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ABSTRACT
Complex event processing (CEP) has become increasingly impor-
tant for tracking and monitoring applications ranging from health
care, supply chain management to surveillance. These monitoring
applications submit complex event queries to track sequences of
events that match a given pattern. As these systems mature the need
for increasingly complex nested sequence queries arises, while the
state-of-the-art CEP systems mostly focus on the execution of flat
sequence queries only. In this paper, we now introduce an iterative
execution strategy for nested CEP queries composed of sequence,
negation, AND and OR operators. Lastly the promise of applying
selective caching of intermediate results to optimize the execution.
Our experimental study using real-world stock trades evaluates the
performance of our proposed iterative execution strategy for differ-
ent query types.

Categories and Subject Descriptors
H.4.2 [Information Systems]: Database Management Systems [Query
Processing]

1. INTRODUCTION
Complex event processing (CEP) has become increasingly im-

portant in modern applications, ranging from supply chain man-
agement for RFID tracking to real-time intrusion detection [1, 2,
3]. CEP must be able to support sophisticated pattern matching on
real time event streams including the arbitrary nesting of sequence
operators and the flexible use of negation in such nested sequences.
For example, consider reporting contaminated medical equipments
in a hospital [4, 5]. Let us assume that the tools for medical oper-
ations are RFID-tagged. The system monitors the histories of the
equipment (such as, records of surgical usage, of washing, sharp-
ening and disinfection). When a healthcare worker puts a box of
surgical tools into a surgical table equipped with RFID readers, the
computer would display approximate warnings such as “This tool
must be disposed”. A query Q1 = SEQ (Recycle r, Washing w,
NOT SEQ(Sharpening s, Disinfection d, Checking c), Operating
op) with the condition that ([ID] (equality on ID) and op.ins-type
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= “surgery”) expresses this critical condition that after being re-
cycled and washed, a surgery tool is being put back into use with-
out first being sharpened, disinfected and then checked for quality
assurance. Such complex sequence queries contain complex nega-
tion specifying the non-occurrence of composite event instances,
such as negating the composite event of sharpened, disinfected and
checked subsequences.

However, the state-of-the-art CEP in the literature including SASE
[1] and ZStream [3] do not support such nested queries. Even
though the Cayuga system [2] mentions composable queries, they
assume the negation filter is only applied to a single primitive event
type within the SEQ pattern. Our objective however is to allow
the specification of negation within any level of the nested query as
in the above example. While CEDR [6] allows applying negation
over composite event types within their proposed language, the ex-
ecution strategy for such nested queries is not discussed. In short,
no processing mechanisms for nested complex negation of CEP
queries have been discussed in the literature to date. In this work,
we address this gap by designing an execution strategy specifically
to handle nested CEP queries specified by the nested complex ex-
pression query language NEEL1. The semantics of this language is
presented in [7].

Our contributions in this paper include:

• We introduce an algebraic query plan for nested CEP queries
expressed in NEEL.

• We design an iterative topdown execution strategy based on
the algebraic plan that applies a window constraint tightening
technique designed to correctly process nested sub-queries.
Intermediate results are pushed up conservatively for delayed
resolution when a child query can’t be fully answered locally
for nested negation.

• We experimentally evaluate our proposed execution strategy
studying nested queries with different properties including
sub-query lengths and nesting levels on real data streams.

• Lastly selective caching of intermediate results is introduced
as technique for optimizing the execution.

2. NESTED CEP QUERY MODEL

2.1 Event Model
An event instance is an occurrence of interest which can be ei-

ther primitive or composite as further introduced below. A primitive

1NEEL stands for Nested Complex Event Query Language.



event instance denoted by a lower-case letter (e.g.,‘e’) is the small-
est, atomic occurrence of interest in a system. ei.ts and ei.te denote
the start and the end timestamp of an event instance ei, respectively,
with ei.ts≤ ei.te. For a primitive event instance e, ei.ts = ei.te. For
simplicity, we use the subscript i attached to a primitive instance e
to denote the timestamp i.

A composite event instance is composed of constituent primitive
event instances e = < e1, e2, ..., en >. A composite event instance
e occurs over an interval. The start and end timestamps of e are
equal to min{ei.ts | ei in e } and max{ei.te | ei in e }, respectively.

