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Abstract

Overlay networks are application layer systems which facilitate users in performing
distributed functions such as searches over the contents of other users. An important
problem in such networks is that the connections among peers are arbitrary, leading
in that way to a topology structure which does not match the underlying physical
topology. This topology mismatch leads to large user experienced delays, degraded
performance and excessive resource consumption in Wide Area Networks. In this
work we propose and evaluate the Distributed Domain Name Order (DDNO) tech-
nique which makes unstructured overlay networks topologically-aware. In DDNO, a
node devotes half of its connections to nodes that share the same domain-name and
the remaining half connections to random nodes. The former connections achieve
good performance, because the bulk of the overlay traffic is kept within the same
domain, while the latter connections ensure that the topology structure remains
connected. Discovery of nodes in the same domain is achieved through on-demand
lookup messages which are guided by local ZoneCaches. Our technique is entirely
decentralized making it appropriate for use in Wide Area Networks. Our simula-
tion results, which are based on a real dataset of Internet latencies, indicate that
DDNO outperforms other proposed techniques and that it optimizes many desirable
properties such as end-to-end delays, connectivity and diameter.
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1 Introduction

The advances of public networks in the last few years have increased the de-
mand for Peer-to-Peer (P2P) application-layer protocols that can be used in
the context of multicast [5], distributed object-location [24,26,27] and informa-
tion retrieval [32]. Moreover, P2P file-sharing systems such as Napster [20] and
Gnutella [9] have proven that large-scale distributed applications are feasible
and that the P2P Computing model will play an important role in infrastruc-
tures of future Internet-scale systems.

In the P2P Computing model, participating nodes form a ”virtual” overlay
structure which serves as the communication medium between the participat-
ing computing units. In this model each node acts both as a client and a server,
allowing users to perform distributed functions such as keyword queries. This
allows these systems to harness the power of many thousands of computing
units rather than only utilizing resources from a monolithic system.

P2P overlays can be divided into two categories: Structured and Unstructured.
In Structured P2P overlays [24,26,27], network hosts and objects are struc-
tured in such a way that object location can be guaranteed within some hop
count boundaries. In Unstructured P2P overlays on the other hand, hosts have
neither global knowledge nor structure. Early unstructured systems, such as
Gnutella [9], rely on flooding the network with queries in order to locate the
objects. Recently more efficient query routing techniques based on routing
indices [6], heuristics [30] and caching [32] were proposed.

Unstructured P2P networks offer a number of important advantages: (i) An
unstructured network imposes very small demands on individual nodes, and
more specifically it allows nodes to join or leave the network without signifi-
cantly affecting the system performance. (ii) Unstructured networks are appro-
priate for content-based retrieval (e.g. keyword searches) as opposed to object
identifier location of structured overlays. (iii) Finally unstructured networks
can easily accommodate nodes of varying power. Consequently they scale to
very large sizes and they offer more robust performance in the presence of
node failures and connection unreliability.

In current unstructured systems however, the connections between peers are
not based on the underlying network latencies, leading in that way to an in-
efficient overlay structure. This phenomenon leads to excessive resource con-
sumption in Wide Area Networks as well as degraded user experience because
of the increased network delays between the peers in the overlay network. On
the other hand, the large-scale and ad-hoc nature of such systems makes it
infeasible to pre-compute in a centralize setting some network-efficient overlay
structure. Therefore an important problem is how to structure in a completely
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Fig. 1. Our analysis of the network traffic in [31] reveals that Large-Scale Overlay
systems, such as Gnutella, consist of many thousands of nodes that belong to very
few ISPs. More specifically we found that 45% of the nodes in a set of 244, 000 IPs
belong to only 10 large ISPs and that 58% belong to only 20 ISPs.

decentralized way an overlay network with good topological properties (i.e. low
end-to-end delays, diameter and connectivity). Our motivation is to improve
application performance, reduce unnecessary traffic and scale well with the
size of the network.

In this work we propose and evaluate DDNO (Distributed Domain Name Or-
der), which is a distributed technique to make unstructured overlay networks
topologically-aware. In DDNO, a node tries to connect to degree/2 nodes that
belong to the same domain (sibling connections) and to another degree/2 of
random nodes (random connections). The resulted DDNO topology achieves
high performance through sibling connections while the additional random
connections ensure that the topology structure remains connected. The choice
of degree/2 sibling connections presents a good tradeoff between overlay per-
formance and connectivity in networks of arbitrary degree, as we show in
our experimental evaluation. Discovery of sibling nodes in DDNO is achieved
through multicast lookup messages which are send out by each node and which
traverse a set of ZoneCaches before finding other siblings. Our earlier study on
the network traffic of the Gnutella [9] file-sharing network in [31], reveals that
most of the participating nodes do belong to only a few ISPs (see figure 1).
Therefore most nodes have a good probability of finding other sibling nodes
which makes our scheme beneficial for the largest portion of the network. Note
that these measurements are consistent with similar studies performed in 2002
by Ripeanu et. al [25], in which they found that more than 40% of these nodes
are located within the top ten Autonomous Systems. Additionally the au-
thors found that only 2-5% of Gnutella connections link nodes located within
the same Autonomous System, which clearly indicates that application layer
overlay networks can unnecessarily impose a huge inter-AS traffic overhead.
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The DDNO overlay can become the middleware component for a variety of
network-based applications. In the context of distributed file sharing for in-
stance, a user in Germany has a higher probability of finding German mu-
sic if his search first spans in the ”.de” domains. If the overlay network is
not topologically-aware, then the user’s query will end up traversing domains
across many different countries and continents, increasing therefore the de-
lay of receiving back all answers and decreasing the probability of finding the
desired results. Moreover, once the file is located the actual download time
might also be very large as the file might physically reside far away from the
user. Furthermore, our scheme can increase the performance of P2P Infor-
mation Retrieval [32] systems. In [32] we built and evaluated a large-scale
decentralized newspaper network of 1000 nodes using 75 workstations. In this
context, our topologically-aware scheme will enable users to span their queries
to newspaper proxies that are closer to their locations enabling them therefore
to locate local news.

Our Contribution

In this paper we consider a fully distributed technique for addressing the prob-
lem of efficient overlay construction in unstructured networks. More specifi-
cally:

• We propose and evaluate DDNO (Distributed Domain Name Order), which
is an efficient, scalable yet simple technique for constructing topologically-
aware overlay topologies. DDNO is entirely distributed, requires only local
knowledge and therefore scales well with the size of the network.

