to suspend its operation or not. The
drop rate parameter is evaluated every k seconds against a random number
r. If r is smaller than drop rate then peer p will break all its incoming and
outgoing connections and remain suspended for a total of l seconds. After l
seconds p will attempt to re-establish its broken connections and continue its
regular operation. In our experiments we set k = 60, 000ms and l = 60, 000ms
and we use the TREC-LATimes Peerware along with the TREC10x10 query-
set. We use four different levels of drop rate (i.e. 0.0, 0.05, 0.1 and 0.2) and r
is a random number which is uniformly generated in [0.0..1.0).

In Figure 18 (left column) we can see the number of messages used by the
BFS, >RES and ISM algorithms respectively. In all cases, the increase of the
drop rate decreases the number of messages since fewer messages are able
to make it through to their destination. From the recall rate graphs (right
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Fig. 18. Messages (left) and Recall Rate (right), when BFS, >RES and ISM
perform in a dynamic TREC-LATimes Peerware using the TREC10x10 queryset.
The basis for comparison is again the BFS algorithm (first row), which uses TTL=5,
and it is compared with the >RES (second row) and ISM (third row) techniques,
where each of them uses TTL=6.

column) we can observe that BFS doesn’t exhibit any learning behavior at any
level of drop rate. Furthermore, the same graph shows that BFS is tolerable
to small drop rates (i.e. 5%) since the recall rate is not significantly decreased
(≈3%). This happens because the BFS algorithm is highly redundant which
allows nodes to receive query messages even if some edges of the graph are
lost. Similarly with BFS, >RES also doesn’t exhibit any learning behavior
and its recall rate fluctuates at any level of drop rate. On the other hand the
ISM algorithm is able to perform quite well at low levels of drop rate. More
specifically at 5% drop rate the graph line indicates that ISM locates 100%
of BFS’s documents. At 10% drop rate, ISM is again able to take limited
advantage of its profiling structure since at some point the recall rate is as
high as 85%. ISM is not expected to be tolerant to large drop rates (e.g.
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20%) because in such case the information gathered by the profiling structure
becomes obsolete before it gets the chance to be utilized. This leads ISM to
several wrong query routing decisions which finally penalizes its recall rate.

7 Conclusions and Future Work

In this paper we presented a number of different query routing techniques that
enable efficient information retrieval in P2P systems. Existing techniques are
not scaling well because they are either based on the idea of flooding the net-
work with queries or because they require some form of global knowledge. The
main challenge for a query routing technique is to query peers that contain the
most relevant content with minimum messaging. We have shown the various
tradeoffs and experimentally evaluated four of the techniques that require no
global knowledge.

Our work further focuses on the Intelligent Search Mechanism, which is an ef-
ficient, scalable and simple mechanism for improving the information retrieval
problem in P2P networks. ISM uses the knowledge that each peer collects
about its peers to improve the efficiency of the search. The scheme is fully
distributed and scales well with the size of the network.

Our experimental results show that the performance of ISM improves over time
because nodes learn more information about their neighbors as time elapses.
ISM achieves therefore a better recall rate than its competitors, although its
initial performance is similar to them. Second, we get almost as good recall
rate as that of BFS while using a smaller number of messages. Thirdly ISM
requires approximately the same Query Response Time (QRT) with its two
competitors RBFS and >RES and far less QRT than BFS. Finally ISM scales
well to large network topologies and replicated data sources. Our experimental
results indicate that ISM is an attractive and promising search technique for
information retrieval in Peer-to-Peer systems.

For future work we plan to probe our algorithms over new network topolo-
gies such as power-law and tree. We finally plan to make our middleware
infrastructure publicly available and deploy it over a Wide Area Network of
geographically dispersed hosts.

References

[1] Adamic L.A., Lukose R.M., Puniyani A.R. and Huberman B.A. ”Search in
power-law networks”. Phys. Rev. E, 64 46135 (2001).

29



[2] Baeza-Yates R.A. and Ribeiro-Neto B.A., ”Modern Information Retrieval.”
ACM Press Series/Addison Wesley, New York, May 1999.

[3] Bawa M., Bayardo R.J., Rajagopalan S., Shekita E. ”Make it Fresh, Make it
Quick – Searching a Network of Personal Webservers”. In Proc. of the 12th Int.
World Wide Web Conference, WWW-2003, May 2003, Budapest, Hungary

[4] Callan J., Powell A.L., French J.C., and Connell M. ”The effects of query-
based sampling on automatic database selection algorithms”. Technical Report
IR-181, Center for Intelligent Information Retrieval, Department of Computer
Science, University of Massachusetts.

[5] Clarke I., Sandberg O., Wiley B. and Hong T.W. ”Freenet: A Distributed
Anonymous Information Storage and Retrieval System”. Proc. of the ICSI
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA,
2000.

[6] Crespo A., Garcia-Molina H. ”Routing Indices For Peer-to-Peer Systems”.
Proc. of Int. Conf. on Distributed Computing Systems, Vienna, Austria, 2002.

[7] Cuenca-Acuna F.M. and Nguyen T.D. ”Text-Based Content Search and
Retrieval in ad hoc P2P Communities”. International Workshop on Peer-
to-Peer Computing, Springer-Verlag, May 2002

[8] French J.C., Powell A.L., Callan J., Viles C.L., Emmitt T., Prey K.J., and Mou
Y. ”Comparing the Performance of Database Selection Algorithms”. Proc. of
ACM SIGIR Research and Development in Information Retrieval, 1999.