An event type is denoted by a capital letter, say Ei. An event
type Ei describes a set of attributes that the event instances of this
type share. An event type can be either a primitive or a composite
event type [8]. Primitive event types are pre-defined in the appli-
cation domain of interest. Composite event types are aggregated
event types created by combining other primitive and/or composite
event types. ei ∈ Ej denotes that ei is an instance of the type Ej .
Suppose one of the attributes of Ej is attr and ei ∈ Ej , then we use
ei.attr to denote ei’s value for that attribute.

2.2 The Nested Complex Pattern Query Language NEEL
We now briefly introduce the NEEL query language for specify-

ing complex nested event pattern queries [1, 6, 9] as an extension
of basic non-nested languages from the literature. NEEL supports
the nesting of AND, OR, Negation and SEQ operators at any query
nesting level as in Table 1.

<Query>::= PATTERN <event-expression>
WITHIN <window>
[RETURN <output-specification>]

<event-expression> = <ex>
<ex> ::=
SEQ((<ex> | ! (<ex>, [<q>]))∗,<ex>, (<ex> |

! (<ex>, [<q>]))∗, [<q>])
| AND((<ex>, (<ex> | ! (<ex>, [<q>]))∗, [<q>])
| OR((<ex>)+, [<q>])
| (<primitive-event type>, [<var>])
<primitive-event type> ::= E1 | E2 | ...
<var> ::= event variable ei

<q>::= (<elemqual>)∗

<elemqual> ::= <var>.attr <op> <var>.attr |
<var>.attr <op> constant

<op> ::= < | > | ≤ | ≥ | = | ! =
<window>::= time duration w | tuple count c

Table 1: NEEL Query Language

A primitive event type Ei itself is an event expression. If E1, E2

,..., En are event expressions, an application of SEQ, AND and OR
over these event expressions is again an event expression [8]. In
other words, nesting of AND, OR and SEQ operators is supported.

SEQ in the PATTERN clause specifies a particular order in which
the event instances of interest should occur. If there is a ! (NOT)
symbol before an event expression in an operator, we say that the
event expression marked by ! is to be negated. Event instances
that satisfy the positive components with no events in the stream
relative to this match satisfying the negative components are output.
If several adjacent event types are marked by ! in a SEQ operator
such as SEQ(E1, ! E2, ! E3, E4), the query requires the non-
existence of any E2 and E3 events in either order between E1 and
E4 events within the input stream. In other words < e1, e3, e4 >
and < e1, e2, e4 >, < e1, e3, e2, e4 > and < e1, e2, e3, e4 > all
match for this query.

An event expression expi can be used as a component in SEQ,
AND and OR operators to construct another expression expj . Then
we call expj the outer or parent expression of expi and expi the

inner (or child) expression of expj . Qualification in the PATTERN
clause contains predicates on single attributes or on attributes across
multiple event types in the query [6, 1]. The event variables de-
fined in an outer expression are visible within the scope of its own
nested inner expressions. Local predicates are specified directly
inside expi. Correlated predicates involving events from both an
outer and an inner expression are associated with the innermost ex-
pression that define an event in the predicate. Correlated predicates
involving two adjacent sibling expressions are not allowed since
the events in one inner expression are not visible in any sibling.

The WITHIN clause indicates the temporal interval within which
the event instances of interest must occur. The RETURN clause
transforms the set of matching event instances extracted by the
query into a complex event as specified in the output specification.

Q1 below in Figure 1 is a sample query expressed by NEEL.
Time

PATTERN SEQ(Recycle r, Washing w,         
! SEQ(Sharpening s, Disinfection d, Checking c, s.id=d.id=c.id=o.id),                        

Operating o, r.id=w.id=o.id and o.ins-type="surgery")    
WITHIN 1 hour

Figure 1: Sample Query Q1 for Hospital Hygiene

2.3 Nested CEP Query Plan
A query expressed by a NEEL specification is translated into a

default algebraic query plan composed of the following algebraic
operators: Window Sequence (WinSeq), Window Or (WinOr) and
Window And (WinAnd). During query transformation, each ex-
pression in the event pattern is mapped to one operator node in
the query plan. The same window w is assigned to all operator
nodes. WinSeq first extracts all matches to the positive components
specified in the query, and then filters out events based on negative
components as specified in the query. WinOr returns an event e if
e matches any one of the event expressions specified in the WinOr
operator. WinAnd computes the cross product of its positive com-
ponents. For queries expressed by NEEL, predicates are placed into
the respective algebra operators in the nested event expressions (see
Section 2.2).