• We provide an extensive experimental study to evaluate the performance of
our technique. In addition, we compare our technique with other heuristic-
based techniques. Our results indicate that DDNO improves many desirable
properties such as low end-to-end delays, connectivity and low diameter.

The remainder of the paper is organized as follows: In section 2 we present the
DDNO Algorithm, which is our proposed technique to construct topologically
aware overlay networks. In section 3, we describe three alternative methods
for overlay construction in centralized and distributed environments. Section 4
describes our experimental methodology, datasets and evaluation parameters.
In section 5 we present our experimental results. Finally, in section 6 we discuss
related work and conclude the paper in section 7.
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Fig. 2. A snapshot of a DDNO Topology with 25 nodes (degree=4) from 5 domains.
Each node tries to connect to d

2
nodes in the same domain and another d

2
nodes in

other random domains.

2 DDNO - Distributed Domain Name Order Protocol

In this section we present the Distributed DNO (DDNO) algorithm which
clusters nodes belonging to the same domain together without the need of
a centralized component that usually assists in the overlay construction pro-
cess. In particular, we explain how nodes join the DDNO topology and how
domain-name lookups are performed, with the assistance of the Split-Hash
and dnMatch functions. Then, we describe the topology maintenance process
and how query routing works. An example of a DDNO Topology can be viewed
in figure 2. Our objective is to build an infrastructure-less protocol which in
effect might be able to support large ad-hoc communities.

2.1 Joining a DDNO Topology

Let n denote a node which wants to join an overlay network N . Since n doesn’t
know which other nodes are currently active in N , it has to either probe nodes
to which it was connected in some past session, or to consult some distributed
discovery service D (i.e. some hostcache) which will provide n with an initial
list of active nodes 1 . We assume that an out-of-band discovery service will
provide n with a random list of active hosts L={n1, n2, ..., nk}, for some con-
stant k≥degree

2
. It is important to note that the individual hostcaches do not

have global knowledge and therefore these cannot be used for disseminating
some pre-computed overlay structure or the distances between all node pairs.

After n obtains the list L, it first attempts to establish a connection to d/2
random nodes, where d is the degree of n. The pseudocode of this procedure

1 Both techniques are deployed in many Peer-to-Peer systems, such as Gnutella [9]
and Kazaa [15] and work reasonably well. Hostcaches are either located on Web
pages or dedicated servers.
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Algorithm 1 Join Network

1: procedure join network(n,N)
2: random← 0
3: while true do
4: while (random < d/2) do
5: if (empty(L)) then
6: L← getRandomList(d/2)
7: end if
8: random← connect(L)
9: end while

10: next← getRandNode()
11: L← lookupDN(dn(n), ttl,next)
12: wait(interval)
13: connect(L)
14: end while
15: end procedure

can be viewed in lines 4 to 9 of Algorithm 1. In the experimental results
of Section 5.3, we validate the choice of d/2 random nodes and show that
it presents a good tradeoff between overlay performance and connectivity in
networks of arbitrary degree.

Note that in the procedure of Algorithm 1, it is quite possible that some or
all of the nodes ni in L are not able to accept any new incoming connections.
This might either happen because ni reached its maximum degree or because
ni went offline. It this case n will need to obtain an additional list L from
D and repeat steps 4-9 until d/2 random nodes are found. In the next step
we attempt to find d/2 sibling connections by sending a lookupDN message to
one of the existing (random) neighbors. The message will attempt to return
a number of sibling nodes in N . We will discuss the complete operation of
the lookupDN message in subsection 2.3. Since a lookupDN message might get
terminated without returning any results, a node might pipeline several such
messages.

Before describing in further detail the lookupDN message, we will describe two
useful functions: i) Split-Hash, which allows us to efficiently encode domain
names and ii) dnMatch which determines whether two domain names dn1 and
dn2 belong to the same domain or not.

2.2 The Split-Hash and dnMatch Functions

Each node participating in a DDNO topology has some Domain Name (dn),
which is a string that conforms to the syntax rules of RFC 1035 [19]. Such a
string, which is case insensitive, can be expressed with the regular expression
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dn = label(.subdomain)+, where label and subdomain are some strings with
certain restrictions, such as length and allowed characters. In order to deter-
mine whether two domain names dn1 and dn2 belong to the same domain we
first introduce the split-hash function, which is a hashing function that splits
a domain name dn into k hashes, where k is the number of subdomain strings
in dn (k = |subdomain(dn)|). A formal definition of this function is given in
the split-hash procedure.

1: procedure split-hash(dn)
2: int size = |subdomaindn|
3: for j = 1 to size do
4: result[j] = hash(m, subdomaindn[j])
5: end for
6: return result
7: end procedure

In the procedure, hash(m, subdomaindn[j]) hashes the subdomaindn[j] using m
bits. We chose to use hashcodes instead of raw domain-names because it allows
us to keep the lookup message size small 2 . Furthermore, for performance
reasons the hashcode does not need to be a non-colliding key 3 as this would
again make ℓ prohibitively large. For example if we use a total of 160 bits
for all the k generated hashes, then there would be an additional 100 bytes
augmented to the lookup message after 5 hops. Instead, using a 20-bit hash
function and assuming that keys are uniformly generated, we will be able to
uniquely identify more that 1 million nodes and travel a distance of 40 hops
with the same amount of bytes.

Now that we have introduced split-hash, we use the dnMatch(dn1, dn2) com-
parison function, which compares the individual hashes of subdomains dn1 and
dn2. In the basic case, dnMatch returns true if dn1 6=dn2 and the subdomain
of dn1 and dn2 matches. For example if dn1=”a.aol.com” and dn2=”b.aol.com”
then dnMatch(dn1, dn2) = true. For dn1=”a.yahoo.de” and dn2=”a.yahoo.com”
then dnMatch(dn1, dn2)=false. Of course our scheme can take advantage of
the hierarchical structure of DNS and return the amount of similarity between
two domain names (instead of using an exact match answer). For example if
dn1=”a.rochester.rr.com” and dn2=”b.ny.rr.com” then dnMatch can return
2

3
= 0.66, rather than simply true or false.

