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ABSTRACT
In this paper we introduce the distributed spatio-temporal
similarity search problem: given a query trajectory Q, we
want to find the trajectories that follow a motion similar to
Q, when each of the target trajectories is segmented across
a number of distributed nodes. We propose two novel algo-
rithms, UB-K and UBLB-K, which combine local computa-
tions of lower and upper bounds on the matching between
the distributed subsequences and Q. Such an operation gen-
erates the desired result without pulling together all the
distributed subsequences over the fundamentally expensive
communication medium. Our solutions find applications in
a wide array of domains, such as cellular networks, wildlife
monitoring and video surveillance. Our experimental evalu-
ation using realistic data demonstrates that our framework
is both efficient and robust to a variety of conditions.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]:

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Spatio-temporal Similarity Search, Top-K Query Processing

1. INTRODUCTION
The advances in networking technologies along with the

wide availability of GPS technology in commodity devices,
make spatiotemporal records nowadays ubiquitous in many
different domains including cellular networks, wildlife moni-
toring and video surveillance. The enormous growth in spa-
tiotemporal records in conjunction with the emerging in-
network storage model, constitute centralized spatiotempo-
ral query processing techniques obsolete in many respects.
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To stimulate our description consider the Enhanced 911
(e911)1 service, which was recently enforced by the Federal
Communications Commission (FCC) to all US cellular ser-
vice providers. In e911, each provider must be able to locate
wireless 911 callers within a 50 to 300 meters accuracy, when
required. In order to satisfy the FCC requirements, carriers
had the choice to either add GPS technology into their cell
phones (the handset solution), or to estimate the position of
a caller using the timing of signals emitted from the phone
to the base station (the network solution). The bottom line
of both approaches, is that base stations scattered around
US neighborhoods must be able to provide the precise lo-
cation of any cell phone user at any given moment. In the
event of a 911 call, the accurate location information will be
transmitted towards the local state and government agen-
cies that can take further action. An important point is that
the generated data remains in-situ, at the base station that
generated the data, until some event of interest occurs.

The above example shows three important points : i)
spatiotemporal data becomes available in an ever growing
number of applications; ii) organizations realize that a dis-
tributed data storage and query processing model is in many
occasions more practical than storing everything centrally.
A category of applications for which this is particularly true,
are sensor and RFID-related technologies that try to capture
the physical world at a high fidelity; and iii) many of the
generated spatiotemporal records might become outdated
before they are ever utilized (for instance a cell phone user
might never actually make a 911 call), which again shows
that centralization might be a wasteful approach.

In this paper we propose techniques to overcome the in-
herent problems of the centralized scenario. Specifically, we
formulate the Distributed Spatio-Temporal Similarity Search
problem and devise techniques to solve this problem effi-
ciently. To formalize our description, let A denote a spatio-
temporal trajectory defined as a sequence of l multidimen-
sional tuples {a1, ..., al}. Each tuple is characterized by
two spatial dimensions and one temporal dimension (i.e.
ai(xi, yi, ti), ∀i ∈ [1..l]). A segment or subsequence of a tra-
jectory A, is defined as a collection of r consecutive tuples
[ai..ai+r] (i+r≤ l). Note that the segments of each trajec-
tory A, are located at different remote sites, depending on
the site that collected the data. In real applications a tra-
jectory will usually span many such sites, depending on the
coverage provided by each access point.

1http://www.fcc.gov/911/enhanced/



We denote the natural fragmentation of each trajectory as
spatial fragmentation, because a trajectory is sliced up into
several disjoint subsequences which reside on spatially dis-
tributed sites. Our objective is to answer the query: “Report
the objects (i.e. trajectories) which follow a similar spatio-
temporal motion with Q”, where Q is some query trajectory.
The notion of similarity captures the trajectories which dif-
fer only slightly, in the whole sequence, from the given search
query Q. More formally, the tuples of each target trajectory
A, are compared with the points of Q within some tem-
poral and spatial window. Other queries, such as pattern
queries [12], which look at the pattern of a trajectory rather
than individual points, are similarly interesting but outside
of the scope of this paper.

Research to this day, has focused on computing similarity
queries assuming that the querying entity has access to all
the trajectories in advance, or becomes aware of them in a
streaming fashion (Section 2 provides an overview). While
the centralized model serves well many scenarios where the
transfer of data is inexpensive, it is not appropriate for en-
vironments with expensive communication mediums, such
as wireless sensor networks [16], or environments where the
distributed sites generate large quantities of spatio-temporal
records (e.g. the e911 scenario).

Our approach is optimized for retrieving the K most simi-
lar trajectories to a query Q, for a user parameter K. There-
fore the queries do not retrieve the whole universe of an-
swers. Additionally, the techniques we propose employ tra-
jectory matching techniques that have been shown to be
accurate and tolerant to noise and outliers while featuring
an extremely low computational overhead. In this paper we
mainly use the Longest Common Subsequence (LCSS) [9]
as a distance measure, but the techniques can easily be ex-
tended to work with Dynamic Time Warping (DTW) [5] as
well. Our main contributions are summarized as following:

1. We introduce and formalize the problem of finding
the most similar spatio-temporal trajectories in a dis-
tributed environment.

2. We propose the UB-K and UBLB-K algorithms, which
are distributed query processing algorithms that find
the K most similar trajectories to a query trajectory
Q, by utilizing locally computed lower and upper bounds
on the trajectory similarity function.

3. We propose DUB LCSS and DLB LCSS, which are
distributed similarity approximation algorithms that
can accurately upper and lower bound the Longest
Common Subsequence (LCSS) similarity.