OperatingRecycle Washing

WinSeq(Recycle r, Washing w, , Operating o)

WinSeq(Sharpening s, Disinfection d, Checking c)

Sharpening Disinfection Checking

(r.id = w.id = o.id and o.ins_type = surgery”)

(s.id = d.id = c.id=o.id)

!

RFID readings

Complex Events

Figure 2: Basic Query Plan

EXAMPLE 1. Figure 2 depicts the query plan for query Q1 in
Figure 1. The two SEQ expressions in Q1 are transformed into two
WinSeq operator nodes in the plan. The predicate s.id = d.id = c.id
= o.id is placed with the inner WinSeq operator node containing
the negative component. The other predicates are attached to the
topmost WinSeq operator node.

3. NESTED CEP QUERY PROCESSING

3.1 Execution of Individual Operators
For simplicity, we briefly review the implementation strategy of

one of the operators, namely, the SEQ operator, while the others can
be implemented in a similar fashion. We adopt the state-of-the-art
stack-based strategy for SEQ execution [1, 10, 11]. We associate



a stack with each event type in the query. Each received event in-
stance is simply appended to the end of the stack of its type. Event
instances are augmented with pointers ptri to adjacent events to fa-
cilitate quick locating of related events in other stacks during result
construction.

The arrival of an event instance em of the last event type Em

of a query qi triggers the compute function of qi
2. The result con-

struction is done by a depth first search along instance pointers ptri

rooted at that last arrived instance em. All paths composed of edges
“reachable” by that root em correspond to one matching event se-
quence returned for qi. When negative event types are specified in
WinSeq, then during sequence construction any edges “reachable”
from the root em are skipped if an instance of the negative event
type is found in the corresponding stream position. Events that are
outdated based on the window constraints are purged.

3.2 Iterative Nested Execution Strategy
Following the principle of nested query execution for SQL queries

[12, 13, 14, 15], the outer query is evaluated first followed by its
inner sub-queries. The results of the inner queries are passed up
and joined with the results of the outer query. The main idea of
our nested execution is about passing down more stringent window
constraints from outer queries to inner queries. For every outer par-
tial query result, a constraint window (see Figure 3) is passed down
for processing each of its children sub-queries. These sub-queries
compute results involving events within the substream constrained
by the constraint window. Qualified result sequences of the inner
operators are passed up to the parent operator and the outer operator
then joins its own local results with that of its positive sub-queries.
The outer sequence result is filtered if the result set of any of its neg-
ative sub-queries is not empty. We apply iterative execution until a
final result sequence is produced by the root operator. Finally, the
process repeats when the outer query consumes the next instance
e. We will discuss nested queries with negation and predicates in
more detail in Sections 3.3 and 3.4, respectively.

Interval IntervalConstraints (Result rj, Query qi)
// rj is one partial result of the outer query
01 Interval ts;
02 if(root operator of qi is SEQ)

// gets the position of qi in outer query
03 { nestedPosition = getNestedPos(qi);

// if outer query starts with sub query qi

04 if(nestedPosition == 0)
// left bound is time of last event in result r

05 tsleft = getTime(rj.LastEve) - W;
// if outer query ends with sub query qi

06 if(nestedPosition == rj.size)
// right bound is time of first event in result r

07 tsright = getTime(rj.FirstEve) + W;
08 else
09 {tsleft=getTime(rj.get(nestedPos-1))
10 tsright=getTime(rj.get(nestedPos))}
11 if(root operator of qi is AND)
12 {tsleft = getTime(rj.lastEve) - W;
13 tsright = getTime(rj.lastEve); }
14 if(root operator of qi is OR)
15 {tsleft = getTime(rj.lastEve) - W;
16 tsright = getTime(rj.lastEve); }
17 return ts;

Figure 3: Algorithm to Compute Interval Constraints for an
Inner Query Qi Given an Outer Partial Result rj

2if Em is a negative event type, postponed sequence evaluation is
applied. We omit the details here.