The only limitation with dnMatch is that it can’t distinguish two nodes that
share the same dn, such as nodes in private networks using NAT (Network
Address Translation). Although these nodes won’t be able to connect to each
other as siblings, they present only a small fraction of the nodes in networks
such as Gnutella, in which they are less than 5% [31].

2 RFC 1035 [19] defines that subdomain name must be 255 characters or less.
3 Hash functions such as SHA-1 are 160-bit and collision of two keys is difficult.
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2.3 Domain-Name Lookup in a DDNO Topology

We now focus our attention on the lookupDN procedure which is used by some
node n, in order to discover other sibling nodes in N . We model the lookupDN
message (denoted as ℓ) as a multicast walker. The goal of the multicast walker
ℓ is to reach some node d that can guide it to the destination (i.e. a sibling of
n). Note that before reaching d, ℓ may need to traverse a number of randomly
selected neighbors. This can be viewed in figure 3, in which ℓ takes the ran-
dom itinerary [a, b, e, c, b, d]. At d however, ℓ is allowed to make an informed
decision on which neighbor to follow next (in this example node f). This is
achieved by using a special structure called ZoneCache that contains infor-
mation on which nodes are reachable in a r-hop radius (it will be discussed
in the next subsection). At the end of this procedure, ℓ is expected to reach
some node m, which is a sibling of n. m then issues a broadcast message to
all of its own siblings. Each of the receiving nodes, including m, will respond
with a LookupOK message (denoted as ℓ′) if they are willing to accept new
connections. Therefore node n will end up receiving several answers out of
which it will attempt to establish a connection to degree/2 nodes.

If the nodes along ℓ’s path don’t keep any intermediate state (e.g. the identifier
of ℓ 4 ), then ℓ might get locked in a cycle (e.g. loop b → e → c in figure 3).
Instead of retaining such state at each node, we choose to incorporate state
information in ℓ as this also serves as an implicit mechanism to populate the
ZoneCaches along ℓ’s path. The state information included in ℓ, includes the
split-hash h (described in section 2.2), on the domain-name of each node
that ℓ traversed (i.e. stateℓ = {h(vn), ..., h(vm)}).

4 ℓ messages are uniquely identified by a random identifier that is locally generated
by the issuer of ℓ.
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Algorithm 2 lookupDN

1: procedure lookupDN(n, ttl,m)
2: cacheRoute(n,ZoneCache(m))
3: if ( dnMatch(n,m) ) then
4: if ( (degree(m) < d) and not(connected(n,m)) ) then
5: send(n,"LOOKUPOK m.IP,m.PORT")
6: end if
7: broadcast(siblings(m))
8: else if (ttl > 0) then
9: if ( hit( ZoneCache(m), hash(n) ) ) then

10: next← getNextNode(ZoneCache(m))
11: else
12: next← getRandNode()
13: end if
14: lookupDN(n, ttl − 1, next)
15: end if
16: end procedure

The complete pseudocode of the lookupDN procedure can be viewed in Algo-
rithm 2. A node n sends a lookup message to node m using some ttl parameter,
which determines the maximum number of hops that the given lookup should
be forwarded. The ttl parameter, which is used in many networked applica-
tions, starts out from a predefined value and is decrement each time a lookup
message is forwarded until it becomes zero.

2.4 The ZoneCache Structure

ZoneCache is a caching structure which is deployed locally at each node and its
functionality is to guide lookupDN messages to their sibling nodes. A snapshot
of such a structure is displayed in table 1. The first column includes the hash of
some domain-name and this information is extracted from passing lookupDN
messages. The second column indicates, the peer connection that will lead a
future ℓ2 to the corresponding destination, and the third column indicates the
respective cost in hops. Finally ZoneCache also uses a timestamp parameter
(fourth column) in order to limit the number of entries to a total size of
C. 5 Once the repository of some node becomes full the node uses the Least
Recently Used (LRU) policy to keep the most used entries in the cache.

The cache stores only the hashcodes of the nodes that are located within an
r-hop radius in order to limit its size and accuracy. We show how this works
with the following example: Assume that node n sends a lookupDN message
ℓ searching for some sibling and that this message reaches some node d (in
figure 3). Also assume that ℓ has already passed from five nodes and that

5 We set ZoneCache’s maximum entries parameter C to 350.
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Table 1
The ZoneCache Structure. It caches domain reachability information from

lookupDN messages that traverse a given node.

Split-Hash Neighbor Hops LRU TimeStamp

9A78DF Socket3 3 10000000

421CDE Socket1 2 10012000

... ... ... ...

2AB356 Socket1 2 10160000

it has the following state: stateℓ = {a, b, e, c, b}. If the radius parameter of
m’s ZoneCache is set to three then node d will store the following quadruples
(i.e. information for only three hops away): {(b, b, 1, ts), (e, b, 2, ts), (c, b, 3, ts),
(a, b, 2, ts)}, where the first field is a hash of the destination node, the second
field the next neighbor that leads to the destination, the third field the number
of hops and the last field the timestamp parameter generated at the time of
the record insertion.

Note that before storing the quadruples, we identify and eliminate cycles in the
stateℓ sequence (therefore (a, n, 2, ts) is also considered). Furthermore if d’s
ZoneCache already contains any of the following hashcodes {a, e, c, b} then ℓ
would update some tuple only in the case that the new entry provides a shorter
path to the respective entry. The next question is how the cached information
becomes useful to some future lookup message. Suppose that node a sends a
lookupDN message ℓ2 to d (see figure 3) and that a and c are siblings (i.e.
dnMatch(a, c) = true). Following the previous example, d has an entry in its
zonecache which indicates that c can be reached through b in 3 hops. Therefore
ℓ2 will be routed towards c. Although neighboring ZoneCaches could actively
exchange routing updates at regular intervals, like BGP, our passive caching
scheme reduces significantly the amount of transmitted message and works
well in dynamic environments as we will see in section 5.

2.5 DDNO Topology Maintenance

When a node disconnects from the DDNO topology it does not need to send
any a priori notification to the other nodes. This happens because each node
continuously tries to maintain its degree to the pre-determined value d. If some
random neighbor of n leaves N then n will either attempt to re-establish the
dropped connection or find another node from the discovery service outlined
in subsection 2.1. On the other hand, if some sibling of n disconnects then n
consults its ZoneCache in order to send the new lookupDN message towards a
current sibling. It is expected that n will discover another sibling in only two
hops (as a node already maintains (d

2
− 1) siblings).
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Another technique would be to proactively exchange lookupDN messages with
sibling nodes. Although this might allow a node to instantly react in the
event of failures, it might become a large overhead for the overlay topology.
For example our study in [31], on a collection of 56 million overlay messages
obtained from the Gnutella network, reveals that 23% of all messages are Ping
messages and 40% of them are Pong messages. Ping/Pong messages are the
main technique for proactively discovering new nodes in the Gnutella Network.