The remainder of the paper is organized as follows: Sec-
tion 2 provides an overview of related research, Section 3
formulates the problem and our notation. Section 4 de-
scribes our distributed query processing algorithms, UB-K
and UBLB-K, which utilize upper and lower bound scores
on a variety of distance measures in order to compute the K
most similar trajectories to a query trajectory Q. The exact
mechanism of generating the upper bounds (DUB LCSS)
and lower bounds (DLB LCSS) is described in Section 5.
In Section 6, we present an experimental study of our al-
gorithms using 25,000 car trajectories moving in the city of
Oldenburg (Denmark) and Section 7 concludes the paper.
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Figure 1: The trajectories A1 and A2 of two moving

objects in space G. Each cell contains an access point

that records subsequences of A1 and A2.

2. RELATED WORK
To the best of our knowledge the distributed spatiotem-

poral similarity search problem has not been addressed in
the literature before. However spatio-temporal queries have
been an intense area of research over the last years [1, 4,
13, 19, 20, 22, 24, 26]. This resulted in the development
of efficient access methods [13, 15, 22, 24] and similarity
measures [5, 9, 24] for predictive [23], historical [24] and
complex spatio-temporal queries [12]. All these techniques,
as well as the frameworks for spatio-temporal queries [18,
21, 25], work in a completely centralized setting. Our tech-
niques on the other hand are decentralized and keep the
data in-situ, which is more appropriate for environments
with expensive communication mediums and for large scale
applications that generate huge amounts of spatiotemporal
records.

One problem with the in-situ storage of trajectories is that
query processing now becomes significantly more complex.
Finding similar trajectories in a distributed fashion might
require sophisticated techniques and interactions to uncover
the potentially very large number of answers. Note that a
query of the type “Find which other trajectories are similar
to trajectory Q” yields fuzzy answers, thus it is meaning-
ful to limit the cardinality of the answer set to some user
defined threshold K. Otherwise, the user would end up re-
trieving a large number of less relevant answers. Solutions to
the above Top-K query processing problem, have tradition-
ally been provided by the database community in a variety of
contexts including middleware systems [10, 11], web accessi-
ble databases [7, 17, 27], stream processors [2], peer-to-peer
systems [3] and other distributed systems [8, 28].

In general, a Top-K query returns the K highest ranked
answers to a user defined similarity function. For instance
the query by example: ”Find the K=5 images that are most
similar to some query image Q”, returns the five pictures
that minimize the average distance for a set of given dimen-
sions (e.g. using features such as color, texture, etc). A
top-k query returns a subset of the complete answer set, in
order to minimize some cost metric that is associated with
the retrieval of the complete answer set. Such a cost is
usually measured in terms of disk accesses or network trans-
missions, depending on where the data physically resides.

The TA [11] algorithm and its variants are well established
and understood algorithms for computing top-k queries in a
centralized setting. A fundamental assumption underlying



these algorithms is that the exact score is available for each
dimension of the similarity function. For instance, given
some image pi and some query image Q, we have a similarity
score associated with each of its dimensions (i.e. 0.7 simi-
larity with respect to color, 0.94 similarity with respect to
texture etc). The total similarity of pi and Q, is then simply
be the average of these scores (i.e. 0.82). Exact scores are
also the underlying assumption of distributed top-K query
processing algorithms proposed in recent literature, namely
the TPUT [8], TJA [28] and TPAT [14].

Unfortunately such exact scores are not available in our
setting and therefore none of the above top-k query pro-
cessing solutions can be utilized in our case. To understand
this first assume that we map, using a 1:1 correspondence,
each query dimension to a distributed site. The most similar
trajectory A is the one that maximizes the similarity to Q
across all dimensions (i.e. all sites).

A naive solution would be to calculate some exact similar-
ity score at each remote site and then combine these scores
using any of the aforementioned top-k query processing al-
gorithms. For instance, by utilizing the Euclidean distance

(L2), given as |Q−A| = 2

q

Pl

i=1
|qi − ai|2, one can produce

a set of exact scores, which express the distance of Q to A.
However the matching between Q and A, would only occur
between points of identical time positions. As a result, it
would neither be flexible to out-of-phase matches (e.g. if we
have two identical trajectories but the first one moves earlier
in time) nor tolerant to noisy data (e.g. we have two iden-
tical trajectories but the first has some slight deviation in
its spatial movement). Disregarding these parameters might
result in an extremely poor similarity matching.

Therefore we opt for a multidimensional similarity mea-
sure that takes into account out-of-phase matches and grace-
fully handles noisy data. In particular, we use the Longest
Common Subsequence that will be described in Section 5.2.
Using such a measure in a distributed environment limits
us to a lower and upper bound on the similarity score be-
tween a query trajectory Q and Ai. For instance, we might
only know that the similarity of Q to some subsequence
A1 is between 0.88 and 0.92 and that the similarity of Q
to A2 is between 0.85 and 0.90. Thus, we can not deter-
mine which of the two trajectories is more similar to Q. For
instance if the real similarity is FullM(Q, A1) = 0.89 and
FullM(Q, A2) = 0.90 then A2 is the most similar one; on the
contrary if FullM(Q, A1) = 0.89 and FullM(Q, A2) = 0.87
then A1 is the most similar.

The above description shows that by having score bounds,
rather than exact scores, is not enough to identify the most
similar trajectories. This creates a challenging problem:
How to calculate the top-K answers if we have score bounds
rather than exact scores? We will provide two novel al-
gorithms that solve this problem in an iterative fashion.
Such algorithms might potentially have many other applica-
tions outside the spatiotemporal similarity search domain,
although we will not explore these possibilities here.