3.3 Processing Nested Queries with Negation
We now describe our approach of supporting negations in nested

queries. In SASE [1, 11, 10], flat queries can have negations and
they are dealt with using the timestamp information. More pre-
cisely, if a query has a negative A between positive B and C event
types, they first evaluate the query without the negation, i.e., they
compute all B-C pairs. Then for every result generated they check
if an A event occurred between the qualified B and C events. If it
occurs, such pairs are discarded. When two negative event types
are adjacent to each other, their order does not matter. For exam-
ple, SEQ(A, !B, !C, D) is equivalent to SEQ(A, !C, !B, D). That is,
all (A, D) result pairs without any B and C events in between them
would be returned. For negative event types at the end of a query,
postponed sequence evaluation is applied. That is the execution is
continued till the last negation as per our iterative strategy however
results are not output. Instead at t he arrival of every new event
we note the time stamp of the event and also check whether it is a
triggering event for the last negative part of the query. If it is not
a triggering event, based on the time stamp of the arriving event,
some results from the buffer may be output and removed from the
buffer. If it is a triggering event, the negative part of the query is
executed and if it produces some partial results, the result buffers
of the outer query are completely cleared. However if the negative
ending part of the query does not produce any results, some results
are output and removed from the result buffers based on the time
stamp of the arriving event.

In our nested query model, a sub-query as a whole could also be
negated. For example, SEQ(A, ! AND(B, C), D). For each outer
result of SEQ(A, D), we search for AND(B, C) results occurring
between such A and D events. If none exist, then the outer SEQ(A,
D) result is returned, otherwise it is filtered out.

We distinguish between the following positions in which the
negation clause can occur.

• Bound by Upper Query. The existence of a negative event in-
stance could be bounded by positive event instances in the di-
rect upper queries. Examples of this category include SEQ(A,
!B, C) and SEQ(A, SEQ(B, !C), D). In the second query, neg-
ative C events are bound by B and D events. B events that
do not have any C events occurring after them and before D
events are passed up to the upper query operator. All B events
passed up will be joined with the outer SEQ(A, D) result to
construct SEQ(A, SEQ(B, !C), D) results.

• Bound by Adjacent Query. The existence of a negative event
instance could be bound by positive event instances of an
adjacent sibling sub-query. Examples of this type include
SEQ(A, SEQ(B, !C), SEQ(D, E), F) or SEQ(A, !B, SEQ(C,
D), E). In this case, we apply a contextual delayed constraint
technique. Namely, we conservatively pass up additional in-
termediate results as compared to the case described above.
In SEQ(A, SEQ(B, !C), SEQ(D, E), F), outer SEQ(A, F)
results < ai, fj> are constructed. The constraint window
for both children sub-queries SEQ(B, !C) and SEQ(D, E) is
[ai.te, fj .ts]. When processing the sub-query SEQ(B, !C)
within this constraint window, any event of type B should
be passed up. We cannot filter out events of type B even
though C events exist after it within its constraint window.
The reason is that the right bound of the interval constraint
of the query SEQ(B, !C) is decided by the results of the query
SEQ(D, E). We should not have a C event between a B or D
event. However, it is not possible to know time stamps of
D events while still processing the query SEQ(B, !C). Hence
the decision is postponed until the results of both the inner
queries are returned to the outer query and then the filtering
of results takes place based on the presence of C events.



3.4 Processing Nested Queries with Predicates
The approach of handling sub-queries with correlated predicates

is similar to the basic nested execution described above except that
the join is not only based on timestamps but also on other predi-
cates. Below, we list the different cases for predicate handling.

• Local predicates. Events are filtered based on predicate val-
ues before being stored in their stack. Query processing pro-
ceeds otherwise as explained above. For example, for the
query in Figure 2, Operating events where the instrument
type is not equal to “surgery” will be filtered.

• Correlated predicates between inner and outer queries. Nested
sub-queries may be correlated with their parent queries by
means of predicates. In order to evaluate these queries with
predicates, it is necessary to pass down attribute values to the
children queries. For example, the query in Figure 2 requires
events in the inner sub-queries have the same tool id as the
outer match. For each outer SEQ(Recycle r, Disinfection d,
Operating o) match, the tool id information for the operat-
ing instance is thus passed down to the children sub-queries.
Inner query results involving events having the same tool id
with the outer match are returned to the upper query.

3.5 Putting It All Together
At compile time, queries with negation bounded by an adjacent

sub-query (as discussed in Section 3.3) are marked with label ”de-
layed constraint”. More specifically, if a query qi is labeled as “de-
layed constraint”, it not only needs to pass up potential qi results,
but also negative events are passed up as we can’t determine locally
if they are in violation or not. The pseudo code of the nested execu-
tion algorithm is given in Figure 4. This function is called whenever
a new event of the last positive event type in the outer query arrives.
Figure 5 shows the algorithm for joining partial outer results with
its children query results. As can be seen in Table 1, predicates on
negative components are associated directly with the later and not
with the operator a whole. They are thus only evaluated for those
subqueries, for which the positive parent context match has already
been established.