2.6 Query Routing in a DDNO Topology

One of the major objectives of overlay networks is to facilitate users in per-
forming distributed functions, such as queries over the contents of other users.
In [32], we have made an extensive study on a number of different query tech-
niques that can be applied in randomly generated topologies. In this work we
propose the deployment of the DDNO topology which leads to more desirable
overlay properties. Given that we have a DDNO topology some node might
deploy any of the following search techniques: Breadth-First-Search (BFS) [9]
(query all neighbors), Random BFS [13,32] (query a random subset of neigh-
bors), ISM [13,32] (intelligently query a subset of neighbors) or >RES [30]
(query the neighbors that returned the most results in the past). Our study
which was performed on a real network of 1000 nodes deployed on a network
of 75 PCs, reveals that by using our ISM technique we might be able to retain
high degrees of recall while using only half messages and time used by the
brute-force BFS technique.

DDNO allows multiple search algorithms to be deployed on top of its topology.
The advantage of using DDNO is that the bulk of the incurred overlay traffic
will remain within the same domain since only d/2 of the traffic will make its
way to a different domain. Finally, the DDNO topology gives space for more
sophisticated search techniques. In the context of a large-scale file-sharing
application with many thousands of nodes, we might decide to forward query
requests to only sibling nodes.

2.7 DDNO in a Hybrid Overlay Environment

Although the proposed DDNO topology leads to a flat topology, the basic
approach can be utilized in some hybrid P2P environment such as Kazaa[15]
and Gnutella[9] v0.6. In such an environment some nodes with long-time net-
work connectivity and high bandwidth connections, known as SuperPeers or
UltraPeers, form a backbone infrastructure which can be utilized by other less
powerful nodes (denoted as RegularPeers). Such a model allows the network
size to grow to millions of users because it differentiates short-time connection
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and modem users from other more powerful users (e.g. ADSL, cable modem
users).

DDNO could be deployed in a hybrid P2P environment in the following way:
A superpeer s initiates a lookupDN ℓ message to find d/2 other sibling and d/2
random superpeers. RegularPeers will again utilize the lookupDN message to
discover the superpeer nodes that belong to their domain and that might be
able to serve them. Of course using such an approach in an overlay, requires
a large number of participating nodes, as smaller numbers would limit the
number of superpeers the ℓ message locates. Therefore in our experimental
evaluation of section 5, we use the basic ”flat” topology approach, rather than
the ”hybrid” topology discussed in this subsection.

3 Alternative Heuristics for Overlay Construction

In this section we will describe various overlay construction heuristics that are
later compared to DDNO. We start out by defining the computation model
of these algorithms. Specifically, each algorithm takes as an input a vertex
set V = {1, 2, ..., n} and constructs an overlay topology G = (V, E), where
the E set represents the overlay connections between the V vertices. The con-
struction of an optimal overlay is known to be NP-complete [8] therefore the
following presented algorithms are, similarly to DDNO, based on heuristics.

To simplify the discussion, we start out by describing the functionality of each
algorithm using a centralized setting. In a centralized setting, a global list of
all n nodes along with physical distances between all pairs (the nxn IP-latency
adjacency matrix), is known to every node in the system. We then formalize
how each of these heuristics can be applied in a distributed manner. Note
that the centralized version of each algorithm is not only useful for describing
the distributed techniques, but also provides us with a lower bound on their
overlay performance. This is attributed to the fact that the centralized version
of each algorithm can utilize global information in order to find the best peers
among its possible choices. The lower bound allows us to know the ”best-case”
overlay performance for each of the described distributed techniques.

3.1 The Random Algorithm

In this algorithm, each vertex vi selects its d neighbors by randomly choosing
d other vertices. Since overlay connections are bi-directional, a node avoids
connecting vi to vj if vj is already connected to vi. This is the algorithm
deployed in most current P2P networks such as [9,15] and its main advantages

12



Fig. 4. Visualization of a Random graph with n=332 nodes (average degree=2,
diameter=32) using the Kamada-Kawai visualization model in Pajek [1]. Random
topologies have the advantage that they are easy to construct and lead to connected
topologies (if degree > log2n [2]). The latencies at the overlay-layer however, usually
don’t match the underlying physical latencies.

are: i) it is simple as it does not actually require the nxn IP-latency matrix
(therefore it can be completely distributed), and ii) it leads to connected
topologies if the degree d > log2n [2] (see figure 4). We will refer to the
centralized and distributed version of this algorithm as RAN and DRAN
respectively.

3.2 The Short-Long and BinSL Algorithm

The centralized Short-Long (SL) algorithm, which was proposed in [23],
alleviates the network unawareness of the RAN algorithm in the following
way: Each vertex vi, selects its d neighbors by picking the d/2 nodes in the
system that have the shortest latency to itself (these connections are called
short links) and then selects another d/2 vertices at random (these connections
are called long links). Assuming that the SL algorithm has at its disposal the
nxn IP-latency matrix, it can easily find the latencies between the various
node pairs. The intuition behind this algorithm is that the d/2 connections to
”close-by” nodes will result in well-connected clusters of nearby nodes, while
the random links serve to keep the different clusters interconnected and the
overall graph connected.

Constructing and maintaining the nxn IP-latency matrix in a large scale en-
vironment is very difficult. This is particularly true, in the presence of a high
churn rate [4]. Therefore Ratnasamy et. al also propose the distributed BinSL
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Algorithm, which utilizes the notion of distributed binning in order to ap-
proximate, in a completely distributed fashion, the latencies between nodes.

More specifically each node calculates the round-trip-time (RTT) from itself
and k well-known landmarks {L1, L2, ..., Lk} on the Internet. The set of land-
marks can consist of stationary entities (such as DNS servers). The numeric
ordering of the latencies represents the ”bin” the node belongs to. Latencies
are then further classified into level ranges. For instance if the latencies are
divided into 3 levels then; level 0 accounts for latencies in the range [0,100),
level 1 for the range [100,200) and level 2 for all other latencies. The level
vector is then augmented to the landmark ordering of a node yielding a string
of the type ”l2l1l3 : 011”. An example execution of this heuristic can be seen
in figure 5 (left).