3. PROBLEM FORMULATION
In this section we provide the notation used throughout

the paper. Specifically, we formalize our data and query
model. The main symbols and their respective definitions
are summarized in Table 1.
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Figure 2: Two Spatially Fragmented Trajectories A1, A2

across four cells C1, C2, C3, C4.

Symbol Definition

G A Given Geographic Area
QN The Querying Node
Q A Spatio-Temporal Query
n Number of Cells in G
m Number of Trajectories (Objects)
l Trajectory Length (discrete points)
K Number of requested results

LowerM(Q,A), The Lower, Upper Bounding and
UpperM(Q,A), Full Match between the
FullM(Q,A) query Q and the trajectory A.

Larger Match means Smaller Distance

Table 1: Symbol Description.

3.1 The Data Model
Let G denote a 2-dimensional matrix of points in the

xy-plane that represents the coordinate space of some ge-
ographic area. Without loss of generality, we assume that
the points in G are logically organized into x ·y cells as illus-
trated in Figure 2. Each cell contains an access point (AP )
that is assumed to be in communication range from every
point in its cell.2

Although the coordinate space is assumed to be parti-
tioned in square cells, other geometric shapes such as vari-
able size rectangles or Voronoi polygons are similarly appli-
cable but outside the scope of this paper. This partitioning
of the coordinate space simply denotes that in our setting,
G is covered by a set of APs. Now let {A1, A2, ..., Am} de-
note a set of m objects moving in G. At each discrete time
instance, object Ai (∀i ≤ m) generates a spatio-temporal
record r = {Ai, ti, xi, yi}, where ti denotes the timestamp
on which the record was generated, and (xi, yi) the coordi-
nates of Ai at ti. The record r is then stored locally at the
closest AP for l discrete time moments after which it is dis-
carded. Therefore at any given point every access point AP
maintains locally the records of the last l time moments.

A trajectory can be conceptually thought of as a contin-
uous sequence Ai = ((ax:1,y:1), ..., (ax:l,y:l)) (i ≤ m), while
physically it is spatially fragmented across several cells (see
Figure 2). Similarly, the spatio-temporal query is also rep-
resented as: Q = ((qx:1,y:1), ..., (qx:l,y:l)) but this sequence is
not spatially fragmented.

3.2 The Query Model
Our objective is to answer efficiently top-K queries of the

type: given a trajectory Q, retrieve the K trajectories which

2The terms access point and cell are used interchangeably.
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Figure 3: (a) METADATA: Lower and Upper bounds

computed for m trajectories. (b) Distributed Topologies.

are the most similar to Q. First note that the similarity
query Q is initiated by some querying node QN , which dis-
seminates Q to all cells that intersect the query Q. We
call the intersecting regions candidate cells. Upon receiv-
ing Q, each candidate cell executes locally a lower bounding
matching function (LowerM) and an upper bounding func-
tion (UpperM) on all its local subsequences (these functions
will be described in Section 5.2). This yields 2·m local dis-
tance computations to Q by each cell (one for each bound).
To speed up computations we could utilize spatiotemporal
access methods similar to those proposed in [24]. The con-
ceptual array of lower (LB) and upper bounds (UB) for an
example scenario of three nodes (C1, C2, C3) is illustrated in
Figure 3a. We will refer to the sum of bounds from all cells
as METADATA and to the actual subsequence trajectories
stored locally by each cell as DATA. Obviously, DATA is
orders of magnitudes more expensive than METADATA
to be transferred towards QN . Therefore we want to in-
telligently exploit METADATA to identify the subset of
DATA that produces the K highest ranked answers. Fig-
ure 3b illustrates two typical topologies between cells: star
and hierarchy. Our proposed algorithms are equivalently ap-
plicable to both of them although for the remainder of the
paper we use a star topology to simplify our description.

In order to find the K trajectories that are most similar
to a query trajectory Q, QN can fetch all the DATA and
then perform a centralized similarity computation using the
FullM(Q, Ai) (∀i ≤ m) method, which is one of the LCSS,
DTW or other Lp-Norm distance measures presented in Sec-
tion 5. Centralized is extremely expensive in terms of data
transfer and delay.

4. DISTRIBUTED QUERY PROCESSING
In this section we present two novel distributed query pro-

cessing algorithms, UB-K and UBLB-K, which find the K
most similar trajectories to a query trajectory Q. The UB-K
algorithm uses an upper bound on the matching between Q
and a target trajectory Ai, while UBLB-K uses both a lower
and an upper bound on the matching. The description on
how these bounds are acquired is delayed until Section 5.

4.1 The UB-K Algorithm
The UB-K algorithm is an iterative algorithm for retriev-

ing the K most similar trajectories to a query Q. The algo-
rithm minimizes the number of DATA entries transferred to-
wards QN by exploiting the upper bounds from the META-
DATA table. Notice that METADATA contains the bounds
of many objects that will not be in the final top-K result.
In order to minimize the cost of uploading the complete
METADATA table to QN we utilize a distributed top-K

Algorithm 1 : UB-K Algorithm

Input: Query Q, m Distributed Trajectories, Result Pa-
rameter K, Iteration Step λ.
Output: K trajectories with the largest match to Q.

1. Run any distributed top-K algorithm for Q and find
the Λ (Λ > K) trajectories with the highest UBs.

2. Fetch the (Λ − 1) trajectories from the cells and com-
pute their full matching to Q using FullM(Q, Ai).

3. If the Λth UB is smaller or equal to the Kth largest
full match then stop; else goto step 1 with Λ=Λ + λ.

METADATA

id, ub

A4, 30

A2, 27

A0, 25

A3, 20

A9, 18

A7, 12

...