EXAMPLE 2. Consider the query Q = SEQ(Recycle r, ! SEQ(
Washing w, Drying dr, Sharpening s), Disinfection d, SEQ(Checking
c, Relabeling rl), Operating op). When event instances of types Re-
cycle, Washing, Drying, Sharpening, Disinfection, Checking, Rela-
beling and Operating arrive, they are pushed into their respective
stacks. The outer query is first evaluated for a given window size
followed by the inner sub-query. The outer query construction is
triggered by the arrival of Operating events which are of the right-
most positive event type in the root query. For every partial result
< ri, dj , opk > of the outer query SEQ(Recycle r, Disinfection
d, Operating op), we compute the window constraints for its chil-
dren queries. For details, see Figure 3. If we were to evaluate this
query without predicates, all results for SEQ(Washing w, Drying
dr, Sharpening s) and SEQ(Checking c, Relabeling rl) would be
constructed for events that occur within [ri.te, dj .ts] and [dj .te,
opk.ts], respectively. The outer operator joins with all results re-
turned by its positive sub-query SEQ(Checking c, Relabeling rl).
The outer result < ri, dj , opk > fails if results of the negative
child query SEQ(Washing w, Drying dr, Sharpening s) exist. When
evaluating Q with correlated predicates [id], the id is passed down
from the outer query to the children sub-queries. Results involving
events with the same id are constructed in the sub-queries.

4. PERFORMANCE EVALUATION
The objective of our evaluation is to verify if our strategy gives

the correct results so that they can be used as a benchmark to com-
pare alternate future methods against. We verify using various

NestedExecution (query qi, event ei, Window W))
01 if(ei triggers qi result construction)
02 {Interval ts; tsleft=ei.ts - W; tsright=ei.ts

RecursiveCompute(qi, ei, ts)}
// compute qi results
RecursiveCompute(query qi, event ei, ts)
01 finalResult fr[];

buffers bufchildren[];
02 result r[] = selfCompute( qi , ei);
03 if (qi has no children queries)
04 {if(qi ∈ labeledSubQueries (Sec 3.5))
05 return r[] with negative events in qi;
06 else return r[]; }
07 else for each result rj belongs to r[]
08 for each inner query childj of qi

09 Interval ts =
IntervalConstraints(rj, qi.childj);

// compute constraint window for each sub-expression
10 RecursiveCompute(qi.childj, e, ts);
11 for each inner query childj of qi

12 if (Eval(qi, qi.childj, bufchildren))
// join positive children results

14 continue;
// stop evaluation if a negative component is not empty.

15 else break;

Figure 4: Nested Execution Strategy
Eval (Query qi, Query qj, Buffer bufchildren))
01 if (qj ∈ labeledSubQueries)
02 tighten qj results with negative events
03 if (qj is a positive query in qi)
04 join qi and qj results; return true;
05 else if(qj.results are not empty)

// qj is a negative component
06 return false;

Figure 5: Result Evaluation

types of queries. We also make note of the execution time to test
the effectiveness and practicability of our method.

4.1 Experimental Setup
We have implemented our proposed nested query processing frame-

work within the stream management system CHAOS [16] using
Java. We ran the experiments on Intel Pentium IV CPU 2.8GHz
with 4GB RAM. We evaluated our techniques using the real stock
trades data from [17] with 10,000 event instances with a sliding
window of size 10 ms.The data contained stock ticker, timestamp
and price information.
4.2 Varying Children Subquery Number

The first experiment processed queries with increased number
of sub-queries from 1 to 3 (Figure 6(a)). q3 generates minimum
results using maximum processing time among the three queries.
q3 has more sub-queries to process which thus consumes more CPU
processing time. Also, more outer SEQ(MSFT,ORCL,IPIX,INTC)
results are filtered in q3 as more constraints exist as compared to the
other queries. As expected, the computation time increases with the
number of sub-queries because the probability of finding patterns
decreases with an increasing number of event types.