It is expected that nodes belonging to the same bin will be topologically
close to each other although false positives are possible, that is, some nodes
do belong to the same ”bin” although they are not topologically close to each
other. The rate of false positives is a function of how many landmarks are used,
as fewer will degrade the performance of the binning scheme. For example if
two nodes, the one located on the east coast and the other the west coast, have
the same RTT to k landmarks, then they will also share the ”bin” code. In
our experiments, presented in Section 5, we experimented with the following
scenarios: i) BinSL-4 which uses 4 landmarks with 3 levels and ii) BinSL-12
which uses 12 landmarks and 3 levels.

3.3 The Greedy Binning Algorithm

In order to emphasize that by only selecting the shortest latency nodes might
have a negative effect for the overall network structure; we also propose and
study the Greedy Short (Short-Short or SS) algorithm. In SS, each vertex
selects as its d neighbors the ones that have the shortest latency to itself (i.e.
only short links). Our experimental study in 5, reveals that this always results
in disconnected topologies (this is also visualized in Figure 5 (right)).

3.4 Domain-Name Order Algorithm (DNO)

In the Domain-Name Order Algorithm, which is the centralized version of
the algorithm we propose in section 2, a vertex vi selects its d neighbors by
picking the d/2 vertices that have the same domain-name with vi. It then
selects another d/2 neighbor at random. The idea of this algorithm is similar
to the SL algorithm, in that we want to create well-connected clusters of
nodes that are topologically close to each other without jeopardizing network
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Fig. 5. a) An example execution of the BinSL Algorithm. b) Visualization of Greedy
Binning (SS) graph of 1000 peers (degree=6) using the Fruchterman-Reignold vi-
sualization model in Pajek [1].

connectivity. The main advantage however, is that the DNO algorithm does
not require the nxn IP-latency matrix that SL needs.

4 Experimental Methodology

Our experimental evaluation focuses on: (i) the Overlay Performance, in which
we evaluate the generated overlays with respect to the overall end-to-end de-
lays, the graph diameter and the number of clusters, and ii) Lookup Perfor-
mance, in which we evaluate the performance of lookupDN messages with
respect to the number of hops each message traverses and the percentage of
resolved queries.

4.1 Evaluation Parameters

Overlay Performance: To assess the performance of an overlay we define
the Aggregate All-Pair Shortest Path (AggAPSP) parameter, which is the
sum of all distances (pairs of shortest paths) on the overlay graph G. Formally
AggAPSP is defined as following:

AggAPSPG =
n∑

i=0

n∑

j=0,i6=j

APSP [i][j], (APSP [i][j] 6=∞) (1)

where APSP is an nxn matrix that stores all the minimum distances between
all pairs. Such a table is obtained by running some All-Pair Shortest Path
(APSP) algorithm 6 on the set of pairs in the edge set E. AggAPSP , can be
thought as the end-to-end delay between all different pairs, and that is the

6 We use the Floyd-Warshall Algorithm [10].
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reason it needs to be minimized. Although routing of messages on an overlay is
performed based on the routing policies defined by each node, we use shortest
path routing (similarly to [23]) which provides lower bounds for paths taken
by packets.

Formula 1 however, does not take into consideration the fact that some con-
nection between overlay nodes might not be available. This happens in the case
that the overlay network G is segmented into two or more partitions. There-
fore we also define the ClustersG metric, which is the number of disconnected
groups of nodes a given graph has. More formally:

ClustersG = COUNT (Connected Components) (2)

where Connected Components is an algorithm that identifies the connected
components of a graph 7 . It is important to mention that disconnected network
segments are undesirable in overlay networks as this limits the reachability of
nodes in the network.

Finally, we also take into account the Diameter of an overlay G, which is
the length of the longest of shortest path distances between pairs vi and vj

(∀i, j ∈ V ). More formally DiameterG is defined in the following way:

DiameterG = MAX(SP (vi, vj)), (∀i, j ∈ V and i 6= j) (3)

where SP is the maximum shortest path between vertices vi and vj. Consider
for example two overlay instances G1 (ring topology) and G2 (star topology)
with the same number of vertices that have only different diameters δ1 and δ2

(δ1 ≫ δ2). If an overlay message uses a parameter TTL, which limits the number
of hops a message travels, then the nodes reached by the message are much less
for G1 than G2. Therefore large diameters play a negative role in the resolution
of some overlay message (e.g. some QUERY message) as those messages are
required to travel more hops and possibly won’t reach an adequate number of
receivers.

Lookup Performance: Since the functionality of lookupDN messages is of
major significance in the context of DDNO, we investigate the average num-
ber of hops each lookupDN message ℓ traverses before finding some sibling
node. We also investigate the total number of temporary connections that are
swapped with sibling connections once the latter are found under various sce-
narios of churn. Note that in DDNO a node attempts to connect to degree/2
nodes in the same domain (siblings) and degree/2 random nodes. However
if degree/2 siblings are not found, then each node temporarily utilizes the
random nodes until the requested amount of siblings is located.

7 We use the Component-Finding algorithm that uses DFS [10].
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4.2 Description of Datasets

Evaluating topologies based on the parameters outlined in the previous sub-
section requires a dataset in which the IP latencies are not synthetic. We
therefore chose to base our experiments on the measurements of the Active
Measurement Project (AMP) [11], at the National Laboratory for Applied Net-
work (NLAR). AMP deploys a number of monitors distributed along 130 sites
to actively monitor the Internet topology. AMP monitors ping and tracer-
oute each other at regular intervals and report the results back to the project
servers. Most of the current 130 monitors currently reside in the U.S with
a few exceptions of some other International sites. The details of the AMP
methodology and infrastructure can be found in [11].

In our experiments we use a 1.8 GB snapshot of traces obtained on the 30th
of January 2003. The set includes data from 117 monitors out of which we
extracted the 89 monitors which could be reversed DNS (i.e. given their IP
we obtained a DNS name). We then construct the nxn IP-latency matrix (for
all n=89 physical nodes), that contains the latency among all monitors. Since
all 89 hosts are located at different domains, we choose to incorporate some
degree of host replication per domain. Our study in [31] shows that hosts
in a real overlay network, such as Gnutella, exhibit this characteristic. More
specifically we choose the following host replication schemes:

(1) Random Replication (RR). We randomly replicate each host [1..k]
times. In our experiments we set k = 7 which consequently generated
332 nodes. This network attempts to address scenarios in which some
domains contribute more hosts than other domains.