Λ=3

Λ=5

DATA

Q

A4, 23

A2, 22

A0, 16

A3, 18

A9, 15

A7, 10

...

FullM(Q, Ai)

A4

A2

A0

A3

A9

A7

C1 C2 C3

UB FullM

Figure 4: Example execution of UB-K.

query processing algorithm, such as TPUT [8], TJA [28]
and TPAT [14], that transfers only the most necessary en-
tries from the METADATA table towards QN . These algo-
rithms do the following function: Given a set of n distributed
scores for each of m objects, they return the K objects with
the highest score across all n sites. Note that in our setting,
these scores are the local upper bounds. In the experimental
evaluation we utilize the TJA algorithm, although any other
distributed top-k algorithm is applicable as well.

Description: Algorithm 1 presents UB-K. In the first step
of the algorithm, QN retrieves the Λ highest UBs with the
assistance of a distributed top-K algorithm. The param-
eter Λ expresses the user confidence in the METADATA
bounds. For example when the user is confident that the
METADATA table contains tight bounds, then Λ might be
set to a small value.3 In the second step, QN fetches the
exact trajectory (i.e. DATA) for Λ− 1 trajectories Ai iden-
tified in the first step. It then performs a local computation
of FullM(Q, Ai) and determines their full matching to the
query Q. If the Λth highest UB is smaller or equal to the
Kth highest full matching value, we terminate with the final
result. Otherwise, we perform another iteration by increas-
ing the parameter Λ by λ.

Example: Consider the example scenario of Figure 4. As-
sume that the query is to find the top-2 trajectories (K=2)
across C1, C2 and C3. In the first step, QN computes the
UBs of the highest Λ METADATA entries (i.e. A4, A2, A0)
using a distributed top-k algorithm. These entries are the
ones that have the highest average UB across the three cells.
The entries below A0 in the METADATA table are not
available to the querying node QN at this point. In the

3In this paper we initialize Λ as K + 1.



second step QN will fetch the subsequences of the trajec-
tories identified in the first step. Therefore QN has now
the complete trajectories for A4 and A2 (right side of Fig-
ure 4). QN then computes the following full matching:
FullM(Q, A4) = 23, FullM(Q, A2) = 22 using the Longest
Common Subsequence described in Section 5. Since the Λth
highest UB (A0 = 25) is larger than the Kth highest full
match (A2 = 22), the termination condition is not satis-
fied in the third step. To explain this, consider a trajec-
tory X with a UB of 24 and a full match of 23. Obviously
X is not retrieved yet (because it has a smaller UB than
25). However, it is a stronger candidate for the top-2 result
than (A2, 22), as X has a full match of 23 which is larger
than 22. Therefore we initiate the second iteration of the
UB-K algorithm in which we compute the next λ (λ = 2)
METADATA entries and full values FullM(Q, A0) = 16,
FullM(Q, A3) = 18. Now the termination has been satis-
fied because the Λth highest UB (A9, 18) is smaller than the
Kth highest full match (A2, 22). Finally we return as the
top-2 answer the trajectories with the highest full matches
(i.e. {(A4, 23), (A2, 22)}).

Theorem 1.The UB-K algorithm always returns the most
similar objects to the query trajectory Q.

Proof: Let A denote some arbitrary object returned as
an answer by the UB-K algorithm (A ∈ Result), and B
some arbitrary object that is not among the returned re-
sults (B /∈ Result). We want to show that FullM(Q, B) ≤
FullM(Q, A) always holds.

Assume that FullM(Q, B) > FullM(Q, A). We will show
that such an assumption leads to a contradiction. Since
A ∈ Result and B /∈ Result it follows from the first step
of the algorithm that ubB ≤ ubA. In the second phase
of the algorithm we fetch the trajectory A and calculate
FullM(Q, A). By using the assumption, we can now draw
the following conclusion: FullM(Q, A) < FullM(Q, B) ≤
ubB ≤ ubA. When the algorithm terminates in the third
step, with A among its answers, we know that ubX , for
some object X, was smaller or equal to the Kth largest full
score (i.e. ubX ≤ ... ≤ FullM(Q, A)). But it is also true
that ubB ≤ ubX (as object B was not chosen in the first step
of the algorithm), which yields ubB ≤ ubX ≤ FullM(Q, A)
and subsequently FullM(Q, B) ≤ FullM(Q, A) (by defini-
tion FullM(Q, B) ≤ ubB). This is a contradiction as we
assumed that FullM(Q, B) > FullM(Q, A) �

4.2 The UBLB-K Algorithm
The UBLB-K algorithm is, similarly to UB-K, an itera-

tive algorithm for retrieving the K most similar trajecto-
ries. However it has two subtle differences: (i) It uses both
an upper bound (UB) and a lower bound (LB) in order to
determine whether the top K trajectories have been found
and (ii) It transfers the candidate trajectories in a final bulk
step rather than incrementally.

Description: Algorithm 2 presents UBLB-K. The first step
of this algorithm is identical to UB-K with the difference
that we also compute a distributed LB. This comes at a
very small network and delay overhead as this is performed
in parallel with the UB computation. In the second step,
QN checks if the Λth highest UB is smaller or equal to
the Kth highest LB. If that is the case then QN certainly

Algorithm 2 : UBLB-K Algorithm

Input: Query Q, m Distributed Trajectories, Result Pa-
rameter K, Iteration Step λ.
Output: K trajectories with the highest match to Q.