Increased Children Number:
q1=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,IPIX,INTC);
q2=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,!SEQ(YHOO,DELL),IPIX,INTC);
q3=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,!SEQ(YHOO,DELL),IPIX,

!SEQ(CSCO,QQQ),INTC);



(a) Increased Children Number (b) Increased Query Length (c) Increased Nesting Levels

Figure 6: Evaluating Nested Patterns

4.3 Varying Subquery Lengths
The second experiment processed the queries below with in-

creased sub-query lengths (from 2 to 4) as depicted in Figure 6(b).
We observed that q6 generates the most number of results and uses
the most CPU processing time among the three queries. This is be-
cause q6 includes the sub-query with the longest length which con-
sumes more computational time. As expected, less outer SEQ(MSFT,
ORCL,INTC) results are filtered in q6 as the existence of a longer
pattern is relatively less likely as compared to the other queries with
shorter patterns within the same input stream.

Increased Query Length:
q4=SEQ(MSFT,!SEQ(RIMM,AMAT),ORCL,INTC);
q5=SEQ(MSFT,!SEQ(RIMM,AMAT,YHOO),ORCL,INTC);
q6=SEQ(MSFT,!SEQ(RIMM,AMAT,YHOO,DELL),ORCL,INTC);

4.4 Varying Subquery Nesting Levels
The third experiment processed the queries below with increased

sub-query nesting levels as depicted in Figure 6(c). q9 generates
the most number of results and uses the most CPU processing time
among the three queries. It is because q9 includes the sub-query
with the largest nesting levels which consumes more time to be
computed. Less outer SEQ(MSFT, ORCL, INTC) results are fil-
tered as it is relatively infrequent to have more events in levels oc-
cur in a sequence.

Increased Nesting Levels:
q7=SEQ(MSFT,!SEQ(IPIX,QQQ),ORCL,INTC);
q8=SEQ(MSFT,!SEQ(IPIX,SEQ(RIMM,AMAT),QQQ),ORCL,INTC);
q9=SEQ(MSFT,!SEQ(IPIX,SEQ(RIMM,SEQ(YHOO,DELL),AMAT),QQQ),

ORCL,INTC);

5. NESTED QUERY OPTIMIZATION
Although the results of nested CEP queries obtained from the it-

erative execution strategy are correct, it produces results at a very
slow rate which is attributed to the re-computation of the results for
inner sub-queries every time an outer triggering event arrives which
makes the processing expensive. To tackle this deficiency, we pro-
pose to cache and incrementally maintain the inner query results.
Due to the sliding window, many intermediate results would con-
tinue to be valid from one sliding window to the next. Previously
calculated results of the previous window should be cached and
then be reused in the new window. In this paper we will only pro-
pose a direction for such an optimization technique. However this
technique is not generic and cannot support negation or predicate
correlation.

• Cache Interval Extraction. Assume Qi = SEQ(E1, . . . ,
Ei, SEQ(Ei+1, . . . , Ei+j), Ei+j+1, . . . , En). For a given
triggering event en ∈ En, the left bound of the interval at-
tached to the subexpression SEQ(Ei+1, . . . , Ei+j) is given
by ei.ts such that ei has the minimum timestamp among all

events of type Ei which have arrived so far. Similarly, the
right bound of the interval is given by an event ei+j+1.ts such
that ei+j+1 has the maximum timestamp among all events
of type Ei+j+1 which have arrived so far. The extracted in-
terval is attached to each cache representing the valid time
period for the cached results.

• Interval-driven Cache Expansion. We update the cache
content when a new triggering event et arrives. That is,
given a new triggering event instance ei, we calculate the
new cache interval. For each subexpression, we compare the
interval [i, j] attached to the cache to the new interval [m,
n]. By the way our algorithm works, i = m, since the left
bound is maintained at the event with minimum timestamp.
We compute the sub-query SEQ(Ei+1, . . . , Ei+j) for all trig-
gering events ei+j between the interval [j, n] New results
are appended to the cache for each subexpression triggered
by events occurring between the right bounds of [j, n].

• Interval-driven Cache Reduction. When a triggering event
et arrives, events with timestamp less than et - window are
purged from their stacks. Similarly, caching results involving
events with timestamp less than et - window are deleted from
the cache as the window constraint will be violated if these
results join with the new triggering event et in the final result.