(2) Uniform Replication (UR). We replicate each host k times, for some
parameter k. In our experiments we set k = 4, which consequently gen-
erated 356 nodes. This network attempts to address scenarios in which
all domains contribute equally to the host distribution of the network.

Additionally, for the scalability experiments presented in Section 5.6, we derive
two new datasets from the Active Measurement Project. More specifically we
chose the Random Replication scheme and generate the Large Random
Replication (LRR) dataset with 5,000 (LRR-5K) and 10,000 (LRR-10K)
nodes.

4.3 Time Model

Since there is no fine-grained model of time in a simulation environment, we
choose to divide time into units of algorithm iterations. During an iteration
each node n is given the opportunity to establish connections to up to d
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neighbors. n is not assured that it might be able to connect to d neighbors
in a single iteration. This happens because some or all of its attempts target
nodes that have already reached their expected degree and therefore don’t
accept any new incoming connections. Therefore an algorithm may require
several iterations before it stabilizes.

5 Experimental Evaluation

In this section we present the results of our extensive experimentation with
DDNO. More specifically, we implemented centralized and distributed versions
of the various algorithms presented in Section 2 and Section 3. Note that in
a distributed setting some node has no topological information other than
which are its own neighbors. Therefore global lists of other active nodes or
IP-latencies are not available.

5.1 Centralized Evaluation

For the first experimental series we run the four centralized algorithms RAN,
SL, SS and DNO using both the RR and UR datasets. The presented results
are for different degree parameters larger than five (at which most algorithms
stabilize to a single cluster). In Figure 6 (top row) we can see that all algo-
rithms, other than SS, have a large AggAPSP value for smaller degrees but
as the degree increases, AggAPSP quickly stabilizes. This happens because
initially there are fewer paths between the different node pairs. For example,

if we have three nodes a, b, c connected in the following topology a
5
↔ b

10
↔ c

(where the number on the edges represents the latency between the respec-

tive nodes), then the addition of edge a
2
↔ c will drop the AggAPSP from

30 (5+10+15) to 14 (5+7+2). SS on the other hand, presents always a very
low AggAPSP because: i) each node only chooses the nodes that have the
shortest latency to itself and ii) because the network topology is always dis-
connected and therefore many entries are not considered (i.e. APSP[i][j]=∞).
The figure indicates that RAN has the highest AggAPSP, which means that it
has the highest end-to-end delay between nodes. SL and DNO on the other
hand are both able to perform much better because both algorithms choose
half of their neighbors selectively, (i.e. the lowest IP latency and domain-name
match respectively). On the same figure we can see that SL performs slightly
better than the DNO algorithm but this is expected as SL has the advan-
tage of choosing the d/2 ”least latency” nodes while DNO has to rely on the
domain-names as a metric for network distance. DNO however doesn’t utilize
the IP-latency table which provides the latencies between all pairs.
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Fig. 6. Evaluating overlay topologies using data from the RR (left) and UR (right)
datasets. By using DNO or SL we can significantly reduce the end-to-end delay
between overlay nodes (top), while maintaining a connected topology (middle) with
a relatively low diameter (bottom) for the same average degree.

The fact that only RAN, SL and DNO generate connected topologies can be
observed in Figure 6 (middle row). More specifically all three algorithms yield
connected topologies while SS always results in disconnected topologies even
for very large degree values (i.e. 20). This happens because each node selects
as its d neighbors only the nodes that have the shortest latency to itself.

Figure 6 (bottom row) shows the diameter of the four algorithms. As we can
see only the SS algorithm generates topologies with arbitrary large diameters
even in the case of very large degree parameters. On the same figure we can see
that SL again slightly outperforms the DDNO algorithm but only for smaller
degree parameters (less than 10). This is again expected as SL optimizes more
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Fig. 7. Performance Evaluation of DRAN, BinSL-4, BINSL-12, DDNO-3 and
DDNO-5 using the UR dataset

the latency parameter (shortest path) between nodes, which consequently also
decreases the diameter of the network. All experiments are averages of five
executions.

In this subsection we have seen that DNO might be useful for constructing
connected overlays with low end-to-end delays and low diameters. The problem
that arises in a real overlay setting is that we don’t have global knowledge or
not even a list of active nodes at all times. One solution would be to deploy
some centralized lookup service, that, given some domain-name, returns IPs
of other active nodes that belong to the same domain. This service might
pre-compute some overlay structure, similarly to [14,16], and disseminate it
back to the nodes that participate in a given overlay. Although such services
are feasible, they are expensive, usually don’t scale well and are vulnerable to
denial of service attacks and censorship [20].

5.2 Performance Evaluation

In the next experiment we evaluate the distributed algorithms against the
three parameters we defined in section 4.1 (i.e. AggAPSP, Clusters and Diam-
eter) using the UR dataset in which each node has a degree of 8. We choose
this parameter as it always results in connected topologies. For our Distributed
Domain Name Order Algorithm (DDNO), we advocated in section 2, we have
experimented with various parameters for the caching radius of the ZoneCache
and for the ttl parameter of lookup messages. Here we present our most rep-
resentative configurations which are summarized as following: i) DDNO-3
which uses lookupDN messages with a ttl of 20 and caching radius of 3. ii)
DDNO-5 which again uses a ttl of 20 but caches in a radius of 5.

As we can see in figure 7 DRAN has again the highest end-to-end delay as the
AggAPSP stabilizes at 19M ms while all other algorithms perform much bet-
ter. DDNO-3 and DDNO-5 use ≈13.5−14.5M ms while BinSL-4 and BinSL-12

20



use ≈16 − 17M ms. This means that DDNO-5 presents a 30% improvement
upon the DRAN technique. We can also see that although we increase by three
times the number of landmarks in the BinSL algorithm the accuracy of the
binning scheme only increases about 0.8M ms.