1. Run any distributed top-K algorithm for Q and find
the Λ (Λ > K) trajectories with the highest UB. For
each UB also retrieve the respective LB.

2. If the Λth highest UB is smaller or equal to the Kth
highest LB then goto step 3; else goto step 1 with
Λ = Λ + λ.

3. Fetch the trajectory for objects which have a UB big-
ger than the Kth highest LB.

METADATA

id, lb, ub

A4, 22, 30

A2, 21, 27

A0, 15, 25

A3, 13, 20

A9, 14, 18

A7, 10, 12

...

Λ=3

Λ=5

DATA

Q

A4, 23

A2, 22

A0, 16

A3, 18

A9, 15

A7, 10

...

FullM(Q, Ai)

A4

A2

A0

A3

A9

A7

C1 C2 C3

LB, UB FullM

Figure 5: Example execution of UBLB-K.

knows that the top-K trajectories are in the candidate list
constructed in the first step. Therefore QN proceeds to step
3 in which it fetches all trajectories with UB larger than the
Kth highest LB. Notice that if the Λth highest UB is larger
than the Kth highest LB, then we would proceed to step 1
for another iteration with a larger parameter Λ. The intu-
ition behind UBLB-K is that the termination condition can
be identified based on the LB rather than the full matching.
Therefore we are not required to incrementally fetch the dis-
tributed trajectories, but we can fetch them all together in
a final bulk step.

Example: Consider the example of Figure 5, which this
time presents both bounds in METADATA. In the first step
we compute the LB and UB for the first Λ METADATA en-
tries (i.e. A4, A2, A0). We observe that the Λth highest UB
(A0, 25), is larger than the Kth highest LB (A2, 21). There-
fore the termination condition of step 2 is not satisfied. The
intuition behind this condition is in fact the same as for the
UB-K case. Specifically, the existence of some trajectory
X with a UB 24 and a full matching of 23 would create a
stronger candidate for the top-2 result than the current can-
didate (A2, 21, 27). Therefore we initiate the second itera-
tion in which we compute the next λ (λ = 2) METADATA
entries A3, A9. Now the Λth highest UB (18) is smaller
than the Kth highest LB (21). Therefore QN can safely
proceed to the final bulk transfer step knowing that the re-
sult is among the candidates. Instead of fetching all can-
didates however, QN only fetches the trajectories with UB
larger than the Kth highest LB which is 21. Therefore QN
fetches (A4, 22, 30), (A2, 21, 27) and (A0, 15, 25), since these
are the only candidates with UB larger than Kth highest



LB (A2, 21). After QN performs the final bulk transferring
step it calculates the full match of the retrieved candidates
and simply returns the top-2 trajectories with the highest
match to the query (i.e. {(A4, 23), (A2, 22)}).

Theorem 2.The UBLB-K algorithm always returns the most
similar objects to the query trajectory Q.

Proof: Similar to Theorem 1 �

4.3 Discussion
UB-K vs. UBLB-K: Comparing the two algorithms we
can observe that in many cases (like our example), UBLB-K
might terminate and retrieve less DATA entries at the ex-
pense of an increased overhead of METADATA entries. Note
that the DATA entries are orders of magnitudes more expen-
sive to be transferred than METADATA entries. The sav-
ings increase when the LBs are tighter, which consequently
allows QN to determine faster whether the top-K results
have been found. The savings of UBLB-K are also increased
for larger values of Λ. Note that UB-K has to always re-
trieve Λ full trajectories while UBLB-K, based on the LBs,
can be more selective. These observations are validated in
Section 6.

Incremental Deepening into Top-K Results: Since
both our algorithms fetch the highest METADATA incre-
mentally (e.g. they find the top K, Λ+λ, Λ+2λ, ... UBs at
increasing iterations), QN can cache the METADATA and
DATA it has received in the previous iterations and only
request for the new METADATA and DATA in a new it-
eration. Consider for example Figure 4, where in the first
iteration, QN fetches the trajectories of {A4, A2}. In the
second iteration, QN only needs to fetch the trajectories of
A0 and A3, since the top 2 trajectories have already been
fetched in the previous iteration.

Global Clock Independence: It is important to men-
tion that our algorithms operate correctly in the absence of
a global clock. This is true because the various phases of
our algorithms are not defined as a function of time. How-
ever, when nodes are not synchronized then this might result
in the computation of incorrect answers to the respective
queries. We emphasize that this is not attributed to the
operation of our algorithms but rather to the out-of-order
trajectories. In fact even the centralized algorithm would be
affected by the same problems in this case.

5. SIMILARITY MEASURES FOR SPATIO-
TEMPORAL TRAJECTORIES

In the previous section we have discussed how our pro-
posed distributed query processing algorithms work by uti-
lizing locally computed lower and upper bound scores on
the matching between a query Q and the respective trajec-
tories. In this section we describe how these bounds are
calculated. We start out by providing an overview of dis-
tance measures that were proposed in a centralized setting,
where the querying node has access to the complete trajec-
tory of some moving object. We then provide extensions for
computing these distances in a distributed setting. In par-
ticular, we will focus on a distributed version of the Longest
Common Subsequence, which is utilized in this work.

5.1 Centralized Similarity Measures
Let A((ax:1,y:1), ..., (ax:l1,y:l1)) and B((bx:1,y:1), ..., (bx:l2,y:l2))

denote two 2-dimensional trajectories with sizes l1 and l2
respectively. The most straightforward way to compute the
similarity between A and B is to use any of the Lp-Norm
distances, such as the Manhattan (L1), Euclidean (L2) or
Chebyshev (L∞). Although this family of distances can be
calculated very efficiently, it is not flexible to out-of-phase
matches and not tolerant to noisy data because the points
are only matched at identical time positions.