[9] GMD-IPSI XQL Engine, http://xml.darmstadt.gmd.de/xql/

[10] Gnutella, http://gnutella.wego.com.

[11] Gravano L., and Garcia-Molina H. ”Generalizing gloss to vector-space
databases and broker hierarchies”. In Proceedings of the 21st VLDB
Conference (Zurich, Switchland, 1995).

[12] Groove Networks., http://www.groove.net/.

[13] Gao J., and Steenkiste P. ”Design and Evaluation of a Distributed
Scalable Content Discovery System.” IEEE Journal on Selected Areas
in Communications, Special Issue on Recent Advances in Service Overlay
Networks, 22(1):54-66, January, 2004.

[14] JXTA Search, Project JXTA, http://search.jxta.org/.

[15] Kalogeraki V., Gunopulos D., and Zeinalipour-Yazti D. ”A Local Search
Mechanism for Peer-to-Peer Networks”. In 11th International Conference
on Information and Knowledge Management (CIKM’2002), McLean, Virginia
USA, November 4-9, 2002.

[16] Kazaa, Sharman Networks Ltd. http://www.kazaa.com/

30



[17] Kubiatowicz J., Bindel D., Chen Y., Czerwinski S., Eaton P., Geels D.,
Gummadi R., Rhea S., Weatherspoon H., Weimer W., Wells C., and Zhao
B., ”OceanStore: An Architecture for Global-Scale Persistent Storage”. In
Proc. of the 9th Int. Conf. on Architectural Support for Prog. Languages and
Operating Systems (ASPLOS 2000), November 2000.

[18] Lu Z. and McKinley K.S. ”The Effect of Collection Organization and Query
Locality on Information Retrieval System Performance and Design”. Book
chapter in Advances in Information Retrieval, Kluwer, New York, 2000. Bruce
Croft, Editor.

[19] Lucene, The Apache Jakarta Project. http://jakarta.apache.org/lucene/

[20] Lv Q., Cao P., Cohen E., Li K., and Shenker S. ”Search and replication in
unstructured peer-to-peer networks”. ICS02, New York, USA, June 2002.

[21] Melnik S., Raghavan S., Yang B., Garcia-Molina H. ”Building a Distributed
Full-Text Index for the Web”. 10th World Wide Web Conference, Hong Kong,
2001.

[22] Napster, http://www.napster.com/.

[23] Powell A.L., French J.C., Callan J., Connell M., Viles C.L. ”The Impact of
Database Selection on Distributed Searching”. Proc. of the 23rd Int. ACM
SIGIR Conf. on Research and Development in Information Retrieval, pages
232–239, 2000.

[24] Ratnasamy S., Francis P., Handley M., Karp R., and Shenker S. ”A Scalable
Content-Addressable Network”. In Proc. ACM SIGCOMM 2001, 2001.

[25] Rui Y., Huang T.S., and Chang S.F. ”Image Retrieval: Current Techniques,
Promising Directions and Open Issues” Journal of Visual Communication and
Image Representation, Vol. 10, 39-62, March, 1999.

[26] Salton. G. ”Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer”. Addison-Wesley, Reading, MA. 1989.

[27] Stoica I., Morris R., Karger D., Kaashoek M.F., Balakrishnan H. ”Chord: A
scalable peer-to-peer lookup service for Internet applications”. Proc. of ACM
SIGCOMM 2001, San Diego CA, August 2001.

[28] Suel T., Mathur C., Wu J., Zhang J., Delis A., Kharrazi M., Long X., and
Shanmugasundaram K. ”ODISSEA: A Peer-to-Peer Architecture for Scalable
Web Search and Information Retrieval”. 6th International Workshop on the
Web and Databases (WebDB), June 2003.

[29] Tang C., Xu Z., and Dwarkadas S. ”Peer-to-Peer Information Retrieval
Using Self-Organizing Semantic Overlay Networks”. ACM SIGCOMM 2003,
Karlsruhe, Germany, August 2003.

[30] Tsoumakos D. and Roussopoulos N. ”Adaptive Probabilistic Search for Peer-
to-Peer Networks”. Proc. of the Third IEEE Int. Conf. on P2P Computing,
P2P2003, 2003.

31



[31] Wu Z., Meng W., Yu C. and Li Z. ”Towards a Highly-Scalable and Effective
Metasearch Engine”. 10th World Wide Web Conference, Hong Kong, 2001.

[32] Xu J. and Callan J. ”Effective retrieval with distributed collections”. In
Proceedings of the 21th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 112–120, Melbourne,
Australia, 1998.

[33] Yang B., and Garcia-Molina H. ”Comparing hybrid peer-to-peer systems”.
Proc. 27th Int. Conf. on Very Large Data Bases, Rome, 2001.

[34] Yang B., and Garcia-Molina H. ”Efficient Search in Peer-to-Peer Networks”.
Proc. Int. Conf. on Distributed Computing Systems, 2002.

[35] Zeinalipour-Yazti D. and Folias T., ”Quantitative Analysis of the Gnutella
Network Traffic”. Dept. of Computer Science, University of California,
Riverside, June 2000

[36] Zeinalipour-Yazti D. ”Information Retrieval in Peer-to-Peer Systems”. M.Sc
Thesis, Dept. of Computer Science, University of California - Riverside, June
2003.

32