We can also observe that DRAN and BinSL manage to stabilize within the first
few iterations as their operation doesn’t involve temporary connections. We
already discussed that DDNO maintains more that d/2 random connections
if it is not able to locate d/2 siblings. Although this increases connectivity
and prevents network fragmentation, it also slightly delays the stabilization
process. We also experimented without allocating temporary connections and
found that such an approach is viable, as it stabilizes after the seventh itera-
tion, but it initially results in a very high AggAPSP. In this experimental series
all algorithms always generate connected topologies which therefore make the
ClustersG evaluation parameter equal to one. Furthermore the DiameterG

remains constant at five. Therefore the graph for both evaluation parameters
is omitted.

5.3 Sibling Factor Evaluation

So far, in the experiments with DDNO we have used a sibling factor (K) of
degree/2. In this section we experimentally evaluate the DDNO algorithm
using a varying parameter K in both dense and sparse networks. The eval-
uation in this section demonstrates that by increasing the sibling factor in
a densely connected graph (degree=8), the AggAPSP parameter linearly de-
creases, while retaining a connected topology. On the other hand, our evalua-
tion in this section also demonstrates that by repeating the same experiment
in a sparsely connected topology (degree=4), results in highly disconnected
topologies.

Specifically, figure 8 (left) shows the AggAPSP parameter for the connected
topology using the UR dataset. The figure indicates that by increasing the K
parameter the performance of the overlay structure increases (i.e. smaller Ag-
gAPSP). In the figure we can also observe that for a sibling factor of K=degree
(i.e. 8), we can achieve a 12M AggAPSP latency, which is close to the 8M Ag-
gAPSP lower bound presented in section 5.1. Note that for all experiments
presented in this paper the TTL parameter of the lookupDN was 20. Had we
chosen a larger parameter it would be possible to optimize the overlay even
further.

In the next experiment we measure the performance of the algorithms in a
sparse topology (degree=4). Note that we cannot directly measure the Ag-
gAPSP parameter when the graph gets disconnected. This happens because
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Fig. 8. Sibling Factor Evaluation of the DDNO-3 algorithm (graph degree=8)
using the UR dataset.

AggAPSP is defined as the sum of shortest path latencies between all vertices
in the overlay graph. If the shortest path between any two vertices is indicated
as ∞ (i.e. these two vertices are not connected), then AggAPSP will incor-
rectly return∞. Therefore in the next experiment we used as our measure the
number of disconnected network segments (clusters).

Figure 8 (right), shows that a larger sibling factor K significantly increases
the number of clusters in the overlay topology. Additionally, we observe that
a larger sibling factor also delays the stabilization process of the DDNO al-
gorithm. Note that the DDNO algorithm will only stabilize after K siblings
nodes have been found. For any other number below this threshold, a node
will continue to seek for other siblings in the network. However when the
sibling factor is very large, then this has similarly to the Greedy Short al-
gorithm, a negative effect on the overlay performance as it finally results in
many disconnected clusters of topologically close-by nodes.

While it is hard to define the optimal parameter K, as this is largely depends
on the network instance, we believe that the selection of degree/2, presents
a good tradeoff between overlay performance and connectivity in networks of
arbitrary degree.

5.4 Overhead Evaluation

In order to assess the overhead of the DDNO technique, we investigate the av-
erage number of hops each lookupDN message ℓ traverses before finding some
sibling node. These results are obtained, as with the previous subsection, from
the execution using the UR dataset. As we can see in figure 9 (left), ℓ initially
requires about eight messages (hops), before it is able to locate its siblings. In
the subsequent iterations the various ZoneCaches get populated, which conse-
quently lead more ℓ messages to the right regions. The plot indicates that after
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Fig. 9. Overhead Evaluation of the DDNO-3 (left) and DDNO-5 (right) tech-
niques using the UR dataset.

the sixth iteration, ℓ requires only five hops for both DDNO-3 and DDNO-5
although DDNO-5 stabilizes slightly faster because of its expanded coverage.

The second overhead parameter that we investigate is the total number of
temporary connections that are swapped with sibling connections once the
latter are found. Figure 9 (right) indicates that DDNO-5 is again able to per-
form slightly better because ℓ messages are resolved faster, which consequently
eliminates the need for temporary connections. We can further see that the
total number of swapped connections for DDNO-5 and DDNO-3 is 100 and
120 respectively. This accounts to only a drop of ≈7% of the total connections
in the case of DDNO-5 and ≈8.5% in the case of DDNO-3.

5.5 Dynamic Environment Evaluation

Network failures in overlay systems are commonplace because of the misusage
exhibited at the application layer (e.g. users shut down their PCs without dis-
connecting) and the overwhelming amount of generated network traffic. Such
failures generate a dynamic environment in which peers are leaving or joining
the network in an ad-hoc manner. A highly dynamic environment neutralizes
the purpose of the ZoneCaches, as cached information might become outdated
before it gets the chance to be utilized.

We choose to evaluate only DDNO-3, where each node uses a ZoneCache
with a 3-hop radius, since our preliminary runs on networks of different sizes,
indicated that such a setting consistently offered good performance at a low
overhead. In order to simulate network failures, we disconnect at each iteration
a fraction of nodes. The failure rates we used are {0%, 5%, 10%, 20%}.

In figure 10 (left) we plot the number of resolved lookupDN messages after
running DDNO-3 using the RR dataset. The figure indicates that ≈89% and
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Fig. 10. Dynamic Environment Evaluation of the DDNO-3 algorithm over the
RR dataset, in a dynamic network topology where nodes leave and arrive.

≈85% of the messages are resolved at 5% and 10% of failures respectively.
Therefore low degrees of node failures don’t significantly affect the perfor-
mance of our scheme. With 20% failures the number of resolved lookup mes-
sages drops to 75%. Although this might be acceptable in some settings, the
fact that the number of hops required by each message increases over time (see
figure 10 (right)), might make our scheme not appropriate in such a dynamic
setting. On the same figure 10 (right), we can also see that with 5% and 10%
of failures the number of hops required by each messages stabilizes at 5 and 6
hops respectively. It is important to remind that in DDNO there is no explicit
mechanism to delete outdated entries in the distributed ZoneCaches as this
would introduce an additional messaging cost. Each node therefore relies on
its LRU policy to invalidate old entries.

5.6 Scalability Evaluation

In this subsection we show how our technique scales to larger network sizes
by measuring the percentage of resolved lookupDN messages and the average
number of hops each message travels. More specifically, we utilize the LRR-
5K and LRR-10K datasets which were described in section 4.2. These datasets
consist of 5,000 and 10,000 nodes respectively. We used the DDNO-3 topology,
in which each node has a caching radius of three and node degree = 12.