The Dynamic Time Warping (DTW) [5], solves some of
the matching inefficiencies associated with the Lp-Norm dis-
tances by allowing local stretching of the sequences to opti-
mize the matching. However its performance might deteri-
orate in the presence of noisy data in which outliers distort
the true distance between sequences.

The Longest Common Sub-Sequence (LCSS) similarity has
been extensively used in many 1-dimensional sequence prob-
lems such as string matching. The 2-dimensional adaptation
of LCSS using the L∞

4 is defined as following:
Definition Given integers δ and ǫ, the Longest Common
Sub-Sequence similarity LCSSδ,ǫ(A, B) between two sequences
A and B is defined as:

LCSSδ,ǫ(A, B) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0, if A or B is empty

1 + LCSSδ,ǫ(Tail(A), Tail(B))

if |ax:l1 − bx:l2 | < ǫ and

|ay:l1 − by:l2 | < ǫ and |l1 − l2| < δ

max(LCSSδ,ǫ(Tail(A), B),LCSSδ,ǫ(A, Tail(B)))

otherwise

where the δ and ǫ are user defined thresholds that allow
flexible matching in the time and the space domain respec-
tively. LCSS can deal more efficiently with outliers, because
outliers are simply dropped from the matching and so large
outliers do not skew the measure. Similar to DTW, LCSS
can be computed by a dynamic programming algorithm with
a time complexity of O(δ · (l1 + l2))[9].

Even though LCSS offers many desirable properties, its
time complexity of O(δ · (l1 + l2)) might constitute it in-
efficient for large values of l1, l2 or δ, so it is desirable to
give a technique to upper bound the LCSS similarity. The
idea of the technique proposed in [24] is to encapsulate the
query trajectory Q within a bounding envelope and then
find the intersection between the envelope and the trajecto-
ries. For simplicity consider the 1-dimensional case where
Q= (qx:1, . . . , qx:l1) denotes a query and A= (ax:1, . . . , ax:l2)
a trajectory. Suppose that we replicate each point Qi for δ
time instances before and after time i and that we also repli-
cate each point Qi for ǫ space instances above and below Qi

(see Figure 6). The area contained in the union of all these
points defines the Minimum Bounding Envelope (MBE) of
the query trajectory Q. The notion of the bounding envelope
can be trivially extended to more dimensions.

The LCSS similarity between the envelope of Q and a
sequence A is defined as:

LCSS(MBEQ, A) =
n

X

i=1



1 if A[i] within envelope
0 otherwise

4We could also use L1 or L2 for the recursion step
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Note that the LCSS similarity of an envelope and a se-
quence does not depend on ǫ and δ. These have been incor-
porated in the building of the envelope. It can be computed
in O(min(l1, l2)). For example, in Figure 6 the LCSS sim-
ilarity between MBEQ and sequence A is 48 because this
represents the total intersection length. This value repre-
sents an upper bound on LCSSδ,ǫ(A, Q). For any two tra-
jectories Q and A, LCSSδ,ǫ(A, Q) ≤ LCSS(MBEQ, A).

5.2 Distributed Similarity Measures
The similarity measures presented in the previous section

are only applicable to the centralized scenario, where all
the segments of a target trajectory are stored locally at the
QN . In this section we show how to compute the Longest
Common Subsequence LCSSδ,ǫ(Q,Ai) in a distributed set-
ting. In particular we present techniques to upper bound
(UpperM) and lower bound (LowerM) the LCSS match-
ing. These bounds can then be exploited, using the UB-K
and UBLB-K algorithms described in the previous section,
in order to find the K most similar trajectories in a com-
pletely distributed fashion.

Recall that in a distributed setting each trajectory Ai (i ≤
m) is spatially fragmented over n cells. We define as Aij ,
the segment of the trajectory Ai (i ≤ m) that lies inside
cell cj (j ≤ n). We note that Aij may not be continuous,
however this does not present a problem since each point in
the trajectory is uniquely identified. Therefore each local
subsequence can still be matched over the query Q, which
is assumed to be available in its entirety to each cell.

The basic idea of our approach is to perform local com-
putations of partial lower and upper bounds at each cell
and then combine these partial results to give upper and
lower bounds for LCSSδ,ǫ(Q, Ai) (∀i ≤ m). This allows us
to perform the computation in parallel and to minimize the
amount of data transferred to QN .

Note that the only other alternatives are to either trans-
fer all Aij (∀i ≤ m,∀j ≤ n) to QN (the Centralized solu-
tion) or to perform the dynamic programming computation
of LCSSδ,ǫ(Q,Ai) (∀i ≤ m) in a distributed setting. The
latter approach is lengthy and expensive, as it requires the
communication of the execution state between neighboring
cells for each pair (Q,Ai) (∀i ≤ m).

Algorithm 3 : DUB LCSS Algorithm

Input: n distributed cells, m trajectories per cell (each de-
noted as Aij (i ≤ m, j ≤ n)), query trajectory Q.
Output: DUB LCSSδ,ǫ(MBEQ, Ai), ∀i ≤ m

1. Each cell cj (j ≤ n) uses LCSS(MBEQ, Aij) to calcu-
late the similarity of each local subsequence trajectory
Aij to MBEQ.

2. The upper bound DUB LCSSδ,ǫ(MBEQ, Ai) (i ≤
m), is constructed by adding the n local results (i.e.
Pn

j=1
LCSS(MBEQ, Aij)).