EXAMPLE 3. In Figure 7, when the triggering event o26 ar-
rives, it is inserted into the Operating stack and triggers execu-
tion. [1, 15] and [8, 26] are extracted time intervals for the subex-
pressions SEQ(Washing, Drying, Sharpening) and SEQ(Checking,
Relabeling), respectively. SEQ(Washing, Drying, Sharpening) re-
sults are constructed based on all events that occurred during [1,
15]. Similarly, SEQ(Checking, Relabeling) events occurring dur-
ing [8, 26] are constructed and cached. When the new trigger-
ing event o30 arrives, we determine the interval for SEQ(Washing,
Drying, Sharpening) is still [1, 15]. Thus the cache is still com-
plete and thus we can reuse results in the cache. For subexpression
SEQ(Checking, Relabeling), we find the new interval [8, 30] over-
laps with the previous interval [8, 26]. Conceptually, we could
reuse the caching results related to [8, 26] and we must compute
the new additions to our cache. New SEQ(Checking,Relabeling) re-
sults are triggered by Relabeling events occurring between [26, 30]
such as rl28. Assume the window size is 30. When o34 arrives, all
caching results involving primitive events with time-stamp less than
4 expire. So < w2, dr6, s7 >, < w2, dr3, s7 > etc are deleted from
the cache. The meta-data attached to the cache for SEQ(Washing,
Drying, Sharpening) is updated from [1, 15] to [4, 15].

5.1 Evaluating Optimized Nested Execution:
Caching Results



SharpeningWashing

w5
s7
s12

Drying

dr6
Checking

c16
c20

relabelling
rl28

Recycle Disinfection

r1 d8
d15

Operating

o26
r4

w9 dr10
rl18

o30

w2 dr3 c11

f

<w5, dr6, s7>

<w2, dr10, s12>
<w5, dr10, s12>
<w9, dr10, s12>

f<c16, rl18>
<c11, rl18>

Buffer Interval [8, 26]Buffer interval [1 15] 

o14

f

<c16, rl18>
<c11, rl18>
<c20, rl28>
<c16, rl28>
<c11, rl28>

Buffer Interval [8, 30]

<w2, dr6, s7>
<w2, dr3, s7>

<w2, dr6, s12>
…

<w5, dr6, s12>

Figure 7: Interval Driven caching

We process query q10 comparing the optimized execution by the
interval driven caching technique to the one without caching as
in Figure 8. Caching helps in avoiding repeated computation for
the subquery SEQ(QQQ,AMAT,DELL) as our results demonstrate.
Clearly, we will have more or less gain with different reuse oppor-
tunities which may be caused by larger windows, more expensive
sub-queries, etc.

Increased Nesting Levels:
q10 = SEQ(YHOO,SEQ(QQQ,AMAT,DELL),ORCL,IPIX);
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6. RELATED WORK
The existing CEP systems [1, 2, 3, 6] do not focus on the ex-

ecution of nested sequence queries as tackled in this paper. The
query language of the CEDR [6] system supports nested sequence
queries. However, the execution strategy for such nested queries is
not given.

Complex queries used in decision support applications often have
multiple correlated sub-queries and table expressions, possibly across
several levels of nesting. It is usually inefficient to directly execute
a correlated query; consequently, algorithms such as magic decor-
relation [18] and complex query decorrelation [19] have been pro-
posed to decorrelate the query. However, existing decorrelation al-
gorithms deal with only relational queries, that is, these algorithms
are neither described nor tested in the streaming context.

For SQL queries, [20] discusses whether a query result should
be admitted to the cache and which results are to be purged in the
static data context. In semantic caching [21], a semantic descrip-
tion of the data in a cache is maintained which allows for a compact
specification. We study caching inner queries in the streaming con-
text and apply interval driven caching by using validity intervals as
semantic descriptors. Semantic descriptors have also be shown to
be of importance for query caching in the XML context [22, 23,
24]. However, sophisticated cache matching algorithms had to be

designed to deal with query containment, namely, with extracting
related yet not identical subexpressions possibly with alternate hi-
erarchical XML structures yet the same content [22].

7. CONCLUSION
In this paper, we introduced a comprehensive strategy for pro-

cessing nested CEP queries. These extensions allow users to spec-
ify fairly complex queries in a compact manner. An algebraic query
plan for the execution of nested CEP queries was designed. We
then developed a window constraint tightening technique to cor-
rectly process sub-queries. We also presented execution strategies
for handling predicates in nested queries. Optimization using inter-
val driven cache expansion and reduction were proposed. We plan
to study alternative optimization techniques in the future.
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