In figure 11 (left) we can see that in the first iteration approximately 57%
and 60% of the lookupDN messages are resolved for the LRR-5K and LRR-
10K datasets respectively. This low rate is attributed to the fact that the
various ZoneCaches are not populated adequately. In the subsection iterations
however, the lookupDN procedure is able to resolve ≈95-98% of the requests.
In figure 11 (right), we can see that after the first two iterations, lookupDN
messages are resolved within 4-5 hops. This result shows that resolving lookup
in a completely decentralized fashion doesn’t actually impose a large overhead
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Fig. 11. Scalability Evaluation of the DDNO-3 and DDNO-5 algorithms over
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respectively.

of messages even in larger topologies. Another interesting observation is that
although the network size was doubled in the LRR-10K dataset, the number
of hops taken by the lookupDN message has only slightly increased (≈0.2).

6 Related Work

The need of topologically-aware unstructured overlay networks has been ad-
dressed in [23]. In the proposed BinSL algorithm [23], which was evaluated
in this work, end-to-end delays are minimized using a system of k landmarks.
Recently an approach to create resilient unstructured overlays with small di-
ameters was proposed in [28]. In the proposed algorithm a node selects from
a set of k nodes, r nodes at random (r⊂k) and then finds from the rest f=k-r
nodes the ones that have the largest degree. The algorithm results in networks
with power-law distributions of node degrees differentiating it therefore from
DDNO in which we have a uniform distribution.

In [18], the authors propose the Location-aware Topology Matching (LTM)
technique for unstructured overlay networks. In the proposed scheme, peers
use the network delay information between two nodes as a metric for measuring
the cost between the nodes and dynamically choose to connect to physically
closer nodes and disconnect from distant ones. The network delay between two
nodes is computed dynamically by periodically sending special TTL2-detector
flooding messages with an initial TTL value of 2. With these messages, a peer
can compute the cost of the paths to a source peer.

While LTM has the same objectives with DDNO, our scheme differs from the
above in the following important ways: (i) We use domain names to identify
physically close peers, instead of using a measurement-based approach. Thus,
our scheme has the advantage that it does not depend on the current value
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of the measurement. For example, in [18], the amount and variation of traffic
between the nodes affects the creation and deletion of the connections. If there
is heavy traffic, some connections may be town down; affecting the stability
of their scheme. (ii) Although domain name is a global metric, our approach
establishes peer connections within (and across) the domains, with respect to
this global metric. (iii) Our scheme does not depend on the clock synchro-
nization of the peers. In [18], such synchronization is necessary to compute
the delays between the nodes. The synchronization, however, might be an
expensive process as it requires the exchange of messages among nodes.

In the Vivaldi [7] algorithm, nodes are assigned synthetic coordinates so that
the Euclidean distance between them estimates the actual network latency.
However, the algorithm requires re-computation of the coordinates on an on-
going basis as opposed to DDNO in which sibling nodes are located only during
initialization.

Topologically-aware overlays have also been addressed in the context of Struc-
tured P2P overlays in [3,23,29,33]. These systems rely on some hashing scheme
which allows nodes to quickly send messages to some destination node. Al-
though structured overlays are of particular importance in applications such
as decentralized web caches [12], they are not appropriate for content-based re-
trieval systems [32] and large-scale systems with transient user populations [4].
Li et al [17] propose techniques to construct overlay networks (meshes). How-
ever, their techniques are not distributed.

The Cluster-based Architecture for P2P (CAP), proposed by Krishnamurthy
et. al in [16], shares many similarities in its objective with DDNO. The au-
thors propose an architecture in which topologically close-by nodes, identified
by their IP addresses, are clustered together using a centralized clustering ser-
vice. Each cluster then features a cluster delegate node that acts as a content
directory service and which is utilized for efficiently answering queries. Rather
than flooding the network, nodes can directly interact with the delegate in or-
der to obtain an answer to their query. DDNO has two subtle differences with
CAP: i) We propose the deployment of distributed lookup queries to locate
the cluster to which nodes should join rather than utilizing a centralized clus-
tering service, ii) We utilize domain names in order to identify close-by nodes
instead of IP addresses. Although IPs have been used in the past to determine
network proximity [21], we believe that the current structure of most major
Autonomous Systems, in which nodes under the same administrative control
might have different CIDR prefixes, would significantly degrade the clustering
efficiency.

Similarly to CAP, network-awareness is also addressed in the context of large-
scale service overlays [14]. In the proposed scheme, a hierarchically fully con-
nected topology of nodes that are clustered based on their distances is con-
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structed. Although the centralized clustering component might be fast and
accurate, decentralized approaches are more scalable and less vulnerable to
denial of service attacks and censorship [20].

Application-layer multicast systems such as Narada [5] initially construct a
richer connected graph (mesh) and then use some optimization algorithm to
generate a mesh that has certain performance properties. As part of the mesh
quality improvement algorithm, Narada nodes randomly probe each other and
calculate the perceived gain in utility. We believe that our approach is sim-
pler and cheaper in terms of messages. It is furthermore designated for larger
groups of members, which might leave and join in an ad-hoc manner.

Finally, on an alternative approach, recent work [34] proposes to organize the
nodes in semantic groups. Given a query, the question is how to locate the
most relevant semantic groups and then flood the query within the group.
Efficiently classifying content in groups is an expensive procedure in prac-
tice, as it requires the continuous replication of content summaries between
neighboring nodes . Finally, these systems do not take into account the un-
derlying network characteristics making it inappropriate for systems that rely
on wide-area packet routing.

7 Conclusions & Future Work

In this work we propose and evaluate DDNO (Distributed Domain Name Or-
der), which is a distributed technique to make unstructured overlays topolog-
ically aware. We compare DDNO with a number of other overlay construc-
tion techniques in both centralized and distributed settings. Our experiments
indicate that DDNO is an attractive technique for topologically aware over-
lay construction as it optimizes many desirable properties such as end-to-end
delays, diameter and avoids network partitioning, scales to large overlay net-
works and works well in dynamic environments. We believe that our technique
is simple which will enable seamless integration into existing overlay systems
with minimum changes to the respective protocols. In the future we want de-
ploy our middleware platform, which is currently under development, over the
PlanetLab [22] distributed overlay testbed which is expected to run over 1000
geographically distributed machines in the next few years.
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