Cell 1, ub(1)= 14

Time

Time

X

X

Cell 2, ub(2) = 22

Query Q
MBE(Q) 

Sub−traj A1  LCSS matching 

Figure 7: The local upper bound computations of the

projections of cell 1 (top) and cell 2 (bottom) in the X

dimension. The overlap of the sub-trajectory in the cell

with the MBEQ is taken as upper bound matching.

5.3 Distributed LCSS Upper Bound (DUB LCSS)
Algorithm 3 presents our distributed upper bound algo-

rithm on LCSS (DUB LCSS). The idea is to have each cell
cj (∀j ≤ n) locally match its local subsequences Aij (∀i ≤
m) to Q using the upper bounding method LCSS(MBEQ, Aij)
presented in section 5.1. Note that this is a simple and
cheap operation since each trajectory point in the local sub-
sequence Aij is associated with a timestamp. We then sim-
ply perform a parallel addition of these individual results
which yields an upper bound on the LCSS matching. Fig-
ure 7 illustrates the operations of the algorithm. The cor-
rectness of DUB LCSS is established by Theorem 3.

Theorem 3. For any query trajectory Q and any dis-
tributed trajectory Ai the following holds:
LCSSδ,ǫ(Q, Ai) ≤ DUB LCSS(MBEQ, Ai).

Proof: By construction, the aggregate similarity for a tra-
jectory Ai is computed by adding the local similarity compu-
tation in each of the n cells:

Pn

j=1
LCSS(MBEQ, Aij). If a

trajectory point (x,y) is in LCSSδ,ǫ(Q,Ai), then this point
must be within δ and ǫ from the query Q. The trajectory
points returned by LCSS(MBEQ, Aij) are all the points in



Algorithm 4 : DLB LCSS Algorithm

Input: n distributed cells, m trajectories per cell (each de-
noted as Aij (i ≤ m, j ≤ n)), query trajectory Q.
Output: DLB LCSSδ,ǫ(Q, Ai), ∀i ≤ m

1. For each trajectory Ai, cell cj (j ≤ n) finds the time
region Tij = {ts(p)|p ∈ Aij} when Ai stays in cell cj .
Filter Q into Q′

ij such that Q′

ij is in the same time
intervals as Aij , Q′

ij = {p|p ∈ Q and ts(p) ∈ Tij}.

2. Each cell cj (j ≤ n) performs a local computation of
LCSSδ,ǫ(Q

′

ij , Aij) (∀i ≤ m,∀j ≤ n).

3. The lower bound DLB LCSSδ,ǫ(Q, Ai) (∀i ≤ m),
is constructed by adding the n local results (i.e.
Pn

j=1
LCSSδ,ǫ(Q

′

ij , Aij)).

Cell 2, lb(2) = 16

Local LCSS Matching 

Time

X

Figure 8: The local lower bound lb(Q,A) in the pro-

jection of cell 2 in the X dimension. The thick red line

represents full LCSS matching, while the thin blue line

represents the lower bound matching within the cell.

Aij that are within δ and ǫ from the query Q. It follows that
Pn

j=1
LCSS(MBEQ, Aij) ≥ LCSSδ,ǫ(Q, Ai) which reduces

to LCSSδ,ǫ(Q, Ai)≤DUB LCSS(MBEQ, Ai) �

5.4 Distributed LCSS Lower Bound (DLB LCSS)
Algorithm 4 presents our distributed lower bound algo-

rithm on LCSS. The idea is again to perform n distributed
computations with a local similarity function, and then per-
form a parallel addition of these individual results. Our
lower bound is computed by having each cell cj (j ≤ n),
to perform a local computation of LCSSδ,ǫ(Q

′

ij , Aij) (∀i ≤
m,∀j ≤ n), without extending the warping window δ out-
side Aij . The correctness of DLB LCSS(Q, Ai) is estab-
lished by Theorem 4. Figure 8 illustrates the computation
of the local lower bound.

Theorem 4. For any query trajectory Q and any dis-
tributed trajectory Ai the following holds:
DLB LCSS(Q, Ai) ≤ LCSSδ,ǫ(Q, Ai).

Proof: According to [9], a dynamic programming algorithm
can be used to compute the LCSS similarity of two trajecto-
ries by constructing a matching matrix. Consider Figure 9,
where we illustrate a matching matrix for two trajectories
Q and A. Suppose we set the parameter δ as 2.5 and ǫ as
0.5, then the matching matrix M[i][j] is marked with X as
local matching of Q[i] and A[j], and O as non-matching.
Notice that the matching is only computed and considered
within a δ-diagonal zone (the gray blocks) as we constraint
the matching window size. The common subsequences of Q
and A can be found by counting matches in the matrix.
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Figure 9: Lower Bounding LCSS: In LCSS, the match-

ing is only possible within the matching window (the

diagonal line which is light-gray shaded). The LCSS

matching can be lower bounded by the sum of the dark-

gray shaded cells in the two respective sub-matrix (6X6

and 8X8).

The algorithm will start from the right bottom block of
the matrix M [ℓ][ℓ] (ℓ is the length of the two trajectories),
jump to the left-up neighbor when the current block is match-
ing, and jump to the left or the up neighbor when the cur-
rent block is not matching, until we reach the left-top block
M [1][1]. The LCSS(Q, A) is then the largest number of
matching blocks (dark-gray blocks) we get. Algorithm 4 di-
vides the query Q into non-overlapping segments Q′

ij in the
same manner as Ai is divided into Aij . In the matching ma-
trix, these segments can be represented by the sub-matrices
in the diagonal line (as the sub-matrices in bold frame in
Figure 9). As shown in Figure 9, any matching in the sub-
matrices is also a valid matching in the global matrix. Since
the sub-matrices do not overlap with each other, the LCSS
computation of the l × l matrix can be lower bounded by
the summation of LCSSs of non-overlapping sub-matrices
at diagonal line.

Therefore
Pn

j=1
LCSS(Q′

ij , Aij) ≤ LCSSδ,ǫ(Q,Ai), thus

DLB LCSS (Q,Ai) ≤ LCSSδ,ǫ(Q, Ai)�

6. EXPERIMENTAL EVALUATION
In this section we present an extensive experimental evalu-

ation of the three similarity search methods: (i) Centralized,
(ii) UB-K and (iii) UBLB-K. We have implemented a trace
driven simulator in GNU C++ which takes as an input a
spatio-temporal dataset and then splits it into n equi-width
cells. Our dataset and methodology are described below.

Dataset: For our evaluation we use the OLDENBURG
dataset, which includes 25,000 trajectories generated over
the Oldenburg street map, using the Network-based Gen-
erator of Moving Objects [6]. The spatial universe of this
dataset is 23,500 x 23,500 points and each trajectory has a
length of 500 temporal points. The dataset has an overall
size of 200MB (each spatio-temporal record in this paper
is 16 bytes). Our queries for the above dataset are syn-
thetically derived with the addition of interpolated peaks of
Gaussian noise. This created variations in the pattern of
these trajectories. Our results are averages over 10 queries.

Methodology: Our performance measures are: (i) Bytes,
(ii) Time and (iii) Messages required for finding the K most
similar trajectories to Q. Our communication protocol is
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structured in the following way: Each message is associated
with a 40 byte header. This is augmented with an additional
6 byte application layer header that includes: (i) The Cell
identifier (1 byte), (ii) the Message size (4 bytes) and the
depth of a cell from the querying node QN (1 byte). We
measure the total communication cost Bytes as a summa-
tion of message cost (40 bytes header cost per message) and
the data cost (i.e. the cost of communicating DATA and
METADATA between QN and all the cells). In order to
allow reproducible and comparable results we perform our
experiments on a single host using a simulated dedicated
bandwidth of 128KBps for the edges between QN and the
cells. Our edges have a random latency between 0-100ms
which is typical for Internet environments. Since the cells
can transmit their results back to QN in parallel, we con-
sider only the longest time of each round.

6.1 Performance Evaluation
Figure 10 illustrates the three performance parameters

as a function of the cell numbers for the three alternatives
(’Centralized’, ’UB-K’ and ’UBLB-K’) using the OLDEN-
BURG dataset. In all cases UB-K and UBLB-K return the
same result with Centralized. However, UB-K and UBLB-K
require two to three orders of magnitudes less bytes and are
two orders of magnitudes faster than Centralized.

We also noticed that UB-K performs in less iterations than
UBLB-K. Specifically, we found that UB-K required 1-3 it-
erations while UBLB-K required 2-6 iterations. This was
attributed to the conservative parameter λ (studied in Sec-
tion 6.2).

For the Messages graph, we observe that UB-K and UBLB-
K require more messages than Centralized. This is because
the UB-K and UBLB-K algorithms include multiple rounds

of METADATA and partial DATA communications between
QN and each cell, while the centralized method just per-
forms one round of full DATA transmission. It is impor-
tant to notice that these METADATA messages are small
in size and therefore are cheaper to be transferred, in terms
of bytes, than transferring DATA.

6.2 Varying the Parameters K andλ

In our UB-K and UBLB-K algorithms, λ is the number of
top-K METADATA to fetch in each iteration. In this ex-
perimental series we study the impact of the parameter λ to
the minimization of the bandwidth cost between the query
node and cells. As shown in Figure 11a, when λ increases,
the number of iterations in UB-K and UBLB-K decreases.

This is due to the fact that a larger step length λ, yields
more candidates in each round and therefore the iteration
stop condition is satisfied much earlier. A consequence of
increasing λ is also the fact that the message cost is signif-
icantly reduced (although this is not directly shown in the
figures). This is explained by the fact that a small λ yields
many small-sized packet transmissions from the cells to QN,
while a larger λ yields a few larger-sized packet transmis-
sions.

The downside of increasing λ, is that the Bytes parameter
(data and message cost), now increases for both UB-K and
UBLB-K as shown in figures 11b and 11c respectively. This
is attributed to the fact that a larger λ, will yield more
METADATA and DATA candidate transfers towards QN .
Figure 11 shows that, for a small K (e.g. ≤ 50), the Bytes
parameter remains low with λ set to 50%K ∼ 100%K. If K
is large (e.g. ≥ 150), the parameter λ should be kept small
as the data cost is so dominant that the message cost is
negligible.



7. CONCLUSION
This paper introduces and formalizes the distributed tra-

jectory similarity search problem. We propose two novel
distributed query processing algorithms that provide an ef-
ficient and exact solution to this problem. Our algorithms
exploit a partial lower and upper bounds on the LCSS sim-
ilarity, which is computed locally by each node. Compre-
hensive experiments with realistic data shows that UB-K
and UBLB-K are orders of magnitudes more efficient in
terms of network traffic and delay. Our approach can eas-
ily be extended to lower bound the DTW distance as well.
Since DTW is a distance, our distributed retrieval tech-
niques would have to find the K trajectories with the small-
est distances to the query. To do that we can modify our
UB-K algorithm to work with lower bounds instead.